
Dynamic Network Surgery for Efficient DNNs

Yiwen Guo∗
Intel Labs China

yiwen.guo@intel.com

Anbang Yao
Intel Labs China

anbang.yao@intel.com

Yurong Chen
Intel Labs China

yurong.chen@intel.com

Abstract

Deep learning has become a ubiquitous technology to improve machine intelligence.
However, most of the existing deep models are structurally very complex, making
them difficult to be deployed on the mobile platforms with limited computational
power. In this paper, we propose a novel network compression method called
dynamic network surgery, which can remarkably reduce the network complexity
by making on-the-fly connection pruning. Unlike the previous methods which
accomplish this task in a greedy way, we properly incorporate connection splicing
into the whole process to avoid incorrect pruning and make it as a continual network
maintenance. The effectiveness of our method is proved with experiments. Without
any accuracy loss, our method can efficiently compress the number of parameters
in LeNet-5 and AlexNet by a factor of 108× and 17.7× respectively, proving that
it outperforms the recent pruning method by considerable margins. Code and some
models are available at https://github.com/yiwenguo/Dynamic-Network-Surgery.

1 Introduction

As a family of brain inspired models, deep neural networks (DNNs) have substantially advanced a
variety of artificial intelligence tasks including image classification [13, 19, 11], natural language
processing, speech recognition and face recognition.

Despite these tremendous successes, recently designed networks tend to have more stacked layers,
and thus more learnable parameters. For instance, AlexNet [13] designed by Krizhevsky et al.
has 61 million parameters to win the ILSVRC 2012 classification competition, which is over 100
times more than that of LeCun’s conventional model [15] (e.g., LeNet-5), let alone the much more
complex models like VGGNet [19]. Since more parameters means more storage requirement and
more floating-point operations (FLOPs), it increases the difficulty of applying DNNs on mobile
platforms with limited memory and processing units. Moreover, the battery capacity can be another
bottleneck [9].

Although DNN models normally require a vast number of parameters to guarantee their superior
performance, significant redundancies have been reported in their parameterizations [4]. Therefore,
with a proper strategy, it is possible to compress these models without significantly losing their
prediction accuracies. Among existing methods, network pruning appears to be an outstanding one
due to its surprising ability of accuracy loss prevention. For instance, Han et al. [9] recently propose to
make "lossless" DNN compression by deleting unimportant parameters and retraining the remaining
ones (as illustrated in Figure 1(b)), somehow similar to a surgery process.

However, due to the complex interconnections among hidden neurons, parameter importance may
change dramatically once the network surgery begins. This leads to two main issues in [9] (and some
other classical methods [16, 10] as well). The first issue is the possibility of irretrievable network

∗This work was done when Yiwen Guo was an intern at Intel Labs China supervised by Anbang Yao who is
responsible for correspondence.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

https://github.com/yiwenguo/Dynamic-Network-Surgery


damage. Since the pruned connections have no chance to come back, incorrect pruning may cause
severe accuracy loss. In consequence, the compression rate must be over suppressed to avoid such
loss. Another issue is learning inefficiency. As in the paper [9], several iterations of alternate pruning
and retraining are necessary to get a fair compression rate on AlexNet, while each retraining process
consists of millions of iterations, which can be very time consuming.

In this paper, we attempt to address these issues and pursue the compression limit of the pruning
method. To be more specific, we propose to sever redundant connections by means of continual
network maintenance, which we call dynamic network surgery. The proposed method involves
two key operations: pruning and splicing, conducted with two different purposes. Apparently,
the pruning operation is made to compress network models, but over pruning or incorrect pruning
should be responsible for the accuracy loss. In order to compensate the unexpected loss, we properly
incorporate the splicing operation into network surgery, and thus enabling connection recovery once
the pruned connections are found to be important any time. These two operations are integrated
together by updating parameter importance whenever necessary, making our method dynamic.

In fact, the above strategies help to make the whole process flexible. They are beneficial not only
to better approach the compression limit, but also to improve the learning efficiency, which will be
validated in Section 4. In our method, pruning and splicing naturally constitute a circular procedure
and dynamically divide the network connections into two categories, akin to the synthesis of excitatory
and inhibitory neurotransmitter in human nervous systems [17].

The rest of this paper is structured as follows. In Section 2, we introduce the related methods of DNN
compression by briefly discussing their merits and demerits. In Section 3, we highlight our intuition
of dynamic network surgery and introduce its implementation details. Section 4 experimentally
analyses our method and Section 5 draws the conclusions.

(a) (b)

Figure 1: The pipeline of (a) our dynamic network surgery and (b) Han et al.’s method [9], using
AlexNet as an example. [9] needs more than 4800K iterations to get a fair compression rate (9×),
while our method runs only 700K iterations to yield a significantly better result (17.7×) with
comparable prediction accuracy.

2 Related Works

In order to make DNN models portable, a variety of methods have been proposed. Vanhoucke et
al. [20] analyse the effectiveness of data layout, batching and the usage of Intel fixed-point instructions,
making a 3× speedup on x86 CPUs. Mathieu et al. [18] explore the fast Fourier transforms (FFTs)
on GPUs and improve the speed of CNNs by performing convolution calculations in the frequency
domain.

An alternative category of methods resorts to matrix (or tensor) decomposition. Denil et al. [4]
propose to approximate parameter matrices with appropriately constructed low-rank decompositions.
Their method achieves 1.6× speedup on the convolutional layer with 1% drop in prediction accuracy.
Following similar ideas, some subsequent methods can provide more significant speedups [5, 22, 14].
Although matrix (or tensor) decomposition can be beneficial to DNN compression and speedup, these
methods normally incur severe accuracy loss under high compression requirement.

Vector quantization is another way to compress DNNs. Gong et al. [6] explore several such methods
and point out the effectiveness of product quantization. HashNet proposed by Chen et al. [1] handles
network compression by grouping its parameters into hash buckets. It is trained with a standard
backpropagation procedure and should be able to make substantial storage savings. The recently

2



Figure 2: Overview of the dynamic network surgery for a model with parameter redundancy.

proposed BinaryConnect [2] and Binarized Neural Networks [3] are able to compress DNNs by a
factor of 32×, while a noticeable accuracy loss is sort of inevitable.

This paper follows the idea of network pruning. It starts from the early work of LeCun et al.’s [16],
which makes use of the second derivatives of loss function to balance training loss and model
complexity. As an extension, Hassibi and Stork [10] propose to take non-diagonal elements of the
Hessian matrix into consideration, producing compression results with less accuracy loss. In spite
of their theoretical optimization, these two methods suffer from the high computational complexity
when tackling large networks, regardless of the accuracy drop. Very recently, Han et al. [9] explore
the magnitude-based pruning in conjunction with retraining, and report promising compression results
without accuracy loss. It has also been validated that the sparse matrix-vector multiplication can
further be accelerated by certain hardware design, making it more efficient than traditional CPU
and GPU calculations [7]. The drawback of Han et al.’s method [9] is mostly its potential risk of
irretrievable network damage and learning inefficiency.

Our research on network pruning is partly inspired by [9], not only because it can be very effective to
compress DNNs, but also because it makes no assumption on the network structure. In particular,
this branch of methods can be naturally combined with many other methods introduced above, to
further reduce the network complexity. In fact, Han et al. [8] have already tested such combinations
and obtained excellent results.

3 Dynamic Network Surgery

In this section, we highlight the intuition of our method and present its implementation details. In
order to simplify the explanations, we only talk about the convolutional layers and the fully connected
layers. However, as claimed in [8], our pruning method can also be applied to some other layer types
as long as their underlying mathematical operations are inner products on vector spaces.

3.1 Notations

First of all, we clarify the notations in this paper. Suppose a DNN model can be represented as
{Wk : 0 ≤ k ≤ C}, in which Wk denotes a matrix of connection weights in the kth layer. For the
fully connected layers with p-dimensional input and q-dimensional output, the size of Wk is simply
qk × pk. For the convolutional layers with learnable kernels, we unfold the coefficients of each kernel
into a vector and concatenate all of them to Wk as a matrix.

In order to represent a sparse model with part of its connections pruned away, we use {Wk,Tk : 0 ≤
k ≤ C}. Each Tk is a binary matrix with its entries indicating the states of network connections, i.e.,
whether they are currently pruned or not. Therefore, these additional matrices can be considered as
the mask matrices.

3.2 Pruning and Splicing

Since our goal is network pruning, the desired sparse model shall be learnt from its dense reference.
Apparently, the key is to abandon unimportant parameters and keep the important ones. However, the
parameter importance (i.e., the connection importance) in a certain network is extremely difficult

3



to measure because of the mutual influences and mutual activations among interconnected neurons.
That is, a network connection may be redundant due to the existence of some others, but it will soon
become crucial once the others are removed. Therefore, it should be more appropriate to conduct a
learning process and continually maintain the network structure.

Taking the kth layer as an example, we propose to solve the following optimization problem:

min
Wk,Tk

L (Wk �Tk) s.t. T
(i,j)
k = hk(W

(i,j)
k ), ∀(i, j) ∈ I, (1)

in which L(·) is the network loss function, � indicates the Hadamard product operator, set I
consists of all the entry indices in matrix Wk, and hk(·) is a discriminative function, which satisfies
hk(w) = 1 if parameter w seems to be crucial in the current layer, and 0 otherwise. Function
hk(·) is designed on the base of some prior knowledge so that it can constrain the feasible region of
Wk �Tk and simplify the original NP-hard problem. For the sake of topic conciseness, we leave
the discussions of function hk(·) in Section 3.3. Problem (1) can be solved by alternately updating
Wk and Tk through the stochastic gradient descent (SGD) method, which will be introduced in the
following paragraphs.

Since binary matrix Tk can be determined with the constraints in (1), we only need to investigate the
update scheme of Wk. Inspired by the method of Lagrange Multipliers and gradient descent, we
give the following scheme for updating Wk. That is,

W
(i,j)
k ←W

(i,j)
k − β ∂

∂(W
(i,j)
k T

(i,j)
k )

L (Wk �Tk) , ∀(i, j) ∈ I, (2)

in which β indicates a positive learning rate. It is worth mentioning that we update not only the
important parameters, but also the ones corresponding to zero entries of Tk, which are considered
unimportant and ineffective to decrease the network loss. This strategy is beneficial to improve the
flexibility of our method because it enables the splicing of improperly pruned connections.

The partial derivatives in formula (2) can be calculated by the chain rule with a randomly chosen
minibatch of samples. Once matrix Wk and Tk are updated, they shall be applied to re-calculate the
whole network activations and loss function gradient. Repeat these steps iteratively, the sparse model
will be able to produce excellent accuracy. The above procedure is summarized in Algorithm 1.

Algorithm 1 Dynamic network surgery: the SGD method for solving optimization problem (1):

Input: X: training datum (with or without label), {Ŵk : 0 ≤ k ≤ C}: the reference model,
α: base learning rate, f : learning policy.
Output: {Wk,Tk : 0 ≤ k ≤ C}: the updated parameter matrices and their binary masks.
Initialize Wk ← Ŵk, Tk ← 1, ∀0 ≤ k ≤ C, β ← 1 and iter← 0
repeat

Choose a minibatch of network input from X
Forward propagation and loss calculation with (W0 �T0),...,(WC �TC)
Backward propagation of the model output and generate∇L
for k = 0, ..., C do

Update Tk by function hk(·) and the current Wk, with a probability of σ(iter)
Update Wk by Formula (2) and the current loss function gradient∇L

end for
Update: iter← iter + 1 and β ← f(α, iter)

until iter reaches its desired maximum

Note that, the dynamic property of our method is shown in two aspects. On one hand, pruning
operations can be performed whenever the existing connections seem to become unimportant. Yet,
on the other hand, the mistakenly pruned connections shall be re-established if they once appear to be
important. The latter operation plays a dual role of network pruning, and thus it is called "network
splicing" in this paper. Pruning and splicing constitute a circular procedure by constantly updating
the connection weights and setting different entries in Tk, which is analogical to the synthesis of
excitatory and inhibitory neurotransmitter in human nervous system [17]. See Figure 2 for the
overview of our method and the method pipeline can be found in Figure 1(a).

4



3.3 Parameter Importance

Since the measure of parameter importance influences the state of network connections, function
hk(·),∀0 ≤ k ≤ C, can be essential to our dynamic network surgery. We have tested several
candidates and finally found the absolute value of the input to be the best choice, as claimed in [9].
That is, the parameters with relatively small magnitude are temporarily pruned, while the others with
large magnitude are kept or spliced in each iteration of Algorithm 1. Obviously, the threshold values
have a significant impact on the final compression rate. For a certain layer, a single threshold can be
set based on the average absolute value and variance of its connection weights. However, to improve
the robustness of our method, we use two thresholds ak and bk by importing a small margin t and set
bk as ak + t in Equation (3). For the parameters out of this range, we set their function outputs as the
corresponding entries in Tk, which means these parameters will neither be pruned nor spliced in the
current iteration.

hk(W
(i,j)
k ) =


0 if ak > |W(i,j)

k |
T

(i,j)
k if ak ≤ |W(i,j)

k | < bk
1 if bk ≤ |W(i,j)

k |
(3)

3.4 Convergence Acceleration

Considering that Algorithm 1 is a bit more complicated than the standard backpropagation method,
we shall take a few more steps to boost its convergence. First of all, we suggest slowing down the
pruning and splicing frequencies, because these operations lead to network structure change. This
can be done by triggering the update scheme of Tk stochastically, with a probability of p = σ(iter),
rather than doing it constantly. Function σ(·) shall be monotonically non-increasing and satisfy
σ(0) = 1. After a prolonged decrease, the probability p may even be set to zero, i.e., no pruning or
splicing will be conducted any longer.

Another possible reason for slow convergence is the vanishing gradient problem. Since a large
percentage of connections are pruned away, the network structure should become much simpler
and probably even much "thinner" by utilizing our method. Thus, the loss function derivatives are
likely to be very small, especially when the reference model is very deep. We resolve this problem
by pruning the convolutional layers and fully connected layers separately, in the dynamic way still,
which is somehow similar to [9].

4 Experimental Results

In this section, we will experimentally analyse the proposed method and apply it on some popular
network models. For fair comparison and easy reproduction, all the reference models are trained by
the GPU implementation of Caffe package [12] with .prototxt files provided by the community.2 Also,
we follow the default experimental settings for SGD method, including the training batch size, base
learning rate, learning policy and maximal number of training iterations. Once the reference models
are obtained, we directly apply our method to reduce their model complexity. A brief summary of the
compression results are shown in Table 1.

Table 1: Dynamic network surgery can remarkably reduce the model complexity of some popular
networks, while the prediction error rate does not increase.

model Top-1 error Parameters Iterations Compression

LeNet-5 reference 0.91% 431K 10K
LeNet-5 pruned 0.91% 4.0K 16K 108×
LeNet-300-100 reference 2.28% 267K 10K
LeNet-300-100 pruned 1.99% 4.8K 25K 56×
AlexNet reference 43.42% 61M 450K
AlexNet pruned 43.09% 3.45M 700K 17.7×

2Except for the simulation experiment and LeNet-300-100 experiments which we create the .prototxt files by
ourselves, because they are not available in the Caffe model zoo.

5



4.1 The Exclusive-OR Problem

To begin with, we consider an experiment on the synthetic data to preliminary testify the effectiveness
of our method and visualize its compression quality. The exclusive-OR (XOR) problem can be a
good option. It is a nonlinear classification problem as illustrated in Figure 3(a). In this experiment,
we turn the original problem to a more complicated one as Figure 3(b), in which some Gaussian
noises are mixed up with the original data (0, 0), (0, 1), (1, 0) and (1, 1).

(a) (b)

Figure 3: The Exclusive-OR (XOR) classification problem (a) without noise and (b) with noise.

In order to classify these samples, we design a network model as illustrated in the left part of
Figure 4(a), which consists of 21 connections and each of them has a weight to be learned. The
sigmoid function is chosen as the activation function for all the hidden and output neurons. Twenty
thousand samples were randomly generated for the experiment, in which half of them were used as
training samples and the rest as test samples.

By 100,000 iterations of learning, this three-layer neural network achieves a prediction error rate of
0.31%. The weight matrix of network connections between input and hidden neurons can be found in
Figure 4(b). Apparently, its first and last row share the similar elements, which means there are two
hidden neurons functioning similarly. Hence, it is appropriate to use this model as a compression
reference, even though it is not very large. After 150,000 iterations, the reference model will be
compressed into the right side of Figure 4(a), and the new connection weights and their masks are
shown in Figure 4(b). The grey and green patches in T1 stand for those entries equal to one, and the
corresponding connections shall be kept. In particular, the green ones indicate the connections were
mistakenly pruned in the beginning but spliced during the surgery. The other patches (i.e., the black
ones) indicate the corresponding connections are permanently pruned in the end.

(a) (b)

Figure 4: Dynamic network surgery on a three-layer neural network for the XOR problem. (a): The
network complexity is reduced to be optimal. (b) The connection weights are updated with masks.

The compressed model has a prediction error rate of 0.30%, which is slightly better than that of the
reference model, even though 40% of its parameters are set to be zero. Note that, the remaining
hidden neurons (excluding the bias unit) act as three different logic gates and altogether make up

6








