
Supplementary material for
“Efficient Second Order Online Learning by Sketching”

A Proof of Theorem 1

Proof. Assuming T is a multiple of d without loss of generality, we pick xt from the basis vectors
{e1, . . . , ed} so that each ei appears T/d times (in an arbitrary order). Note that now K is just a
hypercube:

K =
{
w : |w>xt| ≤ C, ∀t

}
= {w : ‖w‖∞ ≤ C} .

Let ξ1, . . . , ξT be independent Rademacher random variables such that Pr(ξt = +1) = Pr(ξt =
−1) = 1

2 . For a scalar θ, we define loss function7 `t(θ) = (ξtL)θ, so that Assumptions 1 and 2 are
clearly satisfied with σt = 0. We show that, for any online algorithm,

E[RT] = E

[
T∑
t=1

`t
(
w>t xt

)
− inf

w∈K

T∑
t=1

`t
(
w>xt

)]
≥ CL

√
dT

2

which implies the statement of the theorem.

First of all, note that E
[
`t
(
w>t xt

) ∣∣∣ ξ1, . . . , ξt−1

]
= 0 for any wt. Hence we have

E

[
T∑
t=1

`t
(
w>t xt

)
− inf

w∈K

T∑
t=1

`t
(
w>xt

)]
= E

[
sup
w∈K

T∑
t=1

−`t
(
w>xt

)]
= LE

[
sup
w∈K

w>
T∑
t=1

ξtxt

]
,

which, by the construction of xt, is

CLE

[∥∥∥∥∥
T∑
t=1

ξtxt

∥∥∥∥∥
1

]
= CLdE

∣∣∣∣∣∣
T/d∑
t=1

ξt

∣∣∣∣∣∣
 ≥ CLd√ T

2d
= CL

√
dT

2
,

where the final bound is due to the Khintchine inequality (see e.g. Lemma 8.2 in [4]). This concludes
the proof.

B Projection

We prove a more general version of Lemma 1 which does not require invertibility of the matrix A
here.
Lemma 2. For any x 6= 0,u ∈ Rd×1 and positive semidefinite matrix A ∈ Rd×d, we have

w∗ = argmin
w:|w>x|≤C

‖w − u‖A =

u− τC(u>x)

x>A†x
A†x if x ∈ range(A)

u− τC(u>x)
x>(I−A†A)x

(I −A†A)x if x /∈ range(A)

where τC(y) = SGN(y) max{|y| − C, 0} and A† is the Moore-Penrose pseudoinverse of A. (Note
that when A is rank deficient, this is one of the many possible solutions.)

Proof. First consider the case when x ∈ range(A). If |u>x| ≤ C, then it is trivial thatw∗ = u. We
thus assume u>x ≥ C below (the last case u>x ≤ −C is similar). The Lagrangian of the problem
is

L(w, λ1, λ2) =
1

2
(w − u)>A(w − u) + λ1(w>x− C) + λ2(w>x+ C)

where λ1 ≥ 0 and λ2 ≤ 0 are Lagrangian multipliers. Since w>x cannot be C and −C at the same
time, The complementary slackness condition implies that either λ1 = 0 or λ2 = 0. Suppose the latter
case is true, then setting the derivative with respect tow to 0, we getw∗ = u−λ1A

†x+(I−A†A)z

7By adding a suitable constant, these losses can always be made nonnegative while leaving the regret
unchanged.

10

where z ∈ Rd×1 can be arbitrary. However, since A(I − A†A) = 0, this part does not affect the
objective value at all and we can simply pick z = 0 so that w∗ has a consistent form regardless of
whether A is full rank or not. Now plugging w∗ back, we have

L(w∗, λ1, 0) = −λ1
2

2
x>A†x+ λ1(u>x− C)

which is maximized when λ1 = u>x−C
x>A†x

≥ 0. Plugging this optimal λ1 into w∗ gives the stated
solution. On the other hand, if λ1 = 0 instead, we can proceed similarly and verify that it gives a
smaller dual value (0 in fact), proving the previous solution is indeed optimal.

We now move on to the case when x /∈ range(A). First of all the stated solution is well defined since
x>(I −A†A)x is nonzero in this case. Moreover, direct calculation shows that w∗ is in the valid
space: |w∗>x| = |u>x − τC(u>x)| ≤ C, and also it gives the minimal possible distance value
‖w∗ − u‖A = 0, proving the lemma.

C Proof of Theorem 2

We first prove a general regret bound that holds for any choice of At in update 1:

ut+1 = wt −A−1
t gt

wt+1 = argmin
w∈Kt+1

‖w − ut+1‖At
.

This bound will also be useful in proving regret guarantees for the sketched versions.
Proposition 1. For any sequence of positive definite matrices At and sequence of losses satisfying
Assumptions 1 and 2, the regret of updates (1) against any comparator w ∈ K satisfies

2RT (w) ≤ ‖w‖2A0
+

T∑
t=1

gTt A
−1
t gt︸ ︷︷ ︸

“Gradient Bound”RG

+

T∑
t=1

(wt −w)>(At −At−1 − σtgtg>t)(wt −w)︸ ︷︷ ︸
“Diameter Bound”RD

Proof. Since wt+1 is the projection of ut+1 onto Kt+1, by the property of projections (see for
example [17, Lemma 8]), the algorithm ensures

‖wt+1 −w‖2At
≤ ‖ut+1 −w‖2At

= ‖wt −w‖2At
+ g>t A

−1
t gt − 2g>t (wt −w)

for all w ∈ K ⊆ Kt+1. By the curvature property in Assumption 2, we then have that

2RT (w) ≤
T∑
t=1

2g>t (wt −w)− σt
(
g>t (wt −w)

)2
≤

T∑
t=1

g>t A
−1
t gt + ‖wt −w‖2At

− ‖wt+1 −w‖2At
− σt

(
g>t (wt −w)

)2
≤ ‖w‖2A0

+

T∑
t=1

g>t A
−1
t gt + (wt −w)>(At −At−1 − σtgtg>t)(wt −w),

which completes the proof.

Proof of Theorem 2. We apply Proposition 1 with the choice: A0 = αId and At = At−1 + (σt +

ηt)gtg
T
t , which gives ‖w‖2A0

= α ‖w‖22 and

RD =

T∑
t=1

ηt(wt −w)>gtg
>
t (wt −w) ≤ 4(CL)2

T∑
t=1

ηt ,

where the last equality uses the Lipschitz property in Assumption 1 and the boundedness ofw>t xt
and w>xt.

11

For the term RG, define Ât = α
σ+ηT

Id +
∑t
s=1 gsg

>
s . Since σt ≥ σ and ηt is non-increasing, we

have Ât � 1
σ+ηT

At, and therefore:

RG ≤
1

σ + ηT

T∑
t=1

g>t Â
−1
t gt =

1

σ + ηT

T∑
t=1

〈
Ât − Ât−1, Â

−1
t

〉
≤ 1

σ + ηT

T∑
t=1

ln
|Ât|
|Ât−1|

=
1

σ + ηT
ln
|ÂT |
|Â0|

=
1

σ + ηT

d∑
i=1

ln

1 +
(σ + ηT)λi

(∑T
t=1 gtg

>
t

)
α

≤ d

σ + ηT
ln

1 +
(σ + ηT)

∑d
i=1 λi

(∑T
t=1 gtg

>
t

)
dα

=

d

σ + ηT
ln

(
1 +

(σ + ηT)
∑T
t=1 ‖gt‖

2
2

dα

)
where the second inequality is by the concavity of the function ln |X| (see [18, Lemma 12] for an
alternative proof), and the last one is by Jensen’s inequality. This concludes the proof.

D A Truly Invariant Algorithm

In this section we discuss how to make our adaptive online Newton algorithm truly invariant to
invertible linear transformations. To achieve this, we set α = 0 and replace A−1

t with the Moore-
Penrose pseudoinverse A†t :

8

ut+1 = wt −A†tgt,
wt+1 = argmin

w∈Kt+1

‖w − ut+1‖At
. (7)

When written in this form, it is not immediately clear that the algorithm has the invariant property.
However, one can rewrite the algorithm in a mirror descent form:

wt+1 = argmin
w∈Kt+1

∥∥∥w −wt +A†tgt

∥∥∥2

At

= argmin
w∈Kt+1

‖w −wt‖2At
+ 2(w −wt)

>AtA
†
tgt

= argmin
w∈Kt+1

‖w −wt‖2At
+ 2w>gt

where we use the fact that gt is in the range of At in the last step. Now suppose all the data xt are
transformed to Mxt for some unknown and invertible matrix M , then one can verify that all the
weights will be transformed to M−Twt accordingly, ensuring the prediction to remain the same.

Moreover, the regret bound of this algorithm can be bounded as below. First notice that even when At
is rank deficient, the projection step still ensures the following: ‖wt+1 −w‖2At

≤ ‖ut+1 −w‖2At
,

which is proven in [18, Lemma 8]. Therefore, the entire proof of Theorem 2 still holds after replacing
A−1
t with A†t , giving the regret bound:

1

2

T∑
t=1

g>t A
†
t gt + 2(CL)2ηt . (8)

The key now is to bound the term
∑T
t=1 g

>
t Â
†
t gt where we define Ât =

∑t
s=1 gsg

>
s . In order to

do this, we proceed similarly to the proof of [5, Theorem 4.2] to show that this term is of order
O(d2 lnT) in the worst case.

8See Appendix B for the closed form of the projection step.

12

Theorem 4. Let λ∗ be the minimum among the smallest nonzero eigenvalues of Ât (t = 1, . . . , T)

and r be the rank of ÂT . We have
T∑
t=1

g>t Â
†
t gt ≤ r +

(1 + r)r

2
ln

(
1 +

2
∑T
t=1 ‖gt‖

2
2

(1 + r)rλ∗

)
.

Proof. First by Cesa-Bianchi et al. [5, Lemma D.1], we have

g>t Â
†
t gt =

{
1 if gt /∈ range(Ât−1)

1− det+(Ât−1)

det+(Ât)
< 1 if gt ∈ range(Ât−1)

where det+(M) denotes the product of the nonzero eigenvalues of matrix M . We thus separate the
steps t such that gt ∈ range(Ât−1) from those where gt /∈ range(Ât−1). For each k = 1, . . . , r let
Tk be the first time step t in which the rank of At is k (so that T1 = 1). Also let Tr+1 = T + 1 for
convenience. With this notation, we have

T∑
t=1

g>t Â
†
t gt =

r∑
k=1

g>Tk
Â†Tk

gTk
+

Tk+1−1∑
t=Tk+1

g>t Â
†
t gt

=

r∑
k=1

1 +

Tk+1−1∑
t=Tk+1

(
1− det+(Ât−1)

det+(Ât)

)
= r +

r∑
k=1

Tk+1−1∑
t=Tk+1

(
1− det+(Ât−1)

det+(Ât)

)

≤ r +

r∑
k=1

Tk+1−1∑
t=Tk+1

ln
det+(Ât)

det+(Ât−1)

= r +

r∑
k=1

ln
det+(ÂTk+1−1)

det+(ÂTk
)

.

Fix any k and let λk,1, . . . , λk,k be the nonzero eigenvalues of ÂTk
and λk,1 + µk,1, . . . , λk,k + µk,k

be the nonzero eigenvalues of ÂTk+1−1. Then

ln
det+(ÂTk+1−1)

det+(ÂTk
)

= ln

k∏
i=1

λk,i + µk,i
λk,i

=

k∑
i=1

ln

(
1 +

µk,i
λk,i

)
.

Hence, we arrive at
T∑
t=1

g>t Â
+
t gt ≤ r +

r∑
k=1

k∑
i=1

ln

(
1 +

µk,i
λk,i

)
.

To further bound the latter quantity, we use λ∗ ≤ λk,i and Jensen’s inequality :

r∑
k=1

k∑
i=1

ln

(
1 +

µk,i
λk,i

)
≤

r∑
k=1

k∑
i=1

ln
(

1 +
µk,i
λ∗

)
≤ (1 + r)r

2
ln

(
1 +

2
∑r
k=1

∑k
i=1 µk,i

(1 + r)rλ∗

)
.

Finally noticing that

k∑
i=1

µk,i = TR(ÂTk+1−1)− TR(ÂTk
) =

Tk+1−1∑
t=Tk+1

TR(gtg
>
t) =

Tk+1−1∑
t=Tk+1

‖gt‖
2
2

completes the proof.

13

Algorithm 6 Random Projection Sketch for RP-SON
Internal State: S and H .

SketchInit(α,m)
1: Set S = 0m×d and H = 1

αIm.
2: Return (S,H).

SketchUpdate(ĝ)
1: Draw r ∼ N (0, 1√

m
) and update S ← S + rĝ>.

2: Compute q = Sĝ − ĝ>ĝ
2 r, update H ← H − Hqr>H

1+r>Hq
and H ← H − Hrq>H

1+q>Hr
.

3: Return (S,H).

Taken together, Eq. (8) and Theorem 4 lead to the following regret bounds (recall the definitions of
λ∗ and r from Theorem 4).

Corollary 1. If σt = 0 for all t and ηt is set to be 1
CL

√
d
t , then the regret of the algorithm defined

by Eq. (7) is at most

CL

2

√
T

d

(
r +

(1 + r)r

2
ln

(
1 +

2
∑T
t=1 ‖gt‖

2
2

(1 + r)rλ∗

))
+ 4CL

√
Td.

On the other hand, if σt ≥ σ > 0 for all t and ηt is set to be 0, then the regret is at most

1

2σ

(
r +

(1 + r)r

2
ln

(
1 +

2
∑T
t=1 ‖gt‖

2
2

(1 + r)rλ∗

))
.

E Regret Bound for RP-SON

The pseudocode of the RP sketch is presented in Algorithm 6. Recall the notation RG and RD in
Proposition 1 and let r be the rank of GT , we prove the following regret bound:

Theorem 5. Under Assumptions 1 and 2, if the sketch sizem = Ω
(
(r+ln(T/δ))ε−2

)
, then RP-SON

ensures
(1) E[RD] ≤ 4(CL)2

∑T
t=1 ηt, and

(2) RG ≤ 1
1−ε

∑T
t=1 g

>
t (αId +G>t Gt)

−1gt with probability at least 1− δ.

Proof. We apply the property of the random projection method (see for example [36, Theorem 2.3]):
as long as m = Ω

(
(r + ln(T/δ))ε−2

)
, with probability at least 1− δ,

(1− ε)G>t Gt � S>t St � (1 + ε)G>t Gt for all t = 1, . . . , T

which implies A−1
t � 1

1−ε (αId + G>t Gt)
−1 and thus RG ≤ 1

1−ε
∑T
t=1 g

>
t (αId + G>t Gt)

−1gt.
For RD, first fix all the randomness before drawing rt and let Et be the corresponding conditional
expectation, then we have

Et[At −At−1] = Et
[
S>t−1rtĝ

>
t + ĝtr

>
t St−1 + ‖rt‖22 ĝtĝ

>
t

]
= (σt + ηt)gtg

>
t .

Since wt,w and gt are fixed, we continue with

Et
[
(wt −w)>(At −At−1 − σtgtg>t)(wt −w)

]
= ηt(wt −w)>gtg

>
t (wt −w) ≤ 4(CL)2ηt .

Therefore, taking the overall expectation gives E[RD] ≤ 4(CL)2
∑T
t=1 ηt.

This theorem implies that the bound on RD is the same as the one without using sketch, and the term
RG is only constant larger.

14

F Proof of Theorem 3

Proof. We again first apply Proposition 1 (recall the notation RG and RD stated in the proposition).
By the construction of the sketch, we have

At −At−1 = S>t St − S>t−1St−1 = ĝtĝ
>
t − ρtV >t Vt � ĝtĝ

>
t .

It follows immediately that RD is again at most 4(CL)2
∑T
t=1 ηt. For the term RG, we will apply the

following guarantee of Frequent Directions (see the proof of Theorem 1.1 of [12]):
∑T
t=1 ρt ≤

Ωk

m−k .

Specifically, since TR(VtA
−1
t V >t) ≤ 1

αTR(VtV
>
t) = m

α we have

RG =

T∑
t=1

1

σt + ηt

〈
A−1
t , At −At−1 + ρtV

>
t Vt

〉
≤ 1

σ + ηT

T∑
t=1

(〈
A−1
t , At −At−1 + ρtV

>
t Vt

〉)
=

1

σ + ηT

T∑
t=1

(〈
A−1
t , At −At−1

〉
+ ρtTR(VtA

−1
t V >t)

)
≤ 1

(σ + ηT)

T∑
t=1

〈
A−1
t , At −At−1

〉
+

mΩk
(m− k)(σ + ηT)α

.

Finally for the term
∑T
t=1

〈
A−1
t , At −At−1

〉
, we proceed similarly to the proof of Theorem 2:

T∑
t=1

〈
A−1
t , At −At−1

〉
≤

T∑
t=1

ln
|At|
|At−1|

= ln
|AT |
|A0|

=

d∑
i=1

ln

(
1 +

λi(S
>
T ST)

α

)

=

m∑
i=1

ln

(
1 +

λi(S
>
T ST)

α

)
≤ m ln

(
1 +

TR(S>T ST)

mα

)
where the first inequality is by the concavity of the function ln |X|, the second one is by Jensen’s
inequality, and the last equality is by the fact that S>T ST is of rank m and thus λi(S>T ST) = 0 for
any i > m. This concludes the proof.

G Sparse updates for RP and FD sketches

G.1 Random Projection

We recall the updates of RP sketch. Since ĝt is sparse, St = St−1 + rĝ>t is easily updated in O(ms)
time. Ht can also be updated in O(m2 +ms) time clearly. However, since the sketch St is getting
denser and denser, direct update of the weight vector is a dense operation too. The solution is to
represent and store wt in the form of w̄t + S>t−1bt for some w̄t ∈ Rd and bt ∈ Rm. Note that now
computing the prediction w>t xt needs O(ms) time. Rewriting the update rules we have

ut+1 = wt −
1

α
gt +

1

α
S>t HtStgt = w̄t + S>t−1bt −

1

α
gt +

1

α
S>t HtStgt

= w̄t − ĝtr>t bt −
1

α
gt︸ ︷︷ ︸

def
= ūt+1

+S>t (bt +
1

α
HtStgt︸ ︷︷ ︸

def
= b′t+1

) .

Since gt and ĝt are sparse, computing ūt+1 and b′t+1 needs O(m2 + ms) time. Finally, for the
projection step, ct can clearly be computed in O(m2 +ms) time, and the update rule of w̄t+1 and

15

Algorithm 7 Sparse Sketched Online Newton with Random Projection
Input: Parameters C, α and m.

1: Initialize ū = 0d×1, b = 0m×1 and (S,H)← SketchInit(α,m) (Algorithm 6).
2: for t = 1 to T do
3: Receive example xt.
4: Projection step: compute x̂ = Sxt, γ = τC(ū>xt+b>x̂)

x>t xt−x̂>Hx̂
, w̄ = ū− γxt and b← b+ cHx̂.

5: Predict label yt = w̄>xt + b>x̂ and suffer loss `t(yt).
6: Compute gradient gt = `′t(yt)xt and the to-sketch vector ĝ =

√
σt + ηtgt.

7: (S,H)← SketchUpdate(ĝ) (Algorithm 6).
8: Update ū = w̄ − (r>b)ĝ − 1

αgt and b← b+ 1
αHSgt.

9: end for

bt+1 is thus derived as follows:

wt+1 = ut+1 − γt(xt+1 − S>t HtStxt+1)

= ūt+1 + S>t b
′
t+1 − γt(xt+1 − S>t HtStxt+1)

= ūt+1 − γtxt+1︸ ︷︷ ︸
def
= w̄t+1

+S>t (b′t+1 + γtHtStxt+1︸ ︷︷ ︸
def
= bt+1

)

which again takes O(m2 + ms) time. Taken together, the total time complexity per round is
O(m2 +ms). The pseudocode for this version of the algorithm is presented in Algorithm 7.

G.2 Frequent Directions

The sparse version of our algorithm with the Frequent Directions option is much more involved. We
begin by taking a detour and introducing a fast and epoch-based variant of the Frequent Directions
algorithm proposed in [12]. The idea is the following: instead of doing an eigendecomposition
immediately after inserting a new ĝ every round, we double the size of the sketch (to 2m), keep up to
m recent ĝ’s, do the decomposition only at the end of every m rounds and finally keep the top m
eigenvectors with shrunk eigenvalues. The advantage of this variant is that it can be implemented
straightforwardly in O(md) time on average without doing a complicated rank-one SVD update,
while still ensuring the exact same guarantee with the only price of doubling the sketch size.

Algorithm 8 shows the details of this variant and how we maintain H . The sketch S is always
represented by two parts: the top part (DV) comes from the last eigendecomposition, and the bottom
part (G) collects the recent to-sketch vector ĝ’s. Note that within each epoch, the update of H−1 is a
rank-two update and thus H can be updated similarly to the case of random projection (Lines 3 and 4
of Algorithm 8).

Although we can use any available algorithm that runs in O(m2d) time to do the eigendecomposition
(Line 7 in Algorithm 8), we explicitly write down the procedure of reducing this problem to eigende-
composing a small square matrix in Algorithm 9, which will be important for deriving the sparse
version of the algorithm. Lemma 3 proves that Algorithm 9 works correctly for finding the top m
eigenvector and eigenvalues.

Lemma 3. The outputs of Algorithm 9 are such that the i-th row of V ′ and the i-th entry of the
diagonal of Σ are the i-th eigenvector and eigenvalue of S>S respectively.

Proof. Let W> ∈ Rd×(d−m−r) be an orthonormal basis of the null space of
(
V
Q

)
. By Line 2, we

know that GW> = 0 and E = (V > Q> W>) forms an orthonormal basis of Rd. Therefore, we

16

Algorithm 8 Frequent Direction Sketch (epoch version)
Internal State: τ,D, V,G and H .

SketchInit(α,m)
1: Set τ = 1, D = 0m×m, G = 0m×d, H = 1

αI2m and let V be any m× d matrix whose rows are
orthonormal.

2: Return (02m×d, H).

SketchUpdate(ĝ)
1: Insert ĝ into the τ -th row of G.
2: if τ < m then
3: Let e be the 2m× 1 basis vector whose (m+ τ)-th entry is 1 and q = Sĝ − ĝ>ĝ

2 e.

4: Update H ← H − Hqe>H
1+e>Hq

and H ← H − Heq>H
1+q>He

.
5: Update τ ← τ + 1.
6: else
7: (V,Σ)← ComputeEigenSystem

((
DV
G

))
(Algorithm 9).

8: Set D to be a diagonal matrix with Di,i =
√

Σi,i − Σm,m, ∀i ∈ [m].

9: Set H ← diag
{

1
α+D2

1,1
, · · · , 1

α+D2
m,m

, 1
α , . . . ,

1
α

}
.

10: Set G = 0m×d.
11: Set τ = 1.
12: end if
13: Return

((
DV
G

)
, H

)
.

Algorithm 9 ComputeEigenSystem(S)

Input: S =

(
DV
G

)
.

Output: V ′ ∈ Rm×d and diagonal matrix Σ ∈ Rm×m such that the i-th row of V ′ and the i-th entry
of the diagonal of Σ are the i-th eigenvector and eigenvalue of S>S respectively.

1: Compute M = GV >.
2: Decompose G−MV into the form LQ where L ∈ Rm×r, Q is a r × d matrix whose rows are

orthonormal and r is the rank of G−MV (e.g. by a Gram-Schmidt process).
3: Compute the top m eigenvectors (U ∈ Rm×(m+r)) and eigenvalues (Σ ∈ Rm×m) of the matrix(

D2 0m×r
0r×m 0r×r

)
+

(
M>

L>

)
(M L).

4: Return (V ′,Σ) where V ′ = U

(
V
Q

)
.

have

S>S = V >D2V +G>G

= E

 D2 0 0
0 0 0
0 0 0

E> + EE>G>GEE>

= E

 D2 0 0
0 0 0
0 0 0

+

 V G>

QG>

WG>

 (GV > GQ> GW>)

E>

= (V > Q>)

((
D2 0
0 0

)
+

(
M>

L>

)
(M L)

)
︸ ︷︷ ︸

=C

(
V
Q

)

17

where in the last step we use the fact GQ> = (MV + LQ)Q> = L. Now it is clear that the
eigenvalue of C will be the eigenvalue of S>S and the eigenvector of C will be the eigenvector of
S>S after left multiplied by matrix (V > Q>), completing the proof.

We are now ready to present the sparse version of SON with Frequent Direction sketch (Algorithm 10).
The key point is that we represent Vt as FtZt for some Ft ∈ Rm×m and Zt ∈ Rm×d, and the weight
vectorwt as w̄t +Z>t−1bt and ensure that the update of Zt and w̄t will always be sparse. To see this,

denote the sketch St by
(
DtFtZt
Gt

)
and let Ht,1 and Ht,2 be the top and bottom half of Ht. Now

the update rule of ut+1 can be rewritten as
ut+1 = wt −

(
Id − S>t HtSt

)gt

α

= w̄t + Z>t−1bt −
1

α
gt +

1

α
(Z>t F

>
t Dt, G

>
t)

(
Ht,1Stgt
Ht,2Stgt

)
= w̄t +

1

α
(G>t Ht,2Stgt − gt)− (Zt − Zt−1)>bt︸ ︷︷ ︸

ūt+1

+Z>t (bt +
1

α
F>t DtHt,1Stgt)︸ ︷︷ ︸

b′t+1

We will show that Zt − Zt−1 = ∆tGt for some ∆t ∈ Rm×m shortly, and thus the above update is
efficient due to the fact that the rows of Gt are collections of previous sparse vectors ĝ.

Similarly, the update of wt+1 can be written as
wt+1 = ut+1 − γt(xt+1 − S>t HtStxt+1)

= ūt+1 + Z>t b
′
t+1 − γtxt+1 + γt(Z

>
t F
>
t Dt, G

>
t)

(
Ht,1Stxt+1

Ht,2Stxt+1

)
= ūt+1 + γt(G

>
t Ht,2Stxt+1 − xt+1)︸ ︷︷ ︸

w̄t+1

+Z>t (b′t+1 + γtF
>
t DtHt,1Stxt+1)︸ ︷︷ ︸
bt+1

.

It is clear that γt can be computed efficiently, and thus the update of wt+1 is also efficient. These
updates correspond to Line 6 and 10 of Algorithm 10.

It remains to perform the sketch update efficiently. Algorithm 11 is the sparse version of Algorithm 8.
The challenging part is to compute eigenvectors and eigenvalues efficiently. Fortunately, in light
of Algorithm 9, using the new representation V = FZ one can directly translate the process to
Algorithm 12 and find that the eigenvectors can be expressed in the form N1Z +N2G. To see this,
first note that Line 1 of both algorithms compute the same matrix M = GV > = GZ>F>. Then
Line 2 decomposes the matrix

G−MV = G−MFZ = (−MF Im)

(
Z
G

)
def
= PR

using Gram-Schmidt into the form LQR such that the rows of QR are orthonormal (that is, QR
corresponds toQ in Algorithm 9). While directly applying Gram-Schmidt to PR would takeO(m2d)
time, this step can in fact be efficiently implemented by performing Gram-Schmidt to P (instead of
PR) in a Banach space where inner product is defined as 〈a, b〉 = a>Kb with

K = RR> =

(
ZZ> ZG>

GZ> GG>

)
being the Gram matrix of R. Since we can efficiently maintain the Gram matrix of Z (see Line 10
of Algorithm 11) and GZ> and GG> can be computed sparsely, this decomposing step can be
done efficiently too. This modified Gram-Schmidt algorithm is presented in Algorithm 13 (which
will also be used in sparse Oja’s sketch), where Line 4 is the key difference compared to standard
Gram-Schmidt (see Lemma 4 below for a formal proof of correctness).

Line 3 of Algorithms 9 and 12 are exactly the same. Finally the eigenvectorsU
(
V
Q

)
in Algorithm 9

now becomes (with U1, U2, Q1, Q2, N1, N2 defined in Line 4 of Algorithm 12)

U

(
FZ
QR

)
= (U1, U2)

(
FZ
QR

)
= U1FZ + U2(Q1, Q2)

(
Z
G

)
= (U1FZ + U2Q1)Z + U2Q2G = N1Z +N2G.

18

Algorithm 10 Sparse Sketched Online Newton with Frequent Directions
Input: Parameters C, α and m.

1: Initialize ū = 0d×1, b = 0m×1 and (D,F,Z,G,H)← SketchInit(α,m) (Algorithm 11).

2: Let S denote the matrix
(
DFZ
G

)
throughout the algorithm (without actually computing it).

3: Let H1 and H2 denote the upper and lower half of H , i.e. H =

(
H1

H2

)
.

4: for t = 1 to T do
5: Receive example xt.
6: Projection step: compute x̂ = Sxt and γ = τC(ū>xt+b>Zxt)

x>t xt−x̂>Hx̂
.

Obtain w̄ = ū+ γ(G>H2x̂− xt) and b← b+ γF>DH1x̂.
7: Predict label yt = w̄>xt + b>Zxt and suffer loss `t(yt).
8: Compute gradient gt = `′t(yt)xt and the to-sketch vector ĝ =

√
σt + ηtgt.

9: (D,F,Z,G,H,∆)← SketchUpdate(ĝ) (Algorithm 11).
10: Update ū = w̄ + 1

α (G>H2Sg − g)−G>∆>b and b← b+ 1
αF
>DH1Sg.

11: end for

Algorithm 11 Sparse Frequent Direction Sketch
Internal State: τ,D, F, Z,G,H and K.

SketchInit(α,m)
1: Set τ = 1, D = 0m×m, F = K = Im, H = 1

αI2m, G = 0m×d, and let Z be any m× d matrix
whose rows are orthonormal.

2: Return (D,F,Z,G,H).

SketchUpdate(ĝ)
1: Insert ĝ into the τ -th row of G.
2: if τ < m then
3: Let e be the 2m× 1 basic vector whose (m+ τ)-th entry is 1 and compute q = Sĝ − ĝ>ĝ

2 e.

4: Update H ← H − Hqe>H
1+e>Hq

and H ← H − Heq>H
1+q>He

.
5: Set ∆ = 0m×m.
6: Set τ ← τ + 1.
7: else
8: (N1, N2,Σ)← ComputeSparseEigenSystem

((
DFZ
G

)
,K

)
(Algorithm 12).

9: Compute ∆ = N−1
1 N2.

10: Update Gram matrix K ← K + ∆GZ> + ZG>∆> + ∆GG>∆>.
11: Update F = N1, Z ← Z + ∆G, and let D be such that Di,i =

√
Σi,i − Σm,m, ∀i ∈ [m].

12: Set H ← diag
{

1
α+D2

1,1
, · · · , 1

α+D2
m,m

, 1
α , . . . ,

1
α

}
.

13: Set G = 0m×d.
14: Set τ = 1.
15: end if
16: Return (D,F,Z,G,H,∆).

Therefore, having the eigenvectors in the form N1Z +N2G, we can simply update F as N1 and Z as
Z +N−1

1 N2G so that the invariant V = FZ still holds (see Line 11 of Algorithm 11). The update
of Z is sparse since G is sparse.

We finally summarize the results of this section in the following theorem.

Theorem 6. The average running time of Algorithm 10 is O
(
m2 +ms

)
per round, and the regret

bound is exactly the same as the one stated in Theorem 3.

Lemma 4. The output of Algorithm 13 ensures that LQR = PR and the rows of QR are orthonor-
mal.

19

Algorithm 12 ComputeSparseEigenSystem(S,K)

Input: S =

(
DFZ
G

)
and Gram matrix K = ZZ>.

Output: N1, N2 ∈ Rm×m and diagonal matrix Σ ∈ Rm×m such that the i-th row of N1Z +N2G
and the i-th entry of the diagonal of Σ are the i-th eigenvector and eigenvalue of the matrix S>S.

1: Compute M = GZ>F>.

2: (L,Q)← Decompose
(

(−MF Im) ,

(
K ZG>

GZ> GG>

))
(Algorithm 13).

3: Let r be the number of columns of L. Compute the top m eigenvectors (U ∈ Rm×(m+r)) and

eigenvalues (Σ ∈ Rm×m) of the matrix
(

D2 0m×r
0r×m 0r×r

)
+

(
M>

L>

)
(M L).

4: Set N1 = U1F + U2Q1 and N2 = U2Q2 where U1 and U2 are the first m and last r columns of
U respectively, and Q1 and Q2 are the left and right half of Q respectively.

5: Return (N1, N2,Σ).

Proof. It suffices to prove that Algorithm 13 is exactly the same as using the standard Gram-Schmidt
to decompose the matrix PR into L and an orthonormal matrix which can be written as QR. First
note that when K = In, Algorithm 13 is simply the standard Gram-Schmidt algorithm applied to
P . We will thus go through Line 1-10 of Algorithm 13 with P replaced by PR and K by In and
show that it leads to the exact same calculations as running Algorithm 13 directly. For clarity, we add
“˜” to symbols to distinguish the two cases (so P̃ = PR and K̃ = In). We will inductively prove
the invariance Q̃ = QR and L̃ = L. The base case Q̃ = QR = 0 and L̃ = L = 0 is trivial. Now
assume it holds for iteration i− 1 and consider iteration i. We have

α̃ = Q̃K̃p̃ = QRR>p = QKp = α,

β̃ = p̃− Q̃>α̃ = R>p− (QR)>α = R>(p−Q>α) = R>β,

c̃ =

√
β̃
>
K̃β̃ =

√
(R>β)>(R>β) =

√
β>Kβ = c,

which clearly implies that after execution of Line 5-9, we again have Q̃ = QR and L̃ = L, finishing
the induction.

H Details for sparse Oja’s algorithm

We finally provide the missing details for the sparse version of the Oja’s algorithm. Since we already
discussed the updates for w̄t and bt in Section 4, we just need to describe how the updates for Ft and
Zt work. Recall that the dense Oja’s updates can be written in terms of F and Z as

Λt = (Im − Γt)Λt−1 + Γt diag{Ft−1Zt−1ĝt}
2

FtZt
orth←−− Ft−1Zt−1 + ΓtFt−1Zt−1ĝtĝ

>
t = Ft−1(Zt−1 + F−1

t−1ΓtFt−1Zt−1ĝtĝ
>
t) .

(9)

Here, the update for the eigenvalues is straightforward. For the update of eigenvectors, first we let
Zt = Zt−1 + δtĝ

>
t where δt = F−1

t−1ΓtFt−1Zt−1ĝt (note that under the assumption of Footnote 4,
Ft is always invertible). Now it is clear that Zt − Zt−1 is a sparse rank-one matrix and the update
of ūt+1 is efficient. Finally it remains to update Ft so that FtZt is the same as orthonormalizing
Ft−1Zt, which can in fact be achieved by applying the Gram-Schmidt algorithm to Ft−1 in a Banach
space where inner product is defined as 〈a, b〉 = a>Ktb where Kt is the Gram matrix ZtZ>t (see
Algorithm 13). Since we can maintain Kt efficiently based on the update of Zt:

Kt = Kt−1 + δtĝ
>
t Z
>
t−1 + Zt−1ĝtδ

>
t + (ĝ>t ĝt)δtδ

>
t ,

the update of Ft can therefore be implemented in O(m3) time.

20

Algorithm 13 Decompose(P, K)
Input: P ∈ Rm×n, K ∈ Rm×m such that K is the Gram matrix K = RR> for some matrix

R ∈ Rn×d where n ≥ m, d ≥ m,
Output: L ∈ Rm×r and Q ∈ Rr×n such that LQR = PR where r is the rank of PR and the rows

of QR are orthonormal.
1: Initialize L = 0m×m and Q = 0m×n.
2: for i = 1 to m do
3: Let p> be the i-th row of P .

4: Compute α = QKp,β = p−Q>α and c =

√
β>Kβ.

5: if c 6= 0 then
6: Insert 1

cβ
> to the i-th row of Q.

7: end if
8: Set the i-th entry of α to be c and insert α to the i-th row of L.
9: end for

10: Delete the all-zero columns of L and all-zero rows of Q.
11: Return (L,Q).

100 101 102 1030.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#examples

er
ro

r r
at

e

m=0
m=1
m=5
m=10

Figure 4: Error rates for Oja-SON with different sketch sizes on splice dataset

I Experiment Details

This section reports some detailed experimental results omitted from Section 5.2. Table 1 includes
the description of benchmark datasets; Table 2 reports error rates on relatively small datasets to
show that Oja-SON generally has better performance; Table 3 reports concrete error rates for the
experiments described in Section 5.2; finally Table 4 shows that Oja’s algorithm estimates the
eigenvalues accurately.

As mentioned in Section 5.2, we see substantial improvement for the splice dataset when using Oja’s
sketch even after the diagonal adaptation. We verify that the condition number for this dataset before
and after the diagonal adaptation are very close (682 and 668 respectively), explaining why a large
improvement is seen using Oja’s sketch. Fig. 4 shows the decrease of error rates as Oja-SON with
different sketch sizes sees more examples. One can see that even with m = 1 Oja-SON already
performs very well. This also matches our expectation since there is a huge gap between the top and
second eigenvalues of this dataset (50.7 and 0.4 respectively).

21

Table 1: Datasets used in experiments

Dataset #examples avg. sparsity #features
20news 18845 93.89 101631

a9a 48841 13.87 123
acoustic 78823 50.00 50

adult 48842 12.00 105
australian 690 11.19 14

breast-cancer 683 10.00 10
census 299284 32.01 401
cod-rna 271617 8.00 8
covtype 581011 11.88 54
diabetes 768 7.01 8
gisette 1000 4971.00 5000
heart 270 9.76 13

ijcnn1 91701 13.00 22
ionosphere 351 30.06 34

letter 20000 15.58 16
magic04 19020 9.99 10

mnist 11791 142.43 780
mushrooms 8124 21.00 112

rcv1 781265 75.72 43001
real-sim 72309 51.30 20958
splice 1000 60.00 60
w1a 2477 11.47 300
w8a 49749 11.65 300

Table 2: Error rates for Sketched Online Newton with different sketching algorithms

Dataset RP-SON FD-SON Oja-SON
australian 15.6 16.0 15.8

breast-cancer 4.8 5.3 3.7
diabetes 35.5 35.4 32.8

mushrooms 0.5 0.5 0.2
splice 22.9 22.6 22.9

22

Table 3: Error rates for different algorithms (with best results bolded)

Dataset
Oja-SON

ADAGRADWithout Diagonal Adaptation With Diagonal Adaptation
m = 0 m = 10 m = 0 m = 10

20news 0.121338 0.121338 0.049590 0.049590 0.068020
a9a 0.204447 0.195203 0.155953 0.155953 0.156414

acoustic 0.305824 0.260241 0.257894 0.257894 0.259493
adult 0.199763 0.199803 0.150830 0.150830 0.181582

australian 0.366667 0.366667 0.162319 0.157971 0.289855
breast-cancer 0.374817 0.374817 0.036603 0.036603 0.358712

census 0.093610 0.062038 0.051479 0.051439 0.069629
cod-rna 0.175107 0.175107 0.049710 0.049643 0.081066
covtype 0.042304 0.042312 0.050827 0.050818 0.045507
diabetes 0.433594 0.433594 0.329427 0.328125 0.391927
gisette 0.208000 0.208000 0.152000 0.152000 0.154000
heart 0.477778 0.388889 0.244444 0.244444 0.362963

ijcnn1 0.046826 0.046826 0.034536 0.034645 0.036913
ionosphere 0.188034 0.148148 0.182336 0.182336 0.190883

letter 0.306650 0.232300 0.233250 0.230450 0.237350
magic04 0.000263 0.000263 0.000158 0.000158 0.000210

mnist 0.062336 0.062336 0.040031 0.039182 0.046561
mushrooms 0.003323 0.002339 0.002462 0.002462 0.001969

rcv1 0.055976 0.052694 0.052764 0.052766 0.050938
real-sim 0.045140 0.043577 0.029498 0.029498 0.031670
splice 0.343000 0.343000 0.294000 0.229000 0.301000
w1a 0.001615 0.001615 0.004845 0.004845 0.003633
w8a 0.000101 0.000101 0.000422 0.000422 0.000221

Table 4: Largest relative error between true and estimated top 10 eigenvalues using Oja’s rule.

Dataset Relative eigenvalue
difference

a9a 0.90
australian 0.85

breast-cancer 5.38
diabetes 5.13

heart 4.36
ijcnn1 0.57

magic04 11.48
mushrooms 0.91

splice 8.23
w8a 0.95

23

