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1 Overview

This supplementary material is organized as follows: in Section 2, we prove the property of a
Legendre conjugate of a permissible function used in Eq.(2) of Sec.(2) of the paper; in Section 3, we
derive the dual problem of a soft-margin β-SVM;

2 Legendre Conjugate of Permissible Functions

The Legendre conjugate of a differentiable and strictly convex function φ can be written as:

φ∗(x) = x∇−1φ (x)− φ(∇−1φ (x)).

In the case of a permissible function φ, its Legendre conjugate has the following property: φ∗(−x) =
φ∗(x)− x.

Proof.

φ∗(x) = −x∇−1φ (−x)− φ(∇−1φ (−x))

= −x(1−∇−1φ (x))− φ(1−∇−1φ (x)) (1)

= −x+ x∇−1φ (x)− φ(∇−1φ (x)) (2)

= φ∗(x)− x

Because of the symmetry of φ about − 1
2 , in Eq. (1) ∇−1φ (−x) = 1 − ∇−1φ (x) and in Eq. (2)

φ(1− x) = φ(x).

3 Derivation of Soft-margin β-SVM

The soft-margin β-SVM optimization problem is a direct generalization of a standard soft-margin
SVM and is defined as follows:

argmin
θ

1

2
‖θ‖22 + c

m∑
i=1

(
β-1
i ξ

-1
i + β+1

i ξ
+1
i

)
s.t. σ(θTµ(xi) + b) ≥ 1− ξσi ∀i = 1..m, σ ∈ {−1, 1}
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ξσi ≥ 0 ∀i = 1..m, σ ∈ {−1, 1}
where θ ∈ X ′ is the vector defining the margin hyperplane and b its offset, µ : X → X ′ a mapping
function and c ∈ R a tuned hyper-parameter. In the rest of the paper, we will refer to K : X2 → R
as the kernel function corresponding to µ (K(xi, xj) = µ(xi)µ(xj)).

Instead of solving the previous primal problem, it is preferable to solve its Lagrangian dual problem
given by maximizing the corresponding Lagrangian w.r.t. its Lagrangian multipliers, which gives a
nice Quadratic Programming problem that can be solved by common optimization techniques. The
Lagrangian can be written as follows:

L(θ, b, ξ, α, r) = 1

2
‖θ‖22+c

m∑
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i ξ

-1
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i

)
−
m∑
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∑
σ∈
{-1,+1}

ασi
(
σ(θTµ(xi) + b) + ξσi −1

)
−
m∑
i=1

∑
σ∈
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rσi ξ
σ
i

where α ∈ R2∗m and r ∈ R2∗m are the Lagrangian multipliers. It is obvious that:

max
α,r≥0

min
θ,b,ξ
L(θ, b, ξ, α, r) ≤ min

θ,b,ξ
max
α,r≥0

L(θ, b, ξ, α, r)

where the left term corresponds to the optimal value of the dual problem and the right one to the
primal’s one. The dual and the primal problems have the same value at optimality if the Karush-
Kuhn-Tucker (KKT) conditions are not violated (see [1]). By setting the gradient of L w.r.t. θ, b and
ξ to 0, we find the saddle point corresponding to the function minimum:

∇θL(θ, b, ξ, α, r) = θ −
m∑
i=1

∑
σ∈
{-1,+1}

ασi σµ(xi)

∇bL(θ, b, ξ, α, r) = −
m∑
i=1

∑
σ∈
{-1,+1}

ασi σ

∇ξσi L(θ, b, ξ, α, r) = cβσi − ασi − rσi

which give

θ =

m∑
i=1

∑
σ∈
{-1,+1}

ασi σµ(xi) (3)

m∑
i=1

∑
σ∈
{-1,+1}

ασi σ = 0 (4)

ασi ≤ cβσi (5)

We can now write the QP dual problem by replacing θ by its expression (3) and simplifying follow-
ing (4) and (5):

max
α
−1

2

m∑
i=1
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{-1,+1}

ασi σ
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s.t. 0 ≤ ασi ≤ cβσi ∀i = 1..m, σ ∈ {−1, 1}
m∑
i=1

∑
σ∈
{-1,+1}

ασi σ = 0 ∀i = 1..m, σ ∈ {−1, 1}

which is concave w.r.t. α.
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Proof.

L(α) = 1

2
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µ(xi) + b

+ ξσi −1
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In Eq. (7) the third and the fourth terms are null because of (4) and (5).

We need the following two additional constraints in order to respect the KKT conditions which justify
guarantee that the optimal value found by solving the dual problem corresponds to the optimal value
of the primal:

ασi
(
σ(θT + b)− 1 + ξσi

)
= 0 ∀ i = 1..m, σ ∈ {−1, 1}

rσi ξ
σ
i = 0 ∀ i = 1..m, σ ∈ {−1, 1}

Once the Lagrangian dual problem solved, the characteristic vector θ and offset b of the optimal
margin hyperplane can be retrieved by means of the support vectors machine, i.e. the instances whose
corresponding ασi are strictly greater than 0:

θ =

m∑
i)1

∑
σ∈
{-1,+1}

ασi σµ(xi)

b = θµ(xk)− σk

and the new instances can be classified :

y(x) = sign(

m∑
i=1

∑
σ∈
{-1,+1}

(ασi σK(xi, x)) + b)

4 Additional Experiments

4.1 Semi-Supervised Learning

We report a table of mean accuracies with their relative errors of the performances of standard SVM,
WellSVM and our method on 7 UCI datasets with 5%,10% and 15% of labeled instances of the
training sets.
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dataset % labeled SVM WellSVM betaSVM
ionosphere 5 0.74± 0.02 0.72±0.04 0.77±0.03

10 0.78± 0.03 0.79±0.03 0.80±0.04
15 0.81± 0.01 0.82±0.02 0.81±0.02

sonar 5 0.58± 0.06 0.58±0.03 0.59±0.05
10 0.65± 0.04 0.64±0.04 0.66±0.05
15 0.65± 0.02 0.67±0.02 0.67±0.02

liver 5 0.59±0.02 0.51±0.04 0.55±0.04
10 0.61±0.04 0.54±0.03 0.58±0.03
15 0.64±0.04 0.54±0.03 0.58±0.03

splice 5 0.53±0.07 0.50±0.07 0.53±0.06
10 0.56±0.02 0.55±0.05 0.55±0.07
15 0.60±0.03 0.56±0.05 0.56±0.04

heart-statlog 5 0.64±0.04 0.55±0.03 0.71±0.04
10 0.72±0.03 0.62±0.02 0.76±0.03
15 0.73±0.02 0.63±0.03 0.77±0.02

australian 5 0.72± 0.05 0.64± 0.01 0.73±0.06
10 0.73±0.03 0.72± 0.04 0.73±0.04
15 0.76±0.07 0.75± 0.03 0.75± 0.04

pima 5 0.65±0.01 0.62±0.03 0.71±0.01
10 0.69±0.01 0.63±0.03 0.72±0.01
15 0.71±0.01 0.64±0.03 0.72±0.01

4.2 Robustness to Label Noise

Here we report the results of applying β-SVM to a synthetic dataset and study its robustness to
artificially induced label noise.

The synthetic dataset consists in 40 instances of 2 balanced classes: the instances of each class are
uniformly distributed around a center point so that they can be easily classified by a linear separator
to which we will refer as the true separator.

In Fig. 1, we compare the linear classifiers learned at each iteration of our iterative, algorithm with
β-SVM, with a standard linear SVM and with the true separator. We conducted the experiment as
follows: we apply the two methods first on the original dataset, then on a dataset where we swapped
the label of a random instance of each class and so on with an increasing number of swapped labels.

We notice that our method is more robust to label noise: even though at the first iteration, we learn the
same separator as the standard linear SVM, through the following iterations the algorithm converges
to a separator closer to the true separator.
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Figure 1: Artificially induced label noise: the baseline, here, corresponds to the separator learned with a classical
SVM. The first figure shows the learned separators with the original labels, and the other figures show the results
for an increasing number of swapped labels going from left to right and from to bottom.
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