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A Proofs of the Extending Gaussian Gradient Equations

Lemma A.1. Let f(z) : Rdz → R be an integrable and twice differentiable function. The second
gradient of the expectation of f(z) under a Gaussian distribution N (z|µ,C) with respect to the
mean µ can be expressed as the expectation of the Hessian of f(z):

∇2
µi,µjEN (z|µ,C)[f(z)] = EN (z|µ,C)[∇2

zi,zjf(z)] = 2∇CijEN (z|µ,C)[f(z)]. (1)

Proof. From Bonnet’s theorem [1], we have

∇µiEN (z|µ,C)[f(z)] = EN (z|µ,C)[∇zif(z)]. (2)

Moreover, we can get the second order derivative,

∇2
µi,µjEN (z|µ,C)[f(z)] = ∇µi

(
EN (z|µ,C)[∇zjf(z)]

)
=

∫
∇µiN (z|µ,C)∇zjf(z)dz

= −
∫
∇ziN (z|µ,C)∇zjf(z)dz

= −
[∫
N (z|µ,C)∇zjf(z)dz¬i

]zi=+∞

zi=−∞
+

∫
N (z|µ,C)∇zi,zjf(z)dz

= EN (z|µ,C)[∇2
zi,zjf(z)]

= 2∇CijEN (z|µ,C)[f(z)],

where the last euality we use the equation

∇CijN (z|µ,C) =
1

2
∇2
zi,zjN (z|µ,C). (3)

∗Equal Contribution to this work.
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Lemma A.2. Let f(z) : Rdz → R be an integrable and fourth differentiable function. The second
gradient of the expectation of f(z) under a Gaussian distribution N (z|µ,C) with respect to the
covariance C can be expressed as the expectation of the forth gradient of f(z)

∇2
Ci,j ,Ck,l

EN (z|µ,C)[f(z)] =
1

4
EN (z|µ,C)[∇4

zi,zj ,zk,zl
f(z)]. (4)

Proof. From Price’s theorem [3], we have

∇Ci,jEN (z|µ,C)[f(z)] =
1

2
EN (z|µ,C)[∇2

zi,zjf(z)]. (5)

∇2
Ci,j ,Ck,l

EN (z|µ,C)[f(z)] =
1

2
∇Ck,l

(
EN (z|µ,C)[∇2

zi,zjf(z)]
)

=
1

2

∫
∇Ck,lN (z|µ,C)∇2

zi,zjf(z)dz

=
1

4

∫
∇2
zk,zl
N (z|µ,C)∇2

zi,zjf(z)dz

=
1

4

∫
N (z|µ,C)∇4

zi,zj ,zk,zl
f(z)dz

=
1

4
EN (z|µ,C)[∇4

zi,zj ,zk,zl
f(z)].

In the third equality we use the Eq.(3) again. For the fourth equality we use the product rule for
integrals twice.

From Eq.(2) and Eq.(5) we can straightforward write the second order gradient of interaction term
as well:

∇2
µi,Ck,l

EN (µ,C)[f(z)] =
1

2
EN (µ,C)

[
∇3
zi,zk,zl

f(z)
]
. (6)

B Proof of Theorem 1

By using the linear transformation z = µ + Rε, where ε ∼ N(0, Idz ), we can generate samples
form any Gaussian distribution N (µ,C), C = RR>, where µ(θ),R(θ) are both dependent on
parameter θ = (θl)

d
l=1.

Then the gradients of the expectation with respect to µ and (or) R is

∇REN (µ,C)[f(z)] = ∇REN (0,I)[f(µ+Rε)] = EN (0,I)[εg
>]

∇2
Ri,j ,Rk,l

EN (µ,C)[f(z)] = ∇Ri,jEN (0,I)[εlgk] = EN (0,I)[εjεlHik]

∇2
µi,Rk,l

EN (µ,C)[f(z)] = ∇µiEN (0,I)[εlgk] = EN (0,I)[εlHik]

∇2
µEN (µ,C)[f(z)] = EN (0,I)[H]

where g = {gj}dzj=1 is the gradient of f evaluated at µ+Rε, H = {Hij}dz×dz is the Hessian of f
evaluated at µ+Rε.

Furthermore, we write the second order derivatives into matrix form:
∇2

µ,REN (µ,C)[f(z)] = EN (0,I)[ε
> ⊗H],

∇2
REN (µ,C)[f(z)] = EN (0,I)[(εε

T )⊗H].

For a particular model, such as deep generative model, µ and C are depend on the model parameters,
we denote them as θ = (θl)

d
l=1, i.e. µ = µ(θ),C = C(θ). Combining Eq.2 and Eq.5 and using

the chain rule we have

∇θlEN (µ,C)[f(z)] = EN (µ,C)

[
g>

∂µ

∂θl
+

1

2
Tr

(
H
∂C

∂θl

)]
,
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where g and H are the first and second order gradient of f(z) for abusing notation. This formulation
involves matrix-matrix product, resulting in an algorithmic complexityO(d2z) for any single element
of θ w.r.t f(z), and O(dd2z), O(d2d2z) for overall gradient and Hessian respectively.

Considering C = RR>, z = µ+Rε,

∇θlEN (µ,C)[f(z)] = EN (0,I)

[
g>

∂µ

∂θl
+Tr

(
εg>

∂R

∂θl

)]
= EN (0,I)

[
g>

∂µ

∂θl
+ g>

∂R

∂θl
ε

]
.

For the second order, we have the following separated formulation:

∇2
θl1θl2

EN (µ,C)[f(z)] = ∇θl1EN (0,I)

∑
i

gi
∂µi
∂θl2

+
∑
i,j

εjgi
∂Rij
∂θl2


= EN (0,I)

∑
i,j

Hji

(
∂µj
∂θl1

+
∑
k

εk
∂Rjk
∂θl1

)
∂µi
∂θl2

+
∑
i

gi
∂2µi

∂θl1∂θl2

+
∑
i,j

εj

(∑
k

Hik

(
∂µk
∂θl1

+
∑
l

εl
∂Rkl
∂θl1

))
∂Rij
∂θl2

+
∑
i,j

εjgi
∂2Rij
∂θl1∂l2


= EN (0,I)

[
∂µ

∂θl1

>
H
∂µ

∂θl2
+

(
∂R

∂θl1
ε

)>
H
∂µ

∂θl2
+ g>

∂2µ

∂θl1∂l2

+

(
∂R

∂θl2
ε

)>
H
∂µ

∂θl1
+

(
∂R

∂θl1
ε

)>
H
∂R

∂θl2
ε+ g>

∂2R

∂θl1∂θl2
ε

]

= EN (0,I)

[
∂(µ+Rε)

∂θl1

>
H
∂(µ+Rε)

∂θl2
+ g>

∂2(µ+Rε)

∂θl1∂l2

]
.

It is noticed that for second order gradient computation, it only involves matrix-vector or vector-
vector multiplication, thus leading to an algorithmic complexity O(d2z) for each pair of θ.

One practical parametrization is C = diag{σ2
1 , ..., σ

2
dz
} or R = diag{σ1, ..., σdz}, which will reduce

the actual second order gradient computation complexity, albeit the same order of O(d2z). Then we
have

∇θlEN (µ,C)[f(z)] = EN (0,I)

[
g>

∂µ

∂θl
+
∑
i

εigi
∂σi
∂θl

]

= EN (0,I)

[
g>

∂µ

∂θl
+ (ε� g)>

∂σ

∂θl

]
, (7)

∇2
θl1θl2

EN (µ,C)[f(z)] = EN (0,I)

[
∂µ

∂θl1

>
H
∂µ

∂θl2
+

(
ε� ∂σ

∂θl1

)>
H
∂µ

∂θl2
+ g>

∂2µ

∂θl1∂θl2

+

(
ε� ∂σ

∂θl2

)>
H
∂µ

∂θl1
+

(
ε� ∂σ

∂θl1

)>
H

(
ε� ∂σ

∂θl2

)
+ (ε� g)>

∂2σ

∂θl1∂θl2

]
= EN (0,I)

[(
∂µ

∂θl1
+ ε� ∂σ

∂θl1

)>
H

(
∂µ

∂θl2
+ ε� ∂σ

∂θl2

)
+ g>

(
∂2µ

∂θl1∂θl2
+
∂2(ε� σ)

∂θl1∂θl2

)]
, (8)
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where � is Hadamard (or element-wise) product, and σ = (σ1, ..., σdz )
>.

Derivation for Hessian-Free SGVI without θ Plugging This means (µ,R) is the parameter for
variational distribution. According the derivation in this section, the Hessian matrix with respect to

(µ,R) can represented as Hµ,R = EN (0,I)

[([
1
ε

]
[1, ε>]

)
⊗H

]
. For any dz × (dz + 1) matrix

V with the same dimensionality of [µ,R], we also have the Hessian-vector multiplication equation.

Hµ,Rvec(V) = EN (0,I)

[
vec

(
HV

[
1
ε

]
[1, ε>]

)]
where vec(·) denotes the vectorization of the matrix formed by stacking the columns into a single
column vector. This allows an efficient computation both in speed and storage.

C Forward-Backward Algorithm for Special Variation Auto-encoder Model

We illustrate the equivalent deep neural network model (Figure 1) by setting M = 1 in VAE, and
derive the gradient computation by lawyer-wise backpropagation. Without generalization, we give
discussion on the binary input and diagonal covariance matrix, while it is straightforward to write
the continuous case. For binary input, the parameters are {(Wi, bi)}5i=1.

The feedforward process is as follows:

he = tanh(W1x+ b1)

µe = W2he + b2

logσe = 0.5 ∗ (W3he + b3)

ε ∼ N (0, Idz )

z = µe + σe � ε

hd = tanh(W4z+ b4)

y = sigmoid(W5hd + b5).

Considering the cross-entropy loss function, the backward process for gradient backpropagation
computation is:

δ5 = x� (1− y) + (1− x)� y

∇W5
= δ5h

>
d , ∇b5 = δ5

δ4 = (W>5 δ5)� (1− hd � hd)

∇W4 = δ4z
>, ∇b4 = δ4

δ3 = 0.5 ∗ [(W>4 δ4)� (z− µe) + 1− σ2
e ]

∇W3
= δ3h

>
e , ∇b3 = δ3

δ2 = W>4 δ4 − µe

∇W2 = δ2h
>
e , ∇b2 = δ2

δ1 = (W>2 δ2 +W>3 δ3)� (1− he � he)

∇W1
= δ1x

>, ∇b1 = δ1.

Notice that when we compute the differences δ2, δ3, we also include the prior term which acts as
the role of regularization penalty. In addition, we can add the L2 penalty to the weight matrix as
well. The only modification is to change the expression of∇Wi

by adding λWi, where λ is a tunable
hyper-parameter.

D Variance Analysis (Proof of Theorem 2)

In this part we analyze the variance of the stochastic estimator.
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Input:	  x 

Output:	  y 

hd 

z 

he 

W1,	  b1 

(W2,	  b2), 
(W3,	  b3) 

W4,	  b4 

W5,	  b5 
Hidden	  
decoder	  
layer 

Hidden	  
encoder	  
layer 

Gaussian	  
latent	  layer 

he 

Sigma mu 

(W2,	  b2)	     (W3,	  b3) 

N(	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ) ~ 

(W5,	  b5),	  
(W6,	  b6)	  if	  x	  is	  con?nuous. 

Figure 1: Auto-encoder Model by Deep Neural Nets.

Lemma D.1. For any convex function φ,

E[φ(f(ε)− E[f(ε)])] ≤ E
[
φ
(π
2
〈∇f(ε),η〉

)]
, (9)

where ε,η ∼ N (0, Idz ) and ε,η are independent.

Proof. Using interpolation γ(ω) = ε sin(ω) + η cos(ω), then γ′(ω) = ε cos(ω) − η sin(ω), and
γ(0) = η,γ(π/2) = ε. Furthermore, we have the equation,

f(ε)− f(η) =
∫ π

2

0

d

dω
f(γ(ω))dω =

∫ π
2

0

〈∇f(γ(ω)),γ′(ω)〉dω.

Then
Eε[φ(f(ε)− E[f(ε)])] = Eε[φ(f(ε)− Eη[f(η)])] ≤ Eε,η[φ(f(ε)− f(η))]

= E

[
φ

(
2

π

∫ π
2

0

π

2
〈∇f(γ(ω)),γ′(ω)〉dω

)]

≤ 2

π
E

[∫ π
2

0

φ
(π
2
〈∇f(γ(ω)),γ′(ω)〉

)
dω

]

=
2

π

∫ π
2

0

E
[
φ
(π
2
〈∇f(γ(ω)),γ′(ω)〉

)]
dω

= E
[
φ
(π
2
〈∇f(ε),η〉

)]
.

The above two inequalities use the Jensen’s Inequality. The last equation holds because both γ and
γ′ follow N (0, Id), and E[γγ′>] = 0 implies they are independent.

Before giving a dimensional free bound, we first let φ(x) = x2 and can obtain a relatively loosen
bound of variance for our estimators. Assuming f is a L-Lipschitz differentiable function and
ε ∼ N (0, Idz ), the following inequality holds:

E[(f(ε)− E[f(ε)])2] ≤ π2L2dz
4

. (10)

To see the reason, we only need to reuse the double sample trick and the expectation of Chi-squared
distribution, we have

E
[(π

2
〈∇f(ε),η〉

)2]
≤ π2L2

4
E[‖η‖2] = π2L2dz

4
.

Then by Lemma D.1, Eq.(11) holds. To get a tighter bound as in Theorem 2, we give the following
Lemma D.2 and Lemma D.3 first.
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Lemma D.2 ([2]). A random variable X with mean µ = E[X] is sub-Gaussian if there exists a
positive number σ such that for all λ ∈ R+

E
[
eλ(X−µ)

]
≤ eσ

2λ2/2,

then we have

E
[
(X − µ)2

]
≤ σ2.

Proof. By Taylor’s expansion,

E
[
eλ(X−µ)

]
= E

[ ∞∑
i=1

λi

i!
(X − µ)i

]
≤ eσ

2λ2/2 =

∞∑
i=0

σ2iλ2i

2ii!
.

Thus λ2

2 E[(X − µ)2] ≤ σ2λ2

2 + o(λ2). Let λ→ 0, we have Var(X) ≤ σ2.

Lemma D.3. If f(x) is a L-lipschitz differentiable function and ε ∈ N (0, Idz ) then the random
variable f(ε)− E[f(ε)] is sub-Gaussian with parameter L, i.e. for all λ ∈ R+

E
[
eλ(f(ε)−E[f(ε)])

]
≤ eL

2λ2π2/8.

Proof. From Lemma D.1, we have

E
[
eλ(f(ε)−E[f(ε)])

]
≤Eε,η

[
eλ

π
2 〈∇f(ε),η〉

]
=Eε,η

[
e
λπ2

∑dz
i=1

(
ηi

∂
∂εi

f(ε)
)]

= Eε

[
e
∑dz
i=1

1
2

(
λπ2

∂
∂εi

f(ε)
)2
]
= Eε

[
e
λ2π2

8 ‖∇f(ε)‖2
]

≤ exp

(
λ2π2L2

8

)
.

Proof of Theorem 2 Combining Lemma D.2 and Lemma D.3 we complete the proof of Theorem 2.

In addition, we can also obtain a tail bound,

Pε∼N (0,Idz )
(|f(ε)− E[f(ε)]| ≥ t) ≤ 2e−

2t2

π2L2 . (11)

For λ > 0, Let ε1, . . . , εM be i.i.d random variables with distribution N (0, Idz ),

P

(
1

M

M∑
m=1

f(εm)− E[f(ε)] ≥ t

)
= P

(
M∑
m=1

f(εm)−ME[f(ε)] ≥Mt

)
= P

(
eλ(

∑M
m=1 f(εm)−ME[f(ε)]) ≥ eλMt

)
≤ E

[
eλ(

∑M
m=1 f(εm)−ME[f(ε)])

]
e−λMt

=
(
E
[
eλ(f(εm)−E[f(ε)])

]
e−λt

)M
.

According to Lemma D.3, let λ = 4t
π2L2 , we have P

(
1
M

∑M
m=1 f(εm)− E[f(ε)] ≥ t

)
≤ e−

2Mt2

π2L2 .
The other side can apply the same trick. Let M = 1 we have Inequality (11). Thus Theorem 2 and
Inequality (11) provide the theoretical guarantee for stochastic method for Gaussian variables.

E More on Conjugate Gradient Descent

The preconditioned CG is used and theoretically the quantitative relation between the iteration K
and relative tolerance e is e < exp(−2K/

√
c) [4], where c is matrix conditioner. Also the inequality

indicates that the conditioner c can be nearly as large as O(K2).
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F Proof of Lemma 4

Proof. Since g(x) = 1
1+e−x , we have g′(x) = g(x)(1− g(x)) ≤ 1

4 .

|f(ε)− f(η)| = |g(hi(ε))− g(hi(η))| ≤
1

4
|hi(ε)− hi(η)| ≤

1

4
‖Wi,R‖2‖ε− η‖2.

Since tanh(x) = 2g(2x)− 1 and log(1 + ex)′ ≤ 1, the bound is trivial.

G Experiments

All the experiments are conducted on a 3.2GHz CPU computer with X-Intel 32G RAM. For fair
comparison, the algorithms and datasets we referred to as the baseline remain the same as in the
previously cited work and software was downloaded from the website of relevant papers.

Datasets DukeBreast, Leukemia and A9a are downloaded from http://www.csie.ntu.
edu.tw/˜cjlin/libsvmtools/datasets/binary.html. Datasets Frey Face, Olivetti
Face and MNIST are downloaded from http://www.cs.nyu.edu/˜roweis/data.html.

G.I Variational logistic regression

The optimized lower bound function when the covariance matrix C is diagonal is as following.

L(µ,σ) = Ez∼N (0,I)[log l(µ+ σ � z)] +
1

2

d∑
i=1

log
σ2
i

σ2
i + µ2

i

,

where l is the likelihood function.

The results are shown in Fig. 2 and Fig. 3.

G.II Variational Auto-encoder

The results are shown in Fig. 4 and Fig. 5.
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(a) HFSGVI (b) L-BFGS-SGVI

(c) Ada-SGVI

Figure 5: Reconstruction Comparison
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