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1 EI and MEA movies

The files attached to this document contain short videos that are intended to help the reader get a
better intuition on our data. The movies are:

1. videoMEA.webm. This is a visual representation of 100 ms of data recorded on our 512-
channel multielectrode array grid. The file can be read using any modern web browser.
Red indicates that at a given instant in time, positive voltages were recorded on a channel,
and blue indicates that negative voltages were acquired. The movie lasts 1 minute, so it is
slowed down 600 times as compared to real time.

2. videoEI. The folder contains .gif files of average EIs for different cell types and
recordings. Each video therefore represents the average of all EIs for RGCs of a single
type detected within a unique recording. Those RGCs were classified using their visible
light response properties. An internal contest in our lab showed that humans can classify
retinal ganglion cells barely better than random using unlabeled EIs. It is nonetheless pos-
sible to notice some differences between EIs of different cell types: one can somehow see
that Parasols have bigger soma than Midgets, for instance.

2 Proposed EI filters

After alignment in space and time, EIs are filtered using 3 families of filters that reflect expected
discriminative characteristics of the cells. Each filter family is written as the product of 3 terms:
a first term comprises the propagation velocity of the signal and encodes the spatio-temporal
dependency in the EI, and two other terms, one spatial ψ(r) and one temporal ψ(t) modulate
the main term. In our numerical experiments the modulation envelope is encoded with a Cauchy
function ψ(x;µ, σ) = (1 + (x− µ)2/σ2)−1.

Radial filters. The main component of electrical propagation in neurons consist of a current
emission from the center of the cell body to its periphery. A reverse wave sometimes follows. Radial
filters are designed to capture these elements. These filters are parametrized by a characteristic
radius ρ > 0 intended to capture differences in cell body sizes and a propagation velocity v that
reflects variations in action potential propagation. This filter family contains two sub-families:
emitting filters v > 0 and absorbing ones v < 0.

Directional filters. Ganglion cells favor spatial directions corresponding to their dendritic field
on the one hand (site of the input signal), and their axon on the other (output) (see Figure 1).
Directional filters capture the propagation velocity v ≥ 0, direction φ ∈ [0, 2π) and spatial
frequency ζ > 0 of the input and output signals of the cells.
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Circular filters. Electric currents in cells have rotational motion factors stemming from the shape
of their dendritic field (see Figure 1 in the main text), which we parametrize with a phase φ ∈ [0, 2π),
a rotational frequency ζ ∈ N and a velocity v ≥ 0 component.

Responses to filters are grouped by filter family. Invariance to the phase parameter φ is achieved
by building histograms of filter responses for various values of φ. Further invariance to rotation
is encoded through data augmentation by exploiting symmetries of the hexagonal MEA grids as
explained in Section 5. Since the relative orientation of the RGC axons and the recording array
depends on how the tissue is dissected and lowered on the recording electrodes, it is by no means
representative of the cell type and is instead a measurement artifact.

t =  -0.2 ms t =  -0.1 ms
t =  0 ms t =  0.1 ms t =  0.2 ms

t =  0.3 ms

> 0

< 0

t = -0.2 ms t = -0.1 ms t = 0 ms t = 0.1 ms t = 0.2 ms
t = 0.3 ms

cir. ζ = 2 cir. ζ = 5 dir. φ  = 2 π/3 dir. ζ = 3 rad. τ = 3 rad. ρ  = 40 µ

Filter family Formula Parameters # used
Radial ψ (r; 0, ρ)ψ (t; τ, κ) cos(r − vt) ρ, τ, κ, v 2 × 144

Directional ψ (r; 0, ρ)ψ (t; τ, κ) cos (rζ cos(θ − φ)− vt) ρ, τ, κ, v, ζ, φ 3 × 192
Circular ψ (r; 0, ρ)ψ (t; τ, κ) cos(ζθ − vt+ φ) ρ, τ, κ, ζ, v, φ 2 × 2 × 576

Figure 1: (Top row) An example of an Electrophysiological Image (EI) cropped within a 125µm
radius of the central electrode over .5 ms. (Middle row) Snapshots of a circular filter at different
instants in time. (Bottom row) Representations of the 3 filter families. The table represents filter
expressions in polar coordinates (r cos θ, r sin θ, t).

3 Statistical guarantees on the estimation of y through convex relaxation

Since the estimation of y is a matrix completion problem. The standard convex relaxation of this
problem can be written using the trace-norm of the variable Z ∈ Rn×n (representing zzT or an
arbitrary rank variable introduced to relax the non convex problem), ‖Z‖∗ =

∑n
i=1 σi(Z). Here

σi denotes the i-th singular value of Z. The convex formulation states that for some choice of
the regularization parameter γ > 0, the minimum of 1

2‖P(Z) − c‖22 + γ‖Z‖∗ coincides with the
minimum of `. The advantage of this formulation is that the global minimizer of the function is
well-characterized. One can use an iterative soft-thresholding algorithm (ISTA [1], see Figure 4 of
the main text, middle panel), which, despite slower convergence than the algorithm we proposed in
the previous section is guaranteed to solve the problem, and we can also exhibit statistical properties
of the minimizer.

We refer the reader to [2] for a general statistical study of trace-norm penalization, and to the ap-
pendix for the proof of the following result, which in essence relates the matrix completion-based
classification accuracy to the noise amplitude:
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Theorem 1 Take γ > ‖ε‖∞ such that the minimizer of

L(Z) =
1

2
‖P(Z)− c‖22 + γ‖Z‖∗ (1)

has rank one: Z = zzT. Then the classification accuracy of sign(z), (or −sign(z), whichever is the
best) is at least

Accuracy(sign(z),y) ≥ 1

2

(
1 +

√
1− γ2c

)
with c = 2(

√
2 + 1)2.

In particular if some value of ‖ε‖∞ < γ < (2−
√

2)/
√
n exists and results in a rank one solution,

then this choice of the regularization parameter guarantees exact recovery of y .

Since the estimation of y is a matrix completion problem, the standard convex relaxation of this
problem can be written using the trace-norm of the lifted variable ‖Z‖∗ =

∑n
i=1 σi(Z) where σi

denotes the i-th singular value of the matrix Z. The convex formulation states that for some choice
of the regularization parameter γ > 0, the minimum of 1

2‖P(Z)− c‖22 + γ‖Z‖∗ coincides with the
minimum of `.

We refer the reader to [2] for a general statistical study of trace-norm penalization.

Theorem 2 Take γ > ‖ε‖∞ such that the minimizer of

L(Z) =
1

2
‖P(Z)− c‖22 + γ‖Z‖∗ (2)

has rank one: Z = zzT. Then the classification accuracy of sign(z), (or −sign(z), whichever is the
best) is at least

Accuracy(sign(z),y) ≥ 1

2

(
1 +

√
1− γ2c

)
with c = 2(

√
2 + 1)2.

In particular if some value of ‖ε‖∞ ≤ γ < (2−
√

2)/
√
n exists and results in a rank one solution,

then this choice of the regularization parameter guarantees exact recovery of y .

Proof. Take Z ∈ arg minL. First order condition of optimality states that there exists a subgradi-
ent G ∈ ∂‖Z‖∗ such that

0 = P∗(P(Z)− c) + γG .

Since c = P(yyT) + ε this writes 0 = P∗(P(Z)− yyT)−P∗(ε) + γG. Taking the inner product
with Z− yyT we get

‖P(Z− yyT)‖22 = 〈P∗(ε),Z− yyT〉 − γ〈G,Z− yyT〉 . (3)

The subdifferential of a convex function is monotonous: taking any G0 ∈ ∂‖yyT‖∗ (seen as the
trace norm at yyT, not a function ofy) we always have 〈G−G0,Z− yyT〉 ≥ 0. Consequently,

‖P(Z− yyT)‖22 ≤〈P∗(ε),Z− yyT〉 − γ〈G0,Z− yyT〉
≤〈P∗(ε),Z− yyT〉 − γ〈yyT/n+ Π⊥(K),Z− yyT〉

where Π⊥(K) = (I − yyT/n)K(I − yyT/n) and ‖K‖op ≤ 1. Let Π denote the orthogonal
projection given by I − Π⊥. Taking γ > ‖P∗(ε)‖op ≥ ‖ε‖∞ allows us to choose a matrix K
canceling the noise component in the range of Π⊥: K = Π⊥(P∗(ε))/γ, so

‖P(Z− yyT)‖22 ≤〈Π(P∗(ε))− γyyT/n,Z− yyT〉 (4)

≤ ‖Π(P∗(ε))− γyyT/n‖F‖Z− yyT‖F (Cauchy-Schwarz)

≤ (‖Π(P∗(ε))‖F + γ) ‖Z− yyT‖F (triangle)

≤
(√

2‖Π(P∗(ε))‖op + γ
)
‖Z− yyT‖F (dim range Π = 2)

≤ (
√

2 + 1)γ‖Z− yyT‖F (assumption γ ≥ ‖P∗(ε)‖op) .
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On the other hand we know that if γ is taken large enough so that rank(Z) = 1, then writing
Z = zzT, and using the fact that the sparsity pattern of P contains the main diagonal, we get the
sequence of inequalities

‖P(Z− yyT)‖22 ≥
n∑

i=1

(z2i − 1)2

=‖z‖44 − 2‖z‖22 + n

≥‖z‖42/n− 2‖z‖22 + n (Cauchy-Schwarz)

=
1

n
(‖z‖22 − n)2 =

1

n
‖Z− yyT‖2F

and therefore ‖Z− yyT‖F ≤ (1 +
√

2)γn.

Note that flipping signs of the same entries of z and y does not affect the Frobenius norm of the
difference zzT − yyT:

∀s ∈ {1,−1}n , ‖zzT − yyT‖2F = ‖Diag(s)(zzT − yyT)Diag(s)‖2F
Therefore consider for simplicity, and without loss of generality, that y = 1. Let q denote the
number of negative elements of z, and with the convention sign(0) = 1, we know that zzT has
2q(n− q) negative elements. Consequently we have

‖zzT − 11T‖2F ≥ 2q(n− q) . (5)

Let ξ = q/n denote the ratio of misclassified elements. We have, combining Eqs. (5) and (4),

2ξ(1− ξ) ≤ (1 +
√

2)2γ2 ,

and therefore

ξ ≤ 1

2
−

√
1− 2γ2(

√
2 + 1)2
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