
6 Appendix-A. Convergence Analysis

6.1 Convergence of Randomized Block Coordinate Descent

We first establish the linear convergence of Randomized Block Coordinate Descent (RBCD) when
Ln(.) is smooth in the sense that its first derivative L′n(.) is Lipschitz-continuous with parameter
ML, which then implies L∗n(αn) is strongly convex with parameter 1/ML.
Theorem 2-1 (Dual-RBCD for Smooth Loss). Let the sequence {αs}∞s=1 be the iterates produced
by RBCD in the inner loop of Algorithm 2, and K be the number of blocks. Denote F̃ ∗(α) as the
dual objective function of (18) and F̃ ∗opt the optimal function value of (18). Then with probability
1− ρ,

F̃ ∗(αs)− F̃ ∗opt ≤ ε, for s ≥ K

1− c1
log(

F̃ ∗(α0)− F̃ ∗opt
ρε

) (24)

if Ln(.) is smooth, where 0 < c1 < 1 is a constant depends on the smoothness parameter of Ln(.).

Proof. This is a special case of theorem 6 and theorem 4 in [13], where they consider composite
objective function of the form

F (α) = f(α) + Ψ(α), (25)
where f(α) is a convex, smooth function, and Ψ(α) is a convex, block-separable function. In our
case,

f(α) = R̃∗(−
N∑
n=1

ΦTnαn), Ψ(α) =

N∑
n=1

L∗n(αn). (26)

Note R̃∗(.) is smooth w.r.t. αBk with parameter MR = ηtB
2, where B ≥ ‖ΦBk‖2 is an upper

bound on the `2-norm of each block’s design matrix. If the loss function Ln(.) is smooth with
paramter ML, by Theorem 1, Ψ(α) is strongly convex with parameter 1/ML, and thus, based on
[theorem 6, 21], (24) holds with

c1 =

{
1− 1

4MRML
, ifMRML ≥ 1

2
MRML , o.w..

(27)

For some important classes of ERM, such as Support Vector Machine (SVM) and its variants (e.g.
Multiclass, Structral SVM), Ln(αn) is not smooth but piecewise-linear. In the following, we show
that the linear convergence of RBCD holds for any loss Ln(αn) with polyhedral epigraph if R(w)
is also polyhedral or smooth. The proof utilizes a restricted version of Strong Convexity called
Constant Nullspace Strong Convexity [20, 22] and obtains a much tighter bound for RBCD than the
bound proved in [20] for general feasible descent method. The proof follows is a generalization of
that in [25] for proving linear convergence of RCD applied to the Augmented Lagrangian of Linear
Program.

The augmented dual objective function (25), after some algebraic rearrangement, is equivalent to

min
α,µ

N∑
n=1

L∗n(αn) +R∗(−µ) +
ηt
2
‖

N∑
n=1

ΦTnαn − µ+wt/ηt‖2 (28)

up to a constant. For L∗n(αn), R∗(−µ) being polyhedral, their epigraphs epi(Ln), epi(R) are
polyhedrons and thus (28) can be also formulated as

min
α,µ,t,s

N∑
n=1

tn + r +
ηt
2
‖

N∑
n=1

ΦTnαn − µ+wt/ηt‖2

s.t. (αn, tn) ∈ epi(Ln)

(µ, r) ∈ epi(R),

(29)

which is of the form
min
x

F (x) = g(Φ̄Tx) + cTx

s.t. x ∈ P
(30)

10

where g(z) = ηt
2 ‖z +wt/ηt‖2 is a strongly convex function, P is a polyhedral set
P = {(α, t,µ, r) | (αn, tn) ∈ epi(Ln), (µ, r) ∈ epi(R)},

and

x =

 α
t
µ
r

 Φ̄ =

 Φ
ON,d
−Id,d
O1,d

 c =

 0
1
0
1

 .
We will use Iα, It, Iµ and Is denote the set of variable indexes j that correspond to α, t, µ and r
respectively. For this type of objective function, we can show that the set of optimal solutions is a
polyhedron defined by the following Lemma.
Lemma 1 (Lemma 4.2 of [20]). The optimal solutions to problem (30) forms a polyhedral set

S = {x | Φ̄Tx = p∗, cTx = q∗, x ∈ P} (31)
for some unique p∗, q∗.

Furthermore, we can utilize the Hoffman’s bound (defined in the following) to bound the distance
of any point x to the optimal solution set S.
Lemma 2 (Hoffman’s Bound). Let S = {x ∈ Rd | Ax ≤ c, Ex = c} be a polyhedral set. Then
for any point x ∈ Rd,

‖x−ΠS(x)‖22 ≤ θ
∥∥∥∥ [Ax− c]+

Ex− c

∥∥∥∥2

2

(32)

where ΠS(x) = argminy∈S ‖y − x‖ is the projection of x to the set S, and θ > 0 is a constant
depending on the polyhedral set S.

Proof. The Hoffman’s bound first appears in [4] and a proof for the `2-norm’s version (32) and the
definition of the constant θ(S) can be found in [20] (lemma 4.3).

By Lemma 2, for any feasible x ∈ P , we obtain error bound

‖x− x∗‖2 ≤ θ(S)
(
‖Φ̄Tx− p∗‖2 + ‖cTx− q∗‖2

)
, (33)

which plays a crucial role in the proof of linear convergence.

The RBCD algorithm performed on (25) can be considered as minimizing (29) w.r.t. a block of dual
variables {(αn, tn)}n∈Bk together with (µ, s), while fixing all other variables {(αn, tn)}n/∈Bk . In
the following, we show that each block minimization step leads to a significant progress.
Lemma 3 (Descent Amount). The expected descent amount for each Block Minimization step of
Algorithm 2 has

E[F (xk+1)]− F (xk) ≤ 1

K

(
min
δ

h(xk + δ) + 〈∇F (xk), δ〉+
Mηt

2
‖δ‖2

)
, (34)

where

h(x) =

{
0, x ∈ P
∞, o.w.

(35)

and M ≥ maxk∈[K] ‖ΦBk‖22 denotes a bound on the spectral norm of each block’s design matrix.

Proof. First, notice that RBCD optimizes the function form of only variableαwhile maintains other
variables (t,µ, s) as their optimal values in each block minimization step, so we have

0 = min
µ,r

h(x) +∇F (xs)T (x− xs) +
Mηt

2
‖x− xs‖2. (36)

The algorithm picks coordinate uniformly from {(αBk , tBk)}Kk=1 to update. Since the constant M
upper bounds ‖∇αBk ,tBkF (x)‖22, we have

F (xs+1)− F (xs) = F (αs+1, t∗(αs+1),µ∗(αs+1), r∗(αs+1))− F (xs)

≤ F (αs+1, t∗(αs+1),µs, rs)− F (xs)

≤ min
δBk

h(xs + δBk) +∇BkF (xk)T δBk +
Mηt

2
‖δBk‖2.

11

where δBk denotes a change of variables restricted on (∆αBk ,∆tBk) with all other variables fixed.
Note the minimization in (69) is seperable w.r.t {δBk}Kk=1. Therefore, taking expectation of LHS
and RHS w.r.t. k yields the result.

Before moving on, note that function g(z) = ηt
2 ‖z +wt/ηt‖2 is locally Lipschitz-continuous with

constant Lg = ηtRz for z satisfying ‖z +wt/ηt‖ ≤ Rz , that is,

|g(z1)− g(z2)| ≤ Lg‖z1 − z2‖ (37)

for ∀z1, z2 with ‖z1 + wt/ηt‖ ≤ Rz , ‖z2 + wt/ηt‖ ≤ Rz , where Rz is an upper bound on the
magnitude of iterates ‖wt+1‖/ηt = ‖Φ̄Txt +wt/ηt‖.
From simplicity of analysis, in the following, we slightly loosen upper bounds by setting constants
Lg ← max(Lg, 1), M ← max(M, 1), θ ← max(θ, 1), such that Lg,M, θ ≥ 1. Then we are ready
to prove the main theorem of this section.

Theorem 5 (Linear Convergence). The iterates {xs}∞s=0 of Block Minimization for polyhedral
Ln(.), R(.) satisfy

E[F (xs+1)]− F ∗ ≤
(

1− 1

Kγ

)
(E[F (xs)]− F ∗)

where F ∗ is the optimum of (28) and

γ = max
{

16ηtMθ(F 0 − F ∗) , 2Mθ(1 + 4L2
g) , 6

}
.

Proof. Let x∗ = ΠS(xs) be the projection of xs to the set of optimal solutions. From Lemma 3,
we have

E[F (xs+1)]− F (xs) ≤ 1

K

(
min
δ

h(xs + δ) + 〈∇F (xs), δ〉+
Mηt

2
‖δ‖2

)
≤ 1

K

(
min
δ

h(xs + δ) + F (xs + δ)− F (xs) +
Mηt

2
‖δ‖2

)
≤ 1

K

(
min
a∈[0,1]

F (xs + a(x∗ − xs))− F (xs) +
Mηta

2

2
‖x∗ − xs‖2

)
≤ 1

K

(
min
a∈[0,1]

−a(F (xs)− F (x∗)) +
Mηta

2

2
‖x∗ − xs‖2

)
,

(38)
where the second and fourth inequality follow from the convexity of F (x), and the third inequality
follows from the fact that both x∗ and xs are feasible (h(x∗) = h(xs) = 0). Now based on the
error bound inequality (68), we discuss two cases.

Case 1: 4L2
g‖Φ̄Tx− p∗‖2 < (cTx− q∗)2.

In this case, we have

‖xs − x∗‖2 ≤ θ
(
‖Φ̄Txs − p∗‖2 + ‖cTxs − q∗‖2

)
≤ θ

(
1

4L2
g

+ 1

)
(cTxs − q∗)2 ≤ 2θ(cTxs − q∗)2 (39)

and
|cTxs − q∗| ≥ 2Lg‖Φ̄Txs − p∗‖ ≥ 2|g(Φ̄Txs)− g(p∗)|.

Note in this case, cTxs − q∗ must be non-negative. Otherwise,

F (xs)− F ∗ = g(Φ̄Txs)− g(p∗) + (cTxs − q∗)
≤ |g(Φ̄Txs)− g(p∗)| − |cTxs − q∗|

≤ −1

2
|cTxs − q∗| < 0,

12

leads to contradiction (since xs is feasible, F (xs) cannot be smaller than F ∗). Therefore, we have

F (xs)− F ∗ = g(Φ̄Txs)− g(p∗) + cTxs − q∗

≥ −|g(Φ̄Txs)− g(p∗)|+ cTxs − q∗

≥ 1

2
(cTxs − q∗).

(40)

Combining (38), (39), and (40), we have

E[F (xs+1)]− F (xs) ≤ 1

K
min
a∈[0,1]

−a
2

(cTxs − q∗) +
2ηtMθa2

2
(cTxs − q∗)2

=

{
−1/(16ηtMθK) , 1/(4ηtMθ(cTxs − q∗)) ≤ 1
− 1

4K (cTxs − q∗) , o.w.

Furthermore, we have

− 1

16ηtMθK
≤ − 1

16ηtMθK(F 0 − F ∗)
(F (x∗)− F ∗)

where F 0 = F (x0), and

− 1

4K
(cTxs − q∗) ≤ − 1

6K
(F (xs)− F ∗)

since F (xs) − F ∗ ≤ |g(Φ̄Txs) − g(p∗)| + cTxs − q∗ ≤ 3
2 (cTxs − q∗). In summary, for Case 1

we obtain
E[F (xs+1)]− F ∗ ≤ (1− 1

Kγ1
) (E[F (xs)]− F ∗) (41)

where
γ1 = max

{
16ηtMθ(F 0 − F ∗) , 6

}
. (42)

Case 2: 4L2
g‖Φ̄Txs − p∗‖2 ≥ (cTxs − q∗)2.

In this case, we have
‖xs − x∗‖2 ≤ θ

(
1 + 4L2

g

)
‖Φ̄Txs − p∗‖2, (43)

and by strong convexity of g(z),

F (xs)− F ∗ ≥ cT (xs − x∗) +∇g(p∗)T Φ̄T (xs − x∗) +
ηt
2
‖Φ̄Txs − p∗‖2.

Adding inequality 0 = h(xs)− h(x∗) ≥ 〈ρ∗,xs − x∗〉 for some ρ∗ ∈ ∂h(x∗) to the above gives

F (xs)− F ∗ ≥ ηt
2
‖Φ̄Txs − p∗‖2 (44)

since ρ∗ + c+∇g(p∗)T Φ̄T = ρ∗ +∇F (x∗) = 0. Combining (38), (43), and (44), we obtain

E[F (xs+1)]− F (xs) ≤ 1

K
min
a∈[0,1]

−a(F (xs)− F ∗) +
Mθ(1 + 4L2

g)a
2

2
(F (xs)− F ∗)

= − 1

2Mθ(1 + 4L2
g)K

(F (xs)− F ∗)
(45)

Combining results of Case 1 (41) and Case 2 (45), and taking expectation on both sides w.r.t. the
history leads to the result.

Theorem 2-2 (Dual-RBCD for Polyhedral Loss). Let the sequence {αs}∞s=1 be the iterates pro-
duced by RBCD in the inner loop of Algorithm 2, and K be the number of blocks. Denote F̃ ∗(α) as
the augmented dual objective function (18) and F̃ ∗opt the optimum of (18). With probability 1− ρ,

F̃ ∗(αs)− F̃ ∗opt ≤ ε, for s ≥ γK log(
F̃ ∗(α0)− F̃ ∗opt

ρε
) (46)

for some constant γ if Ln(.) and R(.) are polyhedral.

Proof. This simply applies Theorem 1 of [13] to transfer the linear convergence in expectation into
high-probability iteration complexity.

13

6.2 Convergence of Proximal-Point Method

The proof of Theorem 3 comprises two parts. The first part proves linear convergence of Proximal-
Point update under assumption that both lossLn(.) and regularizerR(.) are either strictly convex and
smooth or polyhedral. The second part proves a sublinear-type convergence depending on parameter
η that holds for general convex function. The second part can be found in, for example, Theorem 2
of [18]. Here we prove the first part.

Here we prove linear convergence of ALM on problem (25) by leveraging some lemmas provided
in the recent advance of analysis for Alternating Direction Method of Multiplier (ADMM) [5]. In
particular, by taking Proximal-Point updates (or, equivalently, the ALM updates) as performing
gradient descent on the convex, smooth function

G(w̃) = min
w

∑
n

Ln(Φ̄nw) +R(w) +
1

2η
‖w − w̃‖2 (47)

and utilizing error bound proved in [5], we show that the Proximal-Point method linearly converges
to the optimum of objective (25).

The following lemma establishes the fact G(w̃) is smooth and its gradient ∇G(w̃) is Lipschitz
continuous with modulus 1

η .

Lemma 4. The gradient of G(w̃) is of the form

∇G(w̃) = −(

N∑
n=1

ΦTnαn(w̃)− µ(w̃)) (48)

where αn(w̃), µ(w̃) are minimizers of (28). Furthermore, the gradient ∇G(w̃) is Lipschitz con-
tinuous with modulus 1

η .

Proof. The convex objective function (25) fits the form of objective investigated in Multi-block
ADMM [5]. Therefore, the theorem follows directly from Lemma 2.1, 2.2 of [5] respectively.

As a result of Lemma 4, the proximal-point update is exactly gradient descent of step size η, which
when performed on a smooth function G(w̃), guarantees descent amount

G(wt+1)−G(wt) ≤ −η‖∇G(wt)‖2

2
. (49)

The following theorem then guarantees linear convergence of ALM on our objective (25).
Theorem 6. Denote S as the set of optimal solutions to (47) and ΠS(w) as the projection of w
to S, and let G∗ be the optimal function value. The iterates {wt}∞t=1 produced by proximal-point
method have

‖
N∑
n=1

ΦTnαn(w̃)− µ(w̃)‖ = ‖∇G(wt)‖ ≤ ε

for number of iterations

t ≥ 4τ

η
log(

√
2(G(w0)−G∗)

η

1

ε
),

where τ > 0 is a constant depending on S and initial distance to optimal set ‖w0 −ΠS(w0)‖.

Proof. Since Ln(.) and R(.) are either strictly convex and smooth or polyhedral, L∗n(.) and R∗(.)
are also strictly convex and smooth or polyhedral. Therefore, problem (25) satisfies Assumption
A(a)-A(e) of [5], and thus the error bound

G(w̃)−G∗ ≤ τ‖∇G(w̃)‖2 (50)

in Lemma 3.1 of [5] applies to G(w̃) with compact domain w̃ ∈ R(w0), where τ > 0 is a constant
that depends on geometry of S and the initial distance to the set of optimal solutions, and

R(w0) =
{
w̃ | ‖w̃ −ΠS(w̃)‖ ≤ ‖w0 −ΠS(w0)‖

}
.

14

is the set of w̃ that lie within a radius of ‖w0 − ΠS(w0)‖ to the set S. Note the iterates {wt}∞t=0
all lie in the set R(w0) by the non-expansiveness of proximal operation. Therefore, the error bound
(50) applies to all iterates. Combining (69) and (50), we have

G(wt+1)−G(wt) ≤ −η(G(wt)−G∗)
2τ

,

which implies linear convergence. Let ∆Gt = G(wt)−G∗, and we have

∆Gt ≤ (1− η

2τ
)t∆G0 ≤ e−

ηt
2τ ∆G0 ≤ ε1

when
t ≥ 2τ

η
log(

∆G0

ε1
).

Furthermore, by smoothness of∇G(.), we have

∆Gt ≥
η‖∇G(wt)‖2

2
.

Therefore, to guarantee ‖∇G(wt)‖ ≤ ε2, it suffices to have

∆Gt ≤ ηε22/2,

which can be guaranteed by running

t ≥ 4τ

η
log(

√
2∆G0

η

1

ε2
)

iterations.

Theorem 7 (Inexact Proximal Map). Suppose, for a given dual iterate wt, each sub-problem (11)
is solved inexactly s.t. the solution ŵt+1 has

‖ŵt+1 − proxηtF (wt)‖ ≤ ε0. (51)

Then let {ŵt}∞t=1 be the sequence of iterates produced by inexact proximal updates and {wt}∞t=1
as that generated by exact updates. After t iterations, we have

‖ŵt −wt‖ ≤ tε0. (52)

Proof. By the non-expansiveness of proximal operation,

‖ŵt+1 −wt+1‖ ≤ ‖ŵt+1 − proxηtF (ŵt)‖+ ‖proxηtF (ŵt)−wt+1‖
≤ ε0 + ‖proxηtF (ŵt)− proxηtF (wt)‖
≤ ε0 + ‖ŵt −wt‖.

Recursively applying the above inequality leads to the conclusion.

7 Appendix-B. ADMM under Limited Memory

In this section, we show how an algorithm for distributed optimization can be adapted for limited-
memory learning, which then serves as a baseline to methods specially designed for limited-memory
environment. In particular, the adaption sequentializes parallel computation performed on multiple
machines into a series of tasks performed on single machine, where states and data partition of each
simulated machine are loaded from (saved to) secondary storage units beforehand (afterward). As
an example, we show how to adapt Alternating Direction Method of Multiplier (ADMM), a recently
proposed distributed optimization framework [1], into our setting.

Given a problem of the form

min
w∈Rd

N∑
i=1

fi(w), (53)

15

Algorithm 3 ADMM (limited memory)
1. Split data D into blocks B1, B2, ..., BK .
2. Initialize w0

k = 0, z0 = 0, µ0
k = 0.

for t = 0, 1, ... (outer iteration) do
3. zt+1 = 0
for k = 1, 2, ...,K do

4.1. Swap data block Bk, wk, µk into memory.

4.2. wt+1
k = argminw Lk(w, zt,µtk)

4.3. zt+1+ = (wt+1
k + µtk/ρ)/K

end for
for k = 1, 2, ...,K do

5.1. Swap wt+1
k , µtk into memory.

5.2. µt+1
k = µtk + η(wt+1

k − zt+1).
end for

end for

Algorithm 4 Block-Coordinate ADMM (BC-ADMM)
1. Split data D into blocks B1, B2, ..., BK .
2. Initialize w0

k = 0, z0 = 0, µ0
k = 0.

for t = 0, 1, ... do
3.1. Randomly chosen k ∈ {1..K} w/o replacement.
3.2. Swap data block Bk, wt

k, µtk into memory.

3.3. µt+1
k = µtk + η(wt

k − zt).

3.4. wt+1
k = argminw Lk(w, zt,µt+1

k)

3.5. zt+1 = zt + (wt+1
k + µt+1

k /ρ)/K − (wt
k + µtk/ρ)/K

end for

the ADMM framework splits (53) into K smaller sub-problems defined on different data blocks
B1, B2, ..., BK , and formulate the dual problem of

min
wk,z

K∑
k=1

fk(wk) +
ρ

2
(wk − z)2

s.t. wk − z = 0, k = 1, ..,K ,

(54)

where fk(wk) =
∑
i∈Bk fi(wk), z is the consensus parameters, and ρ > 0 is a hyper-parameter.

The ADMM procedure finds the saddle point of Lagrangian

max
µk

min
wk,z

L(w, z,µ) =

K∑
k=1

f(wk) + µTk (wk − z) +
ρ

2
‖wk − z‖2 (55)

via the following iterate

wt+1 = argmin
w

L(w, zt,µt) (56)

zt+1 = argmin
z

L(wt+1, z,µt) (57)

µt+1
k = µtk + η(wt+1

k − zt+1), k = 1, ...,K, (58)

where η is a constant step size. Since given zt, L(w, zt,µt) is separable w.r.t. w1,w2, ...,wK ,
step (56) can be solved separately for each wk as

wt+1
k = argmin

wk

Lk(wk, z
t,µtk), k = 1, ..,K. (59)

Since the bottleneck of iterate lies in (59), ADMM is inherently suitable for distributed optimization
via solving theK subproblems (59) onK machines. The only step requiring communication is (57),

16

which has close-form solution

zt+1 =
1

K

K∑
k=1

wt+1
k + µtk/ρ, (60)

that is, a simple average over parameters and multipliers. In limited-memory environment, however,
only one block Bk of samples can be fit into memory at a time, and thus K times of swapping
is required at each iteration. A naive implementation is depicted in Algorithm 3. Note, in some
high-dimensional problem, the model parameters wk and µk can be of comparable size to the data
block, and thus need to be stored out of memory. One drawback of algorithm 3 is that the consensus
parameter z is not updated until K subproblems are solved. In Algorithm 4, we propose another
adaption that updates the dual variables of one randomly chosen block Bk at a time as follows

µtk = µt−1
k + η(wt

k − zt) (61)

wt+1
k = argmin

wk

Lk(wk, z
t,µtk) (62)

zt+1 = argmin
z

L(wt
1, ...,w

t+1
k , ...,wt

K , z,µ
t
k). (63)

In this version of limited-memory ADMM, the information learnt from one block can be passed
to the next subproblem immediately, and consensus parameters µk, wk only need to be swapped
once for each iteration. It has been shown that standard ADMM iterates in Algorithm 3 have global
linear convergence to the optimum [5]. The following theorem shows the same type of convergence
guarantee also applies to Algorithm 4 .

Theorem 8 (BC-ADMM Convergence). Consider a regularized ERM problem (53) of the form

fi(w) = Li(Φiw) +
1

N
R(w).

Let d(µ) be the dual function value of problem (54). If the loss function Li(.) is smooth, and one of
Li(.) or R(.) is strongly convex, Algorithm 4 converges to the optimum of (53) at a linear rate, that
is,

E[∆t
p + ∆t

d] ≤
1

1 + λ
(∆t−1

p + ∆t−1
d) (64)

for some constant λ > 0, where

∆t
p = L(wt+1, zt+1,µt)− d(µt)

∆t
d = d∗ − d(µt)

(65)

are the primal and dual residuals at iterate t respectively.

Though being effective, the adapted algorithm takes little advantage of the sequential nature of
limiter-memory setting. In particular, since the distributed learning algorithm is designed to allow
parallel updates, the information passed among parallel sub-problems is limited and the updates on
dual variables (58), (62) are conservative with step size η compared to the exact block-coordinate
minimization (12) in the Dual-Augmented Block Minimization framework. Note ADMM can be
seen as an approximate Gradient Descent method on the dual, while analysis in coordinate descent
literature [13] shows that Block-Coordinate descent can be up to K times faster than Gradient De-
scent in the worst-conditioned case, where K is the number of blocks.

8 Appendix-C. Convergence of Block-Coordinate ADMM

Let d(µ) = minw,z L(w, z,µ) be the dual objective forµ and d∗ = maxµ d(µ) be the optimal dual
objective value, we define primal residual ∆t

p and dual residual ∆t
d of current iterate (wt, zt,µt) as

∆t
p = L(wt+1, zt+1,µt)− d(µt)

∆t
d = d∗ − d(µt).

(66)

Note ∆t
p ≥ 0, ∆t

d ≥ 0, and ∆t
d = ∆t

p = 0 if only if (wt, zt,µt) is optimal.

17

Lemma 5 (Dual Iterate). For all t ≥ 1,

∆t
d −∆t−1

d ≤ −η(wt
k − zt)T (w̄t

k − z̄t),

where (w̄t, z̄t) is the solution to minw,z L(w, z,µt) that is closest to (wt, zt).

Proof.

∆t
d −∆t−1

d = d(µt−1)− d(µt)

= L(w̄t−1, z̄t−1,µt−1)− L(w̄t, z̄t,µt)

≤ L(w̄t, z̄t,µt−1)− L(w̄t, z̄t,µt)

= (µt−1 − µt)T (w̄t − z̄t)
= (µt−1

k − µtk)T (w̄t
k − z̄t)

= −η(wt
k − zt)T (w̄t

k − z̄t),

where the third inequality follows from definition (w̄t−1, z̄t−1) = argminw,zL(w, z,µt−1).

Lemma 6 (Primal Iterate). For all t ≥ 1,

∆t
p −∆t−1

p ≤ −ρ
(
‖wt+1

k −wt
k‖2 + ‖zt+1 − zt‖2

)
+ η

(
‖wt

k − zt‖2 − (wt
k − zt)T (w̄t

k − z̄t)
)

Proof.

∆t
p −∆t−1

p =(
L(wt+1, zt+1,µt)− d(µt)

)
−
(
L(wt, zt,µt−1)− d(µt−1)

)
,

where d(µt−1)− d(µt) can be obtained via Lemma 2.1 as

d(µt−1)− d(µt) = −η(wt
k − zt)T (w̄t

k − z̄t). (67)

It remains to find

L(wt+1, zt+1,µt)− L(wt, zt,µt−1) =

L(wt+1, zt+1,µt)− L(wt, zt,µt) + L(wt, zt,µt)− L(wt, zt,µr−1).

From strong convexity of the augmented term ρ
2‖wk−z‖2, and thatwt+1, zt+1 are minimizers for

(56) and (57) respectively, we can bound the primal descent amount by

L(wt+1, zt+1,µt)− L(wt, zt,µt)

= Lk(wt+1
k , zt+1,µtk)− Lk(wt

k, z
t,µtk)

≤ −ρ
(
‖wt+1

k −wt
k‖2 + ‖zt+1 − zt‖2

)
.

It is also known that

L(wt, zt,µt)− L(wt, zt,µr−1) = η‖wt
k − zt‖2.

Therefore,

L(wt+1, zt+1,µt)− L(wt, zt,µt−1)

≤ −ρ
(
‖wt+1

k −wt
k‖2 + ‖zt+1 − zt‖2

)
+ η‖wt

k − zt‖2.

Combine above inequality with (67), we obtain the conclusion.

The following theorem guarantees descent of the primal-dual residual ∆t
p + ∆t

d in expectation for
each iteration of BC-ADMM.
Theorem 9 (Guaranteed Descent). For step-size η sufficiently small,

E[∆t
p + ∆t

d] < (∆t−1
p + ∆t−1

d)

for all t ≥ 1, where E[.] is expectation over blocks k1, k2, ..., kR drawn at iteration t.

18

Proof. Define
∆ztk = (wt+1

k + µtk/ρ)/K − (wt
k + µt−1

k /ρ)/K

and

∆zt =
1

K

K∑
k=1

(wt+1
k + µtk/ρ)− 1

K

K∑
k=1

(wt
k + µt−1

k /ρ)

By Lemma 2.1 and 2.2, we have

(∆t
p + ∆t

d)− (∆t−1
p + ∆t−1

d)

= (∆t
p −∆t−1

p) + (∆t
d −∆t−1

d)

≤ −ρ
(
‖∆wt

k‖2 + ‖∆ztk‖2
)

+ η
(
‖wt

k − zt‖2 − 2(wt
k − zt)T (w̄t

k − z̄t)
)
.

Taking expectation on both sides w.r.t. the random selected indexes k1, k2, ..., kR, we have

E[∆t
p + ∆t

d]− (∆t−1
p + ∆t−1

d)

≤ −ρR
K

(
‖∆wt‖2 + ‖∆zt‖2

)
+
ηR

K

(
K∑
k=1

‖wt
k − zt‖2 − 2

K∑
k=1

(wt
k − zt)T (w̄t

k − z̄t)

)
,

where ∆wt and ∆zt are the primal iterate of standard ADMM, and
K∑
k=1

‖wt
k − zt‖2 − 2(wt

k − zt)T (w̄t
k − z̄t)

=

K∑
k=1

‖(wt
k − zt)− (w̄t

k − z̄t)‖2 − ‖w̄t
k − z̄t‖2

≤ 2

K∑
k=1

(
‖wt

k − w̄t
k‖2 + ‖zt − z̄t‖2

)
− ‖w̄t

k − z̄t‖2.

Now we invoke the error bound in [5, Lemma 2.3, 2.5] to bound the distance between (wt, zt) and
(w̄t, z̄t) in terms of progress in primal iterate ‖∆wt‖2 + ‖∆zt‖2 as

K∑
k=1

‖wt − w̄t‖2 + ‖zt − z̄t‖2 ≤ τ(‖∆wt‖2 + ‖∆zt‖2), (68)

where τ is a positive constant. Then we have

E[∆t
p + ∆t

d]− (∆t−1
p + ∆t−1

d)

≤ −R(ρ− 2ητ)

K
(‖∆wt‖2 + ‖∆zt‖2)− Rη

K

K∑
k=1

‖w̄t
k − z̄t‖2,

(69)

which is always negative for η < ρ/(2τ).

Then we can have following theorem for linear convergence of BC-ADMM.
Theorem 10 (BC-ADMM Convergence). Consider a regularized ERM problem (53) of the form

fi(w) = Li(Φiw) +
1

N
R(w).

If the loss function Li(.) is smooth, and one of Li(.) or R(.) is strongly convex, Algorithm 4 con-
verges to the optimum of (53) at a linear rate, that is,

E[∆t
p + ∆t

d] ≤
1

1 + λ
(∆t−1

p + ∆t−1
d) (70)

for some constant λ > 0.

19

Proof. To prove linear convergence, we show that the two terms in (69) can be lower bounded by
the current residual ∆t

p, ∆t
d respectively. In particular, we invoke the error bound in [5, Lemma 3.1]

that shows
∆t
d ≤ τ2‖∇d(µt)‖ = τ2‖w̄t − z̄t‖2 (71)

and
∆t
p ≤ ξ

(
‖∆wt‖2 + ‖∆zt‖2

)
(72)

for some positive constant τ2, ξ and ∀t ≥ t0, where (72) has combined [5, Lemma 3.1] and (68).
Apply above error bounds on (69), we have

E[∆t
p + ∆t

d]− (∆t−1
p + ∆t−1

d)

≤ −R(ρ− 2ητ)

K
(‖∆wt‖2 + ‖∆zt‖2)− Rη

K

K∑
k=1

‖w̄t
k − z̄t‖2

≤ −R(ρ− 2ητ)

Kξ
∆t
p −

Rη

Kτ2
∆t
d

≤ −λ(∆t
p + ∆t

d),

where λ = R
K min

{
(ρ− 2ητ)ξ−1, ητ−1

2

}
> 0 for step size η < ρ/(2τ). After rearrangement we

have
E[∆t

p + ∆t
d] ≤

1

1 + λ
(∆t−1

p + ∆t−1
d), t ≥ t0.

20

