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Here we provide additional derivations and examples to supplement the findings in the main paper.

1 Inference formulation

In this work we consider N samples (xµ, yµ) drawn from a generalized linear model:

yµ = r(xµ · s0, εµ), (1)

where s0 ∈ RP is a set of parameters to be inferred and εµ denotes noise. We will be interested in
the high dimensional limit of large numbers of both samples and parameters: P,N →∞, but with a
finite measurement density α = N

P < ∞. In particular we analyze and compare two methods for
selecting ŝ, the parameter estimate: MMSE inference and regularized M-estimation.

1.1 MMSE inference

MMSE inference involves computing the P dimensional integral:

ŝMMSE
i =

∫
s0iP (s

0|X,y)ds0. (2)

Here X denotes the measurement matrix where each row of the matrix is a measurement xµ.
MMSE inference minimizes the mean squared error

〈
(ŝ(X,y)− s0)2

〉
, a fact which can be seen

by differentiating this expression with respect to ŝ and setting the result equal to zero, which yields
ŝ(X,y) =

〈
s0|X,y

〉
which is equivalent to (2). Here, 〈 · 〉 denotes and average and 〈x|y 〉 denotes

the average of random variable x given y.

To compute the MMSE estimate involves first computing the posterior distribution:

P (s0|X,y) = P (y|X, s0)P (X, s0)
P (X,y)

(3)

We will assume throughout this work that the measurement matrix is chosen independently of the
parameters s0 so that

P (s0|X,y) ∝ P (y|X, s0)P (s0). (4)
Under the additional assumption of iid noisy channels and iid parameters, it follows that

P (s0|X,y) ∝
N∏
µ=1

Py|z(yµ|xµ · s0)
P∏
j=1

Ps(s
0
j ), (5)

where Ps is the distribution of the parameters, which for simplicity we assume to be zero mean and
have variance σ2

s , and Py|z is the noisy channel which outputs y. Note that neither of the noise nor
the parameter distribution need be Gaussian. In general the integral above is intractable to compute
since xµ mixes parameters so that the posterior cannot be factorized. Due to the general difficulty of
computing this integral, an often used surrogate is to use an optimization problem from a family of
M-estimators.

1.2 M-estimation

The M-estimation problem takes the form:

ŝ = argmin
s

[
N∑
µ=1

L(yµ,xµ · s) +
∑
i

σ(si)

]
, (6)

where L(y, η) is convex (in η) loss function and σ is a convex regularizer. Well known examples
of such estimators which are commonly applied include [1] LASSO: L(y, η) = 1

2 (y − η)
2 and

σ(s) = |s|, Ridge regression: L(y, η) = 1
2 (y − η)

2 and σ(s) = 1
2s

2, and [2] Elastic Net: L(y, η) =
1
2 (y−η)

2 and σ(s) = α|s|+ β
2 s

2. We are interested in characterizing the performance of regularized
M-estimators more generally and demonstrating that under the appropriate choice of L and σ, it is
possible to achieve MMSE accuracy.
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2 Approximate message passing

In this work we use Approximate Message Passing (AMP) primarily as a technique for deriving our
main result about an equivalence between M-estimation and MMSE inference. Consider the following
message passing algorithm which aims to compute the solutions to M-estimation optimization or
MMSE inference:

ηt = Xŝt + λtηGy(λ
t−1
η ,y,ηt−1), (7)

λth =

(
γα

N

N∑
ν=1

∂

∂η
Gy(λ

t
η, yν , ην)

)−1
, (8)

ŝt+1 = Gs
(
λth, ŝ

t − λthXTGy(λ
t
η,y,η

t)
)
, (9)

λt+1
η = γλth

1

P

P∑
j=1

∂

∂h
Gs
(
λth, ŝ

t
j − λthXTGy(λ

t
η,y,η

t)
)
. (10)

For the case of M-estimation, Gy, Gs depend on the loss and regularization functions respectively
and are defined as:

Gy(λη, y, η) =Mλη [L(y, ·) ]′(η), (11)

Gs(λh, h) = Pλh [σ ](h). (12)
In the case of MMSE inference, we instead choose:

Gy(λη, y, η) = −
∂

∂η
log

(∫
Py(y|z)e

− (η−z)2
2λη dz

)
, (13)

Gs(λh, h) = h+ λh
∂

∂h
log

(∫
Ps(s)e

− (h−s)2
2λh ds

)
. (14)

We will provide a heuristic derivation in sections 2.2 and 2.3 of this message passing algorithm
and the form of Gy, Gs based on an analytic relaxation of loopy belief propagation for bAMP and
mAMP respectively. We include this derivation since since it illustrates that the approximations we
make are valid in the limit of large sparse measurement matrices. However, the AMP algorithm and
predictions we derive about its performance are also exact for larger class of non-sparse measurement
matrices, as we demonstrate with simulations in the main text. There are rigorous derivations based
on AMP (see [3],[4]) which prove rigorously that special cases of this algorithm converge on loopy
graphs. While we do not aim to provide a rigorous proof of the convergence of AMP in this work, we
perform numerical simulations in the main paper and in the following section we show that the fixed
points of the AMP algorithm are solutions to the M-estimation optimization problem

2.1 Fixed points of mAMP are minima of M-estimation

Under the choice (11, 12), the mAMP algorithm has the form:

ηt = Xŝt + λtηMλt−1
η

[L(y, ·) ]′(ηt−1), (15)

ŝt+1 = Pλth [σ ](̂s
t − λthXTMλtη

[L(y, ·) ]′(ηt)). (16)

We now show that fixed points of the AMP algorithm are critical points of the M-estimator optimiza-
tion problem for mAMP . We consider a fixed point of (15) by dropping the t index and rearranging
the expression to yield:

η −X ŝ = ληMλη [L(y, ·) ]′(η) = η − Pλη [L(y, ·) ](η), (17)

where the final equality follows from the fact that the proximal map can be understood as a gradient
descent step along the Moreau envelope, see appendix A.1. We will also use the fact that the proximal
map is related to the derivative of the function it maps via the equation

x− Pλ[ f ](x) = λf ′(Pλ[ f ](x)). (18)
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For a derivation of this fact, see appendix A.2. If follows that

η − Pλη [L(y, ·) ](η) = λη
∂

∂η
L(y,Pλη [L(y, ·) ](η)). (19)

Combining (17) with (19), the two preceding equations yield:

Mλη [L(y, ·) ]′(η) =
∂

∂η
L(y,Xŝ). (20)

If we now define h = ŝ− λhXTMλη [L(y, ·) ]′(η), then it follows that

λhσ
′(ŝ) = λhσ

′(Pλh [σ ](h)) = h− ŝ = −λhXTMλη [L(y, ·) ]′(η) = −λhXT ∂

∂η
L(y,Xŝ),

(21)
where the second equality follows from (18) and the final equality follows from (20). Dividing both
sides of the equality above by λh and rearranging, the fixed points of AMP satisfy:

XT∂ηL(y,Xŝ) + σ′(ŝ) = 0, (22)

and must be fixed points of the M-estimation optimization (6).

2.2 Derivation of bAMP

ŝmmse
i =

∫
siP (s|X,y)ds. (23)

The belief propagation (BP) [5] equations for estimating the marginal distribution for each parameter
si are simply:

mt+1
i→µ(si) = Ps(si)

∏
ν 6=µ

mt
ν→i(si), (24)

mt
µ→i(si) =

∫
Py(yµ|

∑
j

Xµjsj)
∏
j 6=i

mt
j→µ(sj)

∏
j 6=i

dsj . (25)

The BP equations above rapidly converge to the true marginal distributions if the corresponding
factor graph is a tree so that it contains no loops. We will also be interested in dense graphs, see
the discussion in the main paper for why AMP is relevant in this setting. The factor graph can be
understood as a set of factor nodes corresponding to each sample µ and variable nodes corresponding
to each parameter i, for more discussion on this see [6]. We follow the same derivation technique
as this work and begin by approximating messages from parameters to factors as an exponential of
a quadratic. The approximation is justified because if more terms were included as a Taylor series
in the exponent, third and higher order terms would have a negligible effect for a large class of
measurement matrices which have sufficiently sparse or random elements so that

∑
j X

3
µj → 0 in the

asymptotic limit. We will also assume that the measurement elements are iid and scaled so that the
average squared norm of the measurements satisfy: 〈xµ · xµ 〉 = γ. Under a second order Taylor
expansion in sj , the messages from parameters to factors may be written as

mt
j→µ(sj) ≈

1√
2πλtj→µ

e
−

(sj−ŝ
t
j→µ)2

2λt
j→µ , (26)

which upon substitution into (25) yields:

mt
µ→i(si)

∼=
∫
Py(yµ|

∑
j

Xµjsj)
∏
j 6=i

 1√
2πλtj→µ

e
−

(sj−ŝ
t
j→µ)2

2λt
j→µ dsj

. (27)

Under the change of variables rj =
sj√
λtj→µ

, r̂j→µ =
ŝj→µ√
λtj→µ

, the integral above simplifies to
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∫
Py(yµ|

∑
j

√
λtj→µXµjrj)

∏
j 6=i

(
1√
2π
e−

(rj−r̂
t
j→µ)2

2 drj

)
. (28)

The above integral may be reduced to an single dimensional integral since
∑
j 6=i

√
λtj→µXµjrj is

constant under changes in r orthogonal to χµ =
∑
j

Xµj
√
λtj→µ

(
∑
j 6=iX

2
µjλ

t
j→µ)

1/2 êj , also the dependence of

the denominator on µ and i becomes weak in the asymptotic limit so that it approaches a scalar:
λtη =

∑
j 6=iX

2
µjλ

t
j→µ . The one dimensional integral becomes:

mt
µ→i(si)

∼=
∫
Py(yµ|

∑
j 6=i

√
λtj→µXµj r̂

t
j→µ +

√
λtηv +Xµisi)

1√
2π
e−

v2

2 dv, (29)

where we have defined rj = r̂tj→µ + vχµj . Under the further change of variables ξ =∑
j 6=i

√
λtj→µXµj r̂

t
j→µ +

√
λtηv +Xµisi, the integral is unchanged:

mt
µ→i(si)

∼=
∫
Py(yµ|ξ)

1√
2πλtη

e
− 1

2λtη
(ξ−Xµisi−

∑
j 6=iXµj ŝ

t
j→µ)

2

dξ. (30)

We then again make a Gaussian approximation for the set of marginals from factors to parameters:

mt
µ→i(si)

∼= eα
t
µ→iXµisi− 1

2β
t
µ→iX

2
µis

2
i . (31)

It follows from differentiating (30) and (31) with respect to si and solving for αtµ→i that

αtµ→i =

1
λtη

∫
Py(yµ|ξ)

(
ξ −

∑
j 6=iXµj ŝ

t
j→µ

)
1√
2πλtη

e
− 1

2λtη
(yµ−

∑
j 6=iXµj ŝ

t
j→µ−ξ)

2

dξ∫
Py(yµ|ξ) 1√

2πλtη
e
− 1

2λtη
(yµ−

∑
j 6=iXµj ŝ

t
j→µ−ξ)2

dξ
, (32)

which we write in the form:

αtµ→i = −GBy (λtη, yµ,
∑
j 6=i

Xµj ŝ
t
j→µ), (33)

where

GBy (λ, y, η) =

1
λ

∫
Py(y|z)(η − z) 1√

2πλ
e−

(η−z)2
2λ dz∫

Py(y|z) 1√
2πλ

e−
(η−z)2

2λ dz
. (34)

It also follows from (30) and (31) that

βtµ→i =
∂

∂η
GBy (λ

t
η, yµ,

∑
j 6=i

Xµj ŝ
t
j→µ). (35)

Substituting the approximate form of messages from factors to parameters (31) into the belief
propagation update equation (24) yields

mt+1
i→µ(si) = Ps(si)e

∑
ν 6=µ α

t
ν→iXνisi− 1

2

∑
ν 6=µ β

t
ν→iX

2
νis

2
i . (36)

Defining 1
λth

=
∑
ν X

2
νiβ

t
ν→i, in the asymptotic limit yields

mt+1
i→µ(si)

∼= Ps(si)e

∑
ν 6=µ α

t
ν→iXνisi− 1

2λt
h

s2i ∼= Ps(si)e
− 1

2λt
h

(si−λth
∑
ν 6=µ α

t
ν→iXνi)

2

. (37)

It also follows from the definition of λth that

λth =

 N∑
ν=1

X2
νi

∂

∂η
GBy (λ

t
η, yν ,

∑
j 6=i

Xνj ŝ
t
j→ν)

−1 →
αγ
N

N∑
ν=1

∂

∂η
GBy (λ

t
η, yν ,

∑
j 6=i

Xνj ŝ
t
j→ν)

−1 .
(38)
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The arrow denotes the limit of λth for very large system sizes. It follows from our quadratic
approximation (26) of the marginals, that the mean of the marginal satisfies

ŝti→µ =

∫
sim

t
i→µ(si)dsi∫

mt
i→µ(si)dsi

, (39)

and that the variance satisfies

λti→µ =

∫
(si − sti→µ)2mt

i→µ(si)dsi∫
mt
i→µ(si)dsi

. (40)

If we define

GBs (λ, h) =

∫
sPs(s)e

− 1
2λ (s−h)

2

ds∫
Ps(s)e−

1
2λ (s−h)2ds

, (41)

then
ŝt+1
i→µ = GBs (λ

t
h,
∑
ν 6=µ

λthα
t
ν→iXνi), (42)

λt+1
i→µ = λth

∂

∂h
GBs (λ

t
h,
∑
ν 6=µ

λthα
t
ν→iXνi). (43)

It then follows from our definition of λtη that

λt+1
η =

P∑
i=1

X2
µiλ

t+1
i→µ → γ

1

P

P∑
i=1

λt+1
i→µ, (44)

thus

λt+1
η = γλth

1

P

P∑
i=1

∂

∂h
GBs (λ

t
h,
∑
ν 6=µ

λthα
t
ν→iXνi). (45)

We can equivalently write GBs , G
B
y in the forms:

GBs (λ, h) = h+ λ
d

dh
log

(∫
Ps(s)e

− (h−s)2
2λ ds

)
, (46)

GBy (y, λ, η) = −
d

dη
log

(∫
Py(y|z)e−

(η−z)2
2λ dz

)
. (47)

This form will be useful later when we discuss the connection between bAMP and mAMP.

2.3 Derivation of mAMP

In this section we derive an AMP algorithm to solve the M-estimation optimization problem

ŝ = argmin
s

[
N∑
µ=1

L(yµ,xµ · s) +
P∑
i=1

σ(si)

]
. (48)

This optimization also admits a factor graph and the derivation of BP on this factor graph is very
similar to that of the previous section. The algorithm is intended to solve a minimization problem
and is referred to in the literature as the min-sum algorithm [6]. Again the result is guaranteed to
converge to the correct solution on a tree-like factor graph, but remarkably there are rigorous results
demonstrating that the algorithm is correct even on dense graphs in special cases (e.g. LASSO in [3]).
The min-sum BP algorithm used to solve M-estimation takes the form:

Ĵ tµ→i(si) = min
s∂µ\i

L(yµ,xµ · s) + ∑
j∈∂µ\i

J tj→µ(sj)

, (49)

J ti→µ(si) = σ(si) +
∑
ν 6=µ

Ĵ t−1ν→i(si). (50)
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After BP has run to convergence (denoted here by t = ∞), the estimates can be computed by a
simple single dimensional minimization problem:

ŝi = argmin
si

[
N∑
ν=1

Ĵ∞ν→i(si) + σ(si)

]
. (51)

To avoid the computational cost of estimating the full functions J ti→µ(si) (called a message) as
in [6], we approximate them as a quadratic with a minimum at ŝi→µ, which may be thought of
as the estimated parameters given that factor µ is removed from the graph. The message can be
approximated with a Taylor expansion around its minima as:

J ti→µ(si)
∼=

1

2λti→µ
(si − ŝti→µ)2 +O

(
(si − ŝti→µ)3

)
. (52)

By substituting the form of this message into the min-sum equations (49,50), we can write message
passing equations as:

Ĵ tµ→i(si) = min
s∂µ\i

L(yµ,xµ · s) +∑
j 6=i

1

2λtj→µ
(sj − stj→µ)2 +O

∑
j

(sj − stj→µ)3
. (53)

Under the change of variables wj =
sj√
λj→µ

and wtj→µ =
ŝtj→µ√
λj→µ

, this minimization may be written
as

Ĵ tµ→i(si) = min
w∂µ\i

L(yµ,∑
j 6=i

Xµjwj
√
λj→µ +Xµisi) +

∑
j∈∂µ\i

1

2
(wj − wtj→µ)2 +O

∑
j

(wj − wtj→µ)3
.

(54)
The wδµ\i which minimizes the expression above must have the form

wj = wtj→µ + rXµj

√
λj→µ, (55)

where r is a scalar. Substituting this expression into the equation for Ĵ tµ→i(si) yields:

Ĵ tµ→i(si) = min
r

L(yµ,∑
j 6=i

Xµjw
t
j→µ

√
λj→µ + r

∑
j 6=i

X2
µjλj→µ +Xµisi) +

r2

2

∑
j 6=i

X2
µjλj→µ

.
(56)

The higher order terms will be negligible in the large system limit under the assumption
∑
j X

3
µj →

0. We can removing wt by writing the above expression in terms of ŝt and can define λtη =∑
j X

2
µjλ

t
j→µ, which simplifies the form of the message to a single variable minimization:

Ĵ tµ→i(si) = min
r

L(yµ,∑
j\i

Xµjs
t
j→µ + rλη +Xµisi) + λη

r2

2

. (57)

We can express the previous equation as a Moreau envelope, to do so we make the change of variables:

ξ =
∑
j\i

Xµjs
t
j→µ + rλη +Xµisi, (58)

so that

Ĵ tµ→i(si) = min
ξ

L(yµ, ξ) +
(
ξ −

∑
j\iXµjs

t
j→µ −Xµisi

)2
2λtη

 =Mλη [L(yµ, ·) ](Xµisi +
∑
j\iXµjs

t
j→µ).

(59)
The RHS of the equation above follows directly from the definition of the Moreau envelope. See
appendix A for the definition of the Moreau envelope and some of its properties. The other form of
message Ĵ tµ→i(si) can also be Taylor expanded in si to yield

Ĵ tµ→i(si)
∼= XµisiMλtη

[L(yµ, ·) ]′(
∑
j\iXµjs

t
j→µ)+

X2
µis

2
i

2
Mλtη

[L(yµ, ·) ]′′(
∑
j 6=iXµjs

t
j→µ)+O(X3

µis
3
i ).

(60)
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When these messages are summed over µ, the final term will be negligible in the large system limit,
so we can write the above equation in the form:

Ĵ tµ→i(si)
∼= −αtµ→iXµisi +

1

2
βtµ→iX

2
µis

2
i , (61)

where
αtµ→i = −Mλtη

[L(yµ, ·) ]′(
∑
j\iXµjs

t
j→µ). (62)

Substituting the form (61) into (50) yields

J ti→µ(si)
∼= σ(si) +

∑
ν 6=µ

−αt−1ν→iXνi

 si +
1

2

∑
ν 6=µ

βt−1ν→iX
2
νi

 s2i . (63)

We then define:

λth =
1∑

ν β
t
ν→iX

2
νi

, (64)

and remove the index i because in the large system limit this parameter should converge to the same
value for all i by the law of large numbers. It then follows from the definition of βtν→i and Ĵ tµ→i(si)
in (63, 61) that

λth =

(
N∑
ν=1

X2
νiMλtη

[L(yν , ·) ]′′(
∑
j 6=iXνj ŝ

t
j→ν)

)−1
→

(
αγ

N

N∑
ν=1

Mλtη
[L(yν , ·) ]′′(

∑
j 6=iXνj ŝ

t
j→ν)

)−1
.

(65)
By definition, ŝti→µ is the arg min of J ti→µ(si), which implies that

ŝti→µ = Pλt−1
h

[σ ](λt−1h

∑
ν 6=µ α

t−1
ν→iXνi), (66)

where Pλ[σ ](·) is a proximal map as defined in appendix A. Using the form of λtη =
∑
j X

2
ijλ

t
j→µ,

and earlier assumption about the form of λ: λtj→µ = J ′′j→µ(ŝ
t
i→µ) we differentiate (63) twice and

substitute the form of ŝti→µ in (66) and apply a relation between the derivative of a function and a
proximal map derived in appendix A.2, which yields:

λt+1
η = λth

P∑
i=1

X2
µiPλth [σ ]

′(
∑
ν 6=µ λ

t
hα

t
ν→iXνi)→ γλth

1

P

P∑
i=1

Pλth [σ ]
′(
∑
ν 6=µ λ

t
hα

t
ν→iXνi).

(67)

2.4 Simplification of AMP to require O(N + P ) messages

In this section we will simplify the AMP algorithms derived in the previous sections (2.2,2.3) so that
rather than keeping track of O(NP) variables we can keep track of O(N+P) variables. Before doing so
we note that the expressions derived in section 2.2 and 2.3 have the same form. If we define functions
Gs, Gy and choose for mAMP :

Gs(λh, h) = Pλh [σ ](h), Gy(λη, y, η) =Mλη [L(y, ·) ]′(η), (68)

and for bAMP :

Gs(λh, h) = h+ λh
∂

∂h
log (Ps(h, λh)), Gy(λη, y, η) = −

∂

∂η
log (Py(y|η, λη)), (69)

then it is easy to check that the algorithms derived in 2.2 and 2.3 both have the form:

ŝt+1
i→µ = Gs(λ

t
h,
∑
ν 6=µ

λthα
t
ν→iXνi), (70)

αtµ→i = −Gy(λtη, yµ,
∑
j 6=i

Xµj ŝ
t
j→µ), (71)
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where λη, λh are updated via

λt+1
η = γλth

1

P

P∑
i=1

∂

∂h
Gs(λ

t
h,
∑
ν 6=µ

λthα
t
ν→iXνi), (72)

λth =

αγ 1

N

N∑
ν=1

∂

∂η
Gy(λ

t
η, yν ,

∑
j 6=i

Xνj ŝ
t
j→ν)

−1 . (73)

It is possible to simplify the algorithm further and keep track of fewer parameters by Taylor expanding
equations (70,71) in small quantities so that in the asymptotic limit, only the first order expansion is
needed. To do this we look for solutions of the form ŝti→µ = ŝt + δsi→µ and αtµ→i = α̂+ δαµ→i so
that we can expand the update equations as

ŝt+1
i + δst+1

i→µ = Gs(λ
t
h,
∑
ν

λthα
t
ν→iXνi − λthαtµ→iXµi), (74)

αtµ + δαtµ→i = −Gy(λtη, yµ,
∑
j

Xµj ŝ
t
j→µ −Xµiŝ

t
i→µ). (75)

In the large system limit the δα and δs terms will both be small as will the individual elements of X .
Multiplying the two gives a result which is small squared which is the intuition for ignoring these
terms in the derivation which follows. We can expand in the small terms λthα

t
µ→iXµi ≈ λthαtµXµi

and Xµiŝ
t
i→µ ≈ Xµiŝ

t
i. Matching indices in the resulting Taylor expansion yields expressions for

δsti→µ, δα
t
µ→i:

δst+1
i→µ = −∂sGs(λth,

∑
ν

λthα
t
ν→iXνi)λ

t
hα

t
µXµi, (76)

δαtµ→i = ∂ηGy(λ
t
η, yµ,

∑
j

Xµj ŝ
t
j→µ)Xµiŝ

t
i. (77)

Similarly,

ŝt+1
i = Gs(λ

t
h,
∑
ν

λthα
t
ν→iXνi) = Gs(λ

t
h,
∑
ν

λth(α
t
ν + δαtν→i)Xνi), (78)

αtµ = −Gy(λtη, yµ,
∑
j

Xµj ŝ
t
j→µ) = −Gy(λtη, yµ,

∑
j

Xµj(ŝ
t
j + δstj→µ)). (79)

Thus, we can write the preceding equations as

ŝt+1
i = Gs(λ

t
h, h

t
i), (80)

αtµ = −Gy(λtη, yµ, ηtµ), (81)
under the definition:

hti =
∑
ν

λth(α
t
ν + δαtν→i)Xνi, (82)

ηtµ =
∑
j

Xµj(ŝ
t
j + δstj→µ). (83)

Substituting the form of δsi→µ from (76) allows us to write the update equation (83) as

ηtµ =
∑
j

Xµj ŝ
t
j − αtµλth

∑
j

X2
µj

∂

∂h
Gs(λ

t
h, h

t
j). (84)

We can similarly expand hti in (82) as

hti = −λth
∑
ν

XνiGy(λ
t
η, yν , η

t
ν)+ŝ

t
iλ
t
h

∑
ν

X2
νi

∂

∂η
Gy(λ

t
η, yν , η

t
ν) = −λth

∑
ν

XνiGy(λ
t
η, yν , η

t
ν)+ŝ

t
i,

(85)
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where the final equality follows from the form of λh (e.g. (65)). The final message passing equations
are simply

ŝt+1
i = Gs(λ

t
h, ŝ

t
i − λth

∑
ν

XνiGy(λ
t
η, yν , η

t
ν)), (86)

ηtµ =
∑
j

Xµj ŝ
t
j + λtηGy(λ

t−1
η , yµ, η

t−1
µ ). (87)

3 State evolution for AMP: theoretical predictions of algorithm performance

3.1 General state evolution relations

We can track the AMP algorithm performance at each iteration via a formalism called state evolution
(SE), which allows one to derive a scalar characterization of the AMP algorithm. It is straightforward
to derive this characterization from (70,71):

ŝt+1
i→µ = Gs(λ

t
h,
∑
ν 6=µ

λthα
t
ν→iXνi), (88)

α̂tµ→i = −Gy(λtη, yµ,
∑
j 6=i

Xµj ŝ
t
j→µ). (89)

It is possible to track this algorithm using only a few scalar values as we now explain. From (88)
it follows that ŝtj→µ is independent of Xµj , thus from the central limit theorem (CLT) the sum∑
j 6=iXµj ŝ

t
j→µ approaches a Gaussian of the same variance for any index µ in the large system limit.

We therefore define ηt to be a Gaussian random variable with the same variance so that the update
equation for λh (73) becomes:

λth =
(
αγ
〈

∂
∂ηGy(λ

t
η, y, η

t)
〉)−1

. (90)

Similarly, for each index i,
∑
ν 6=µ λ

t
hα

t
ν→iXνi will (by CLT) approach a Gaussian random variable

ht with the same mean and variance for any i in the large system limit:

ht = −
∑
ν 6=µ

Xνiλ
t
hGy(λ

t
η, yν ,

∑
j 6=i

Xνj ŝ
t
j→ν). (91)

We now compute the mean and standard deviation of ht using the fact that the outputs are drawn
from a model y = r(z, ε). We track this mean and standard deviation by defining scalars µt and qth:

µts0 = 〈ht 〉 = −αγs0
〈
λth

∂
∂zGy(λ

t
η, r(z, ε), η

t)
〉
z,ηt,ε

, (92)

qth =
〈
(δht)2

〉
= αγ

〈 (
λthGy(λ

t
η, r(z, ε), η

t)
)2 〉

z,ηt,ε
. (93)

Since the measurement matrix and true parameter values are drawn independently, xµ · s0 approaches
a Gaussian random variable of variance γσ2

s for any µ; z is defined to be the same Gaussian random
variable. Similarly, the other message passing equations yield a single letter characterization:

λt+1
η = γλth

〈
∂
∂hGs(λ

t
h, h

t)
〉t
h
, (94)

ŝt+1 = Gs(λ
t
h, h

t), (95)

Ct+1
s = cov(st+1, s0). (96)

Here Cs tracks the covariance between the parameter estimates and true parameters so that from their
definition, ηt and z are also zero mean, correlated Gaussian variables with covariance:

Ctη = cov(ηt, z) = γcov(st, s0). (97)
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3.2 bAMP state evolution

The general SE equations derived in the previous section simplify in the case of bAMP. One of the
reasons for this is that µt = 1 for each update time step t, as is shown in [7]. From (92), proving
µt = 1 can be accomplished to proving that

− αγλth
〈
∂
∂zG

B
y (λ

t
η, r(z, ε), η

t)
〉
z,ηt,ε

= 1, (98)

and 〈
(ŝt)

2
〉
=
〈
ŝts0

〉
= σ2

s −
1

γ
λtη. (99)

Derivation —.

The claim follows by induction, assuming that at we initialize λη = γσ2
s and ŝj = 0, so that (99) is

true for the base case t = 0. For the inductive hypothesis we assume (99) holds up to iteration t, and
show that (98) also holds at iteration t, and that (99) holds for t+ 1. We begin by using the definition
of GBy to show: 〈

ηGBy (λη, r(z, ε), η)
〉
z,η,ε

(100)

=−
〈
η ∂
∂η log

(∫
Py(y|z′)e

− (η−z′)2
2λη dz′

)〉
η,z,y

(101)

=−
〈
η ∂
∂η

∫
Py(y|z)e

− (η−z)2
2λη dzdy

〉
η

= 0. (102)

The final equality follows from the fact that the integral contained in the average is a constant so that
its derivative is zero. We next apply Stein’s lemma, which can be derived from integration by parts
and implies that any pair of zero mean correlated Gaussian random variables x, y satisfy the relation:

〈 g(x)y 〉 = 〈 g′(x) 〉cov(x, y). (103)

z and η are two such correlated Gaussian random variables and it follows that from the inductive
hypothesis (99) as well as (97) that cov(η, z) =

〈
η2
〉
. Applying Stein’s lemma to (100) implies:

0 =
〈
ηGBy (λη, r(z, ε), η)

〉
(104)

∝
〈
∂
∂zG

B
y (λη, r(z, ε), η)

〉
+
〈

∂
∂ηG

B
y (λη, r(z, ε), η)

〉
. (105)

Multiplying both sides of the result above by αγλth, it follows that

− αγλth
〈
∂
∂zG

B
y (λη, r(z, ε), η)

〉
= αγλth

〈
∂
∂ηG

B
y (λη, r(z, ε), η)

〉
= 1, (106)

where the final equality is a result of SE relation (90). This proves (98), implying that µt = 1. It is
also helpful to now show that for bAMP SE, qth = λth:

λth =

(
αγ

〈(
∂
∂ηG

B
y (λ

t
η, y, η

t)
)2〉)−1

(107)

=
(
αγJ

[
Py(y, η

t, λtη)
])−1

. (108)

From (93) qth has the form

qth = αγ(λth)
2
〈 (
∂η log(Py(y, η

t, λtη))
)2 〉

(109)

=
(
αγJ

[
Py(y, η

t, λtη)
])−1

= λth. (110)

It then follows from (95) that the updated ŝ the posterior mean given the underlying parameter value
corrupted by a Gaussian random variable of variance: s0λh = s0 +

√
λhz. Thus,

ŝt+1 = ŝMMSE(sλth). (111)

The fact that the algorithm is performing MMSE inference under corruption allows us to show that

11



〈
ŝ(s0λh)s

0
〉
s0,s0λh

=
〈
ŝ2(s0λh)

〉
s0λh

. (112)

This follow from the fact that
ŝ(s0λh) =

∫
s0P (s0|s0λh)ds

0, (113)

therefore the LHS of (112) becomes:〈
ŝ(s0λh)s

0
〉
s0,s0λh

=

∫
P (s0λh)ds

0
λh

∫
s0P (s0|s0λh)ds

0

∫
sP (s|s0λh)ds (114)

=

∫
P (s0λh)ds

0
λh

(∫
s0P (s0|s0λh)ds

0

)2

=
〈
ŝ2(s0λh)

〉
s0λh

. (115)

It follows that the (99) holds at iteration t+ 1, which completes the derivation.—

We now use the fact that µt = 1 for all iterations to demonstrate that the SE equations for
bAMP simplify to:

λth = (αγ
〈
∂ηG

B
y (λ

t
η, y, η

t)
〉
)−1, λt+1

η = γλth

〈
∂sG

B
s (λ

t
h, s

0 +
√
qthw)

〉
, (116)

qth = αγ
〈 (
λthG

B
y (λ

t
η, y, η

t)
)2 〉

, qt+1
η = γ

〈(
GBs (λ

t
h, s

0 +
√
qthw)− s0

)2〉
.

(117)
Here qtη is the variance of the components of the residual ηt − z. It then follows from induction and
the form of GBy and GBs that qtη = λtη and qth = λth, so that the following pair of update equations
fully describe the state evolution of the system:

λth =
1

αγJ
[
Py(y, η

t, λtη)
] , λt+1

η = γMMSE(s0|s0 +
√
λthw). (118)

The fact that qts =
〈
(ŝt − s0)2

〉
=

qtη
γ follows from (97).

4 Connection between bAMP and mAMP

For bAMP the message passing equations are simply:

ŝt+1
i→µ = GBs (λ

t
h,
∑
ν 6=µ

λthα
t
ν→iXνi), (119)

αtµ→i = −GBy (λtη, yµ,
∑
j 6=i

Xµj ŝ
t
j→µ). (120)

For mAMP the message passing equations are:

st+1
i→µ = Pλth [σ ](λ

t
h

∑
ν 6=µ α

t
ν→iXνi), (121)

αtµ→i = −Mλtη
[L(yµ, ·) ]′(

∑
j 6=iXµjs

t
j→µ). (122)

Thus the two results are equivalent under the choice

Mλη [L(y, ·) ](η) = − log

(∫
Py(y|z)e

− (η−z)2
2λη dz

)
, (123)

Pλh [σ ](h) = h+ λh
∂

∂h
log

(∫
Ps(s)e

− (h−s)2
2λh ds

)
. (124)

Equation (124) can be written in terms of the Moreau envelope as:

Mλh [σ ](z) = − log

(∫
Ps(s)e

− (z−s)2
2λh ds

)
. (125)

12



To see why, apply the relation between the proximal map and Moreau envelope from appendix A.1
to (124) and integrate the form which contains a derivative of the Moreau envelope, noting that the
additive constant introduced by integration may be neglected because it will not alter the performance
of an M-estimator.

In order to compute the information theoretically optimal M-estimator Lopt, σopt with the same fixed
points as bAMP, we first compute the fixed points of bAMP SE λη, λh using (118). Under this choice
of λη, λh it is possible to invertMλ[ f ](x) = g, under the assumption that g is convex (see appendix
A.3), which will certainly hold under if Py(y|z) is log-concave in z and Ps is log-concave, since the
Gaussian distribution is also log-concave, and because log-concavity is preserved under convolutions.
Applying the formula derived in appendix A.3 for inverting the Moreau envelope, the forms of the
optimal loss and regularization functions are:

Lopt(y, η) = −Mλη [ log

(∫
Py(y|z)e

− (·−z)2
2λη dz

)
](η), (126)

σopt(h) = −Mλh [ log

(∫
Ps(s)e

− (·−s)2
2λh ds

)
](h). (127)

5 Examples and special cases

5.1 Additive noise:

Optimal M-estimation has been derived using different (variational) methods in the case of additive
noise [8, 9]. In this scenario, output data is drawn according to the model:

yµ = xµ · s0 + εµ (128)

In the non-additive noise case we have that optimal loss function of two variables L(y, η). It takes
the form:

Mλη [L(y, ·) ](η) = − log

(∫
Py(y|z)e−

(η−z)2
2λ dz

)
, (129)

however in the case of linear noise, previous work has considered only a single variable loss function.
In the linear noise case we can write our loss function as a single variable by replacing L(y, ·) by
ρ(y − ·). Note that under additive noise one can also replace Py(y|z) by Pε(y − z). Under this
change of variable the previous relation may be written as

Mλη [ ρ ](y − η) = − log

(∫
Pε(y − z)e

− (η−z)2
2λη dz

)
= − log

(∫
Pε(ε)e

− (ε−y+η)2
2λη dε

)
. (130)

It then follows, see appendix A.4 for a derivation, that the optimal penalty ρ satisfies:

Mλη [ ρ ](z) = − log

(∫
Pε(ε)e

− (z−ε)2
2λη dε

)
, (131)

which recovers the findings of the variational approaches [8, 9].

5.2 Logistic regression

Here we consider logistic regression as an example of non-additive noise. We derive the loss function
corresponding to maximum likelihood, which is optimal in the classical setting. We then define
zµ = xµ · s0, and let the probability that yµ =1 be

h(zµ) =
1

1 + e−zµ
, (132)

and let yµ = 0 otherwise. It follows that, the probability of a measuring a vector y may be written as

P (y|z) =
∏
µ

h(zµ)
yµ (1− h(zµ))1−yµ = exp

[∑
µ

yµ log(h(zµ)) + (1− yµ) log(1− h(zµ))

]
,

(133)
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which may be rearranged in the simpler form:

P (y|z) = exp

[∑
µ

yµzµ +
∑
µ

log

(
1

ezµ + 1

)]
. (134)

ML corresponds to maximizing the probability above, or equivalently minimizing the negative
logarithm of the previous expression:

ŝML = argmin
s

∑
µ

(−yµxµ · s+ log (exµ·s + 1)). (135)

Therefore the loss function L(yµ, ηµ) corresponding to ML has the form

L(yµ, ηµ) = −yµηµ + log (eηµ + 1) , (136)

and for ML, there is no regularization (σ = 0). It is not difficult to show that this optimization
problem is convex in η, so that the output channel is log-concave and our optimal loss function
derivation is justified for this model.

6 Large sparse system limit

BP is exact on trees, and when the measurement matrices are sufficiently sparse, for instance when
the number of non-zero elements grows as log(N), then the corresponding factor graph (on which BP
is performed) becomes locally tree like so that loops shorter than any finite length have a vanishingly
low probability for sufficiently large N . The lack of loops implies that the BP equations (24,25) will
be exact for sufficiently sparse measurement matrices. One such assumption we could make, as in
[10] is to let the fraction of non-zero elements in a measurement xµ be f where limP→∞ fP =∞
and limP→∞ fP a = 0 for a < 1. We let the non-zero values of the measurement matrix be drawn iid
from a distribution Px with zero mean, variance γ

f , and finite 4th order moment. The requirement that
limP→∞ fP =∞ is needed for central limit theorem to apply throughout the derivation including
SE and for the assumption in 2.2 and 2.3 that only the first 2 terms in the Taylor expansion in the
messages need to be kept to recover BP (i.e.

∑
iX

3
µi → 0). Under these assumptions, BP is provably

exact and equivalent to AMP so that both bAMP and mAMP are correct. For a rigorous treatment of
the large sparse limit see [11] which proves the correctness of bAMP in the large sparse limit or [12]
which does the same for SE.

A Useful properties of the Moreau envelope and proximal map

The Moreau envelope is a functional map and maps a function f to

Mλ[ f ](x) = min
y

[
(x− y)2

2λ
+ f(y)

]
, (137)

where λ is a scalar parameterizing the mapping and we will denote the special case ofM1[f ] by
M [ f ]. Some properties that follows from this definition are that the minimizers of f andMλ[ f ]
are the same, and that the Moreau envelope is a lower bound on the function f . A related function,
called the proximal map is defined as

Pλ[ f ](x) = argmin
y

[
(x− y)2

2λ
+ f(y)

]
. (138)

A.1 Relation between proximal map and Moreau envelope

The proximal map can be viewed as performing a gradient descent step along the Moreau envelope:

Pλ[ f ](x)− x = −λMλ[ f ]
′(x). (139)

To derive this result we differentiate the Moreau envelope, performing the minimization before the
differentiation:
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Mλ[ f ]
′(x) =

d

dx
min
y

[
(x− y)2

2λ
+ f(y)

]
=

d

dx

[
(x− ŷ)2

2λ
+ f(ŷ)

]
, (140)

where ŷ is the minimizer of the RHS argument of (140). Differentiating with respect to ŷ yields 0 at
the minimum, so the ŷ may be effectively treated as a constant and we need only differentiate with
respect to x, which yields

Mλ[ f ]
′(x) =

x− ŷ
λ

. (141)

It follows that

Mλ[ f ]
′(x) =

x− Pλ[ f ](x)
λ

. (142)

A.2 Relation between proximal map and derivative

x− Pλ[ f ](x) = λf ′(Pλ[ f ](x)). (143)

The result follows from the fact that Pλ[ f ](x) is defined to be a minimizer of

F (x, y) =
(x− y)2

2λ
+ f(y) (144)

with respect to y, and thus for differentiable f , ∂
∂yF (x, y) = 0 under the choice y = Pλ[ f ](x).

Since
∂

∂y
F (x, y) =

y − x
λ

+ f ′(y), (145)

substituting y = Pλ[ f ](x) and requiring the result to be equal to zero yields the desired result.

A.3 Inverse of the Moreau envelope

For λ > 0 and f a convex, lower semi-continuous function such that Mλ[ f ] = g, the Moreau
envelope can be inverted so that f = −Mλ[−g ].

Derivation–.

To derive this result, we first consider the case of λ = 1, from which the λ > 0 case will follow. Our
assumption thatMλ[ f ] = g implies

g(x) =M [ f ](x) = min
y

[
(x− y)2

2
+ f(y)

]
=
x2

2
+min

y

[
−xy + y2

2
+ f(y)

]
=
x2

2
−max

y

[
xy − y2

2
− f(y)

]
.

(146)
We now define the Fenchel conjugate .∗, which operates on a function h to yield h∗(x) =

maxy [xy − h(y)]. We then define, for notational simplicity, the function p2(x) = x2

2 . With
this notation, (146) reduces to

g = p2 − (f + p2)
∗. (147)

The Fenchel-Moreau theorem [13] states that if h is a convex and lower semi-continuous function,
then h = (h∗)∗. These properties are assumed true for f and will also hold for f + p2 so that (147)
may be inverted, yielding:

f = (p2 − g)∗ − p2. (148)

We now write f in terms of a Moreau envelope by expanding the previous expression:

f(x) = −x
2

2
+ max

y
[xy − y2

2
+ g(y)] = −min

y

[
(x− y)2

2
− g(y)

]
= −M [−g ](x). (149)

Thus,M [ f ] = g implies f = −M [−g ]. To extend this to λ 6= 1, we use the identity

λMλ[
1
λf ] =M [ f ], (150)
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which can be verified by substitution into the definition of the Moreau envelope (137). Combining
the resultM [ f ] = g implies f = −M [−g ] with (150) yields that:

Mλ[
1
λf ] =

1

λ
g, (151)

also implies
1

λ
f = −Mλ[− 1

λg ], (152)

which completes the derivation since 1
λ may be absorbed into the definition of f and g.

A.4 Moreau envelope for additive noise model

Under an additive noise model, we consider loss functions of the form L(y, z) = ρ(y − z). Under
this setting we show that

Mλη [L(y, ·) ](x) =Mλη [ ρ ](y − x). (153)
This relations follows from the definition of the Moreau envelope:

Mλη [L(y, ·) ](x) =Mλη [ ρ(y − ·) ](x) = min
z

[
(x− z)2

2λη
+ ρ(y − z)

]
. (154)

Thus, under the change of variables w = y − z, the above expression equals

min
z

[
(y − x− w)2

2λη
+ ρ(w)

]
=Mλη [ ρ ](y − x). (155)
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