Supplementary Materials for
""A Communication-Efficient Parallel Algorithm
for Decision Tree"

Qi Meng'*, Guolin Ke?*, Taifeng Wang?, Wei Chen?, Qiwei Ye?,
Zhi-Ming Ma?, Tie-Yan Liu?
IPeking University 2Microsoft Research
3Chinese Academy of Mathematics and Systems Science
1qimengl 3@pku.edu.cn; 2{Guolin.Ke, taifengw, wche, qiwye, tie-yan.liu} @microsoft.com;
3mazm@amt.ac.cn

This supplementary document is composed of the proofs for Theorem 4.1 (for both regression and
classification) and Theorem 4.2 in the paper "A Communication-Efficient Parallel Algorithm for
Decision Tree".

First of all, we review the definitions of information gain in classification and variance gain in
regression.

Definition 0.1 [|]/2}] In classification, the information gain (IG) for attribute X; € [w1, wo| at node
O, is defined as the entropy reduction of the output Y after splitting node O by attribute X at w, i.e.,

1G;(w; 0) = H; — (Hj(w) + Hj(w))
= P(w1 <X; < wg)H(Y|w1 <X; < wg) — P(w1 <X; < ’LU)H(Y"LUl <X; < w)
— P(w S Xj S wg)H(Y|w S Xj S wg),
where H (-|-) denotes the conditional entropy.

In regression, the variance gain (VG) for attribute X; € w1, w2 at node O, is defined as variance
reduction of the output Y after splitting node O by attribute X at w, i.e.,

VG;(w;0) = 0 — (0 (w) + o5 (w))
= P(w1 < X; <w2)Var[Y|ws < X;j <wz] — Plw1 < X; <w)Var[Y|w < X; < w)
— P(w2 > X; > w)Var[Y|w2 > X; > w],
where Var|[:|-] denotes the conditional variance.
The conditional entropy H ﬂ B) and the conditional variance Var(:|-) are calculated according to the

conditional distribution P(|-). For K class classification, we assume Y is a discrete random variable
which takes value from the set {1,--- , K'} and we have

H(Y|w1 S Xj S ’wz) = —E(ymlngng) logp(Y|w1 S Xj S wz) (1)
K

= =) p(Y =klw < X; < wz)logp(Y =klwr < X; <wz).  (2)
k=1

For regression, we assume that Y is a continuous random variable and

Var(Yiwn < X; <wz) = E[(V —E[Y|ur <X; <wa)*|wi < X; < ws] A3)

2
= /p(ylwl < X; <wa)y’dy — (/p(y\wl <X; < wz)ydy> )

*Denotes equal contribution. This work was done when the first author was visiting Microsoft Research Asia.
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1 Theorem 4.1 and its Proof for classification and regression

Theorem 4.1: In classification, suppose we have M local machines, and each one has n training data. PV-Tree
at an arbitrary tree node with local voting size k and global majority voting size 2k will select the most
informative attribute with a probability at least

M d " d M=m
ooocni-| D sk > 86y (n, k) ,
m=[M/2+1] j=k+1 j=k+1

2
where d;y(n, k) = ag)y(n) + 4e= ™GO ®)™ it Tim, o a(;)(n) = 0and c(;y is constant.

Proof for classification:

Firstly we introduce some notations. We use subscript n to denote the corresponding empirical statistic-
s, which is calculated based on the empirical distribution P,,. Let wj = argmaz.,IG;(w) and wy, ; =
argmazwIGn, j(w). We denote IG;(w}) as IG5, which is the largest information gain for attribute 5. We de-
note /G, j(wy, ;) as IGn j, which is the largest empirical information gain for attribute j. As we defined in the
main paper, we denote the index of attribute with the j-th largest information gain as (), and its corresponding
information gain as IG ), i.e.,

IGay 221G 2+ 2 1G ).
The corresponding empirical information gain for attribute (j) denoted as
[Gn,(1)7 vy IGny(j% ceny IGn,(d).

Note that IG (1), ..., IGr (), ---, I G, (q) may not be in an increasing order. Similarly, we denote the index of
attribute with the j-th largest empirical information gain as (j), and its corresponding empirical information
gain as IG,, (jn.i.e.,

IG, 1y 221Gy iy 2 -+ 2 IGp (ary-
Our proof idea is as follows:

Step 1: Because IG,, ; € d(IG;,1;(k)) is a sufficient condition for (1) € {(1'), ..., (k')} to be satisﬁe we
use concentration inequalities to derive a lower bound of probability for IG, ; € d(IG;,1;(k)), V], where
d(z, €) denotes the neighborhood of z with radius e.

Step 2: By local top-k and global top-2k voting, the most informative attribute (1) will be contained in the global

selected set, i.e., (1) € {(1,), e (kl)}, if only no less than [M /2 + 1] local workers select it. We calculate the
probability for the case no less than [M /2 + 1] of all machines select attribute (1) using binomial distribution.

Firstly, we give the probability to ensure (1) € {(1'), s (k/)} We bound the difference between the information
gain and the empirical information gain for an arbitrary attribute. To be clear, we will prove, with probability at
least 0;(n, k), we have

[IG,,; — IG;| < 1;(k).
For simplify the notations, let H:(w) = H(Y|w1 < X; < w), P{(w) = P(w1 < X; < w), Hj(w) =
H(Y|w < X; <wz)and Pj(w) = P(w < X; < ws). We decompose H!, ;(w;; ;) — H(w)) as
Honi (wn.5) = Hj(w)) ®)
= Poy(wn ) Hn (wr5) = P (w)) Hj(w]) ©)
= Pog(wng)H(why) = Po () Hy(w)) + Poj(w)) Hj(w)) = Pj(w))Hj(w)). (D)
We decompose Hy, ;(wn ;) — Hj(w]) in a similar way, i.e.,
Ho,j(wn,;) — Hj(wj) 8)
= Pry(wn ) Hy s (w ) = Prg(wi) Hj(w)) + Pr (w)) Hj (w)) = P} (w)) Hj (w]).  (9)

’In order to (1) € {(1l), ey (k,)}, the number of /G, ; which is larger than G, (1) is at most k& — 1.



By adding Ineq.(7) and Ineq.(@), we have the following,
P(UGn,; — IG;| > 1;(k))
= P ([ (wig) + M (i g) = (R () + 15 ()| > 1 (k)

<r(

P (w)Hj(w}) = Pj(w)) Hj(w))

* * * * r * r * r * r * li(k
SEh+h+Is
For term I, by using Hoeffding’s inequality, we have
Lo< P (H ) x |Plw!) — PL(w)] > 2F) 10
1S J(w])X’ J(w]) ’ﬂ»](wj) > 3 (10)
Li (k)
l * l *
2nl;(k)?
<2exp |~ (12)
( 9(Hj(wj))2
Similarly, for term I, we have
2nl; (k)?
I, < 2exp (—% (13)
Q(Hj (wj))2
_ : 2 2
Let ¢; = min { SCHT (@2 (AT (w2 } we have
L + I < dexp (—¢jnl;(k)?). (14)

For the term I3, we have

J
= P'rlz,j(w:L,j)HiL,j(w:L,j) - P’Vll,j (w;)HJZ(w;) + P;,j(wz,j)H:;,j (wz,j) - P:;g(w;)HJT(wg*)

1 a * 1 * 1 a * r *
= = D I(wr <wiy <wy ) Hys(wy ) + -~ D I(wy; < @iy < wo)Hy j(w; ;)

i=1 i=1
Ly I(wr < @iy < w))H () — 2 n I(w} < wo)H (w)
_g; (w1 < iy < wj) j(wj)—ﬁ; (wj < mi; < wa)Hj(wy),

where x; ; is the j-th attribute for the i-th instance in the training set.

Let © denote the set of all possible values of (ph,p},--- ,p% _1,PH_1,w;), where pl, = P(Y = k|w; <
X; < wj)and pp, = P(Y = klw; < X; < ws). Define the criterion function M(0) = Pmy,

where mo(z,y) = —logpil(wn < x < wj) — logppI(ws > = > w;) if y = k. The vector

0" = (pl1*7p11”7 e »Pi%fup}?fh ’LU;) maximizes M(H)’ while 0:; = (pizk,hp::h e 7p?niK717p::K717w:L,j)
minimizes M, (0). Straightforward algebra shows that

(mo —me-)(X,Y) = I(Y =k)[(logp —logpi")(I(w1 < X <wj,) — I(wr < X < dj))(15)

+(logpiyi —log pi) I (w1 < X < wy ;) (16)

+(logprk — logpi” ) I (wr,,; < X < wo)] (17

By following the proof of Theorem 1 in [3]], we can get that n2/3 I3 converges to ¢ max; Q(t), where ¢z is a
constant and Q(¢) is composed by the standard two-sided Brownian Motion [3]]. Therefore, we have

P (|J| > ch*%qa) <a (18)



where ¢, is the upper a-quantile of max; Q(¢). Let ch’gq% (n) = L) With probability at most a;(n),

3
we have IGy, j(w}) — IGn ; > l’ék), ie.,

Ib=P <‘J| > @) < ozj(n) (19)

By combining Inequalities and (I9), we have, with probability at most &;(n, k) = «a;(n) +
dexp (—c;nl;(k)%),

|IGn7j — IG]| > lj(k) (20)
Thus we can get

d
P (|IGn) = IGGH | <Li(k), Vi > k+1) = 1= > 5;(n, k). Q1)

j=k+1

By binomial distribution, we can derive the results in the theorem. O

Proof for regression:

The proof is similar to classification. We continue to use notations in the previous section and just substitute /G
to VG.

Similarly, we will prove, with probability at least §;(n, k), we have
[VGnh,; — VG| <1(k).
By the definition of variance gain, we have the following,
P(|[VGn,; —VG;| > 1;(k))

< P(|lom g (wn) + o (wn ) = 05 (w]) — o5 (wy)] > 1 (k))

* * * * lj(k)

< P (|Phwel ) - Piwie )] > 240 ) +
r *\ T * r *\ T * l](k)

P <’Pn,j(wj)aj (w]) = P} (w])aj (wy)| > 3 ) +

* * * * r * r * T *\ T * li(k
P ( Py j(wh o j(wr ;) = P (w))og(w;) + Prj(wy o (wn ;) — Prj(w))of (w))| > %)
AN+ L+1s
For term I, by using Hoeffding’s inequality, we have
* " . li(k
L<P (aj-(wj) x | Pj(w)) — Py (w))] > ’; )>
L (k)
1) * l *
§P<Pj(wj)—Pn,j(wj) > 302(1”;)) (22)
onl; (k) )
<2exp |~ (23)
< 90" (w}))?
Similarly, for term I, we have
2nl; (k)?
I < 2exp (f% (24)
9(‘7]' (wj))2
i 2 2
Let ¢; = min { ST (wi?* DT (win)? }, we have
L + I < dexp (—¢;nl;(k)?). (25)
For the term I3, let J = P,ll,j (w;j)a;’j(w;j) — P,lw- (w;)aé(w;) + P i(wy, )0 i (wr ;) —
Py (w})o} (w}). According to Theorem 2.2 established by [3]], the following holds,
P (|J| > ch*%qa) <a (26)

4



where ¢ is a constant for fixed distribution P and ¢, is the upper a-quantile of the standard two-sided Brownian

Motion [3]]. With probability at most «;(n), we have |J| > L gm ,le.,
L (k
Li—P (m S %) < ay(n) @7)
By combining Ineq. and (27), we have, with probability at most &;(n, k) = o (n) + 4exp (—c;nl; (k)?),
‘VGn,j — VG7| > l](k‘) (28)
Thus we can get
d
P([VGuy = VG| ShViZ=k+1) 21— Y §;(n k). (29)
j=k+1

By binomial distribution, we can derive the results in the theorem. [

2 Theorem 4.2 and its proof

Theorem 4.2: We denote quantized histogram with b bins of the underlying distribution P as P°, that of the
empirical distribution P,, as PL, the information gain of X; calculated under the distribution P and P! as

IG? and IG?E,]- respectively, and f;(b) 2 |IG; — IG;’-|. Then, for ¢ < minj—i ... q f;(b), with probability at
least 5;(n, f;(b) — ¢€)), we have |IG%, ; — IG;| > e

Proof:

First, |IG, ; — IG;| = |IGY ; — IGY + IGY — IG;| > ||IGY ; — IGY| — | f(b)||. Second, when n is large
enough, we have | f(b)| — |IG?, ; — IG®%| > e with probability d;(n, f;(b) — €)) for € < minj—1,... .a f;(b).
Thus, the proposition is proven. [
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