
A Proofs from Section 4

A.1 Proof of Theorem 4.1

We reuse notations e(j), i(j), and s(j) from Section 3. We iteratively define o(0) = o,o(1), . . . ,o(B)

as follows. For each j ∈ [B], we define S(j)
i = suppi(o

(j−1)) \ suppi(s
(j−1)). We have two cases

to consider:

• Suppose that e(j) ∈ S(j)
i′ for some i′ 6= i(j). In this case, let o(j) be an arbitrary element in

S
(j)

i(j)
. Then, we define o(j−1/2) as the resulting vector obtained from o(j−1) by assigning

0 to the e(j)-th element and the o(j)-th element, and then define o(j) as the resulting vector
obtained from o(j−1/2) by assigning i(j) to the e(j)-th element and i′ to the o(j)-th element.

• Suppose that e(j) /∈ S(j)
i′ for any i′ 6= i(j). In this case, we set o(j) = e(j) if e(j) ∈ S(j)

i(j)
,

and we set o(j) to be an arbitrary element in S(j)

i(j)
otherwise. Then, we define o(j−1/2) as

the resulting vector obtained from o(j−1) by assigning 0 to the o(j)-th element, and then
define o(j) as the resulting vector obtained from o(j−1/2) by assigning i(j) to the e(j)-th
element.

Note that |suppi(o
(j))| = Bi holds for every i ∈ [k] and j ∈ {0, 1, . . . , B}, and o(B) = s(B) = s.

Moreover, we have s(j−1) � o(j−1/2) for every j ∈ [B].

Proof of Theorem 4.1. We first show that, for each j ∈ [B],

2(f(s(j))− f(s(j−1))) ≥ f(o(j−1))− f(o(j)). (2)

For each j ∈ [B], let y(j) = ∆e(j),i(j)f(s(j−1)). We first note that f(s(j))− f(s(j−1)) = y(j).

We consider the following two cases:

• Suppose that e(j) ∈ S(j)
i′ for some i′ 6= i(j). Let a(j−1/2) = ∆o(j),i(j)f(o(j−1/2)), a(j) =

∆e(j),i(j)f(o(j−1/2)), b(j−1/2) = ∆e(j),i′f(o(j−1/2)), and b(j) = ∆o(j),i′f(o(j−1/2)).
Note that f(o(j−1)) − f(o(j)) = a(j−1/2) − a(j) + b(j−1/2) − b(j). From the mono-
tonicity of f , it suffices to show that 2y(j) ≥ a(j−1/2) + b(j−1/2). Since e(j) and i(j) are
chosen greedily, we have y(j) ≥ ∆o(j),i(j)f(s(j−1)) and y(j) ≥ ∆e(j),i′f(s(j−1)). Also,
since s(j−1) � o(j−1/2), we have ∆o(j),i(j)f(s(j−1)) ≥ a(j−1/2) and ∆e(j),i′f(s(j−1)) ≥
b(j−1/2) from the orthant submodularity. Combining these inequalities, we get (2).
• Suppose that e(j) /∈ S

(j)
i′ for any i′ 6= i(j). Let a(j−1/2) = ∆o(j),i(j)f(o(j−1/2)), and

a(j) = ∆e(j),i(j)f(o(j−1/2)) Note that f(o(j−1)) − f(o(j)) = a(j−1/2) − a(j). From
the monotonicity of f , it suffices to show that 2y(j) ≥ a(j−1/2). Since e(j) and i(j) are
chosen greedily, we have y(j) ≥ ∆o(j),i(j)f(s(j−1)). Also, since s(j−1) � o(j−1/2), we
have ∆o(j),i(j)f(s(j−1)) ≥ a(j−1/2) from the orthant submodularity. Combining these
inequalities, we get (2).

Then, we have

f(o)− f(s) =

B∑
j=1

(f(o(j−1))− f(o(j))) ≤
B∑
j=1

2(f(s(j))− f(s(j−1))) = 2(f(s)− f(0)) ≤ 2f(s).

Hence, we have f(s) ≥ f(o)/3.

A.2 Proof of Theorem 4.2

We reuse notations e(j), i(j), S(j)
i , and s(j). Let R(j) be the set of elements sampled in the j-th

iteration. We iteratively define o(0) = o,o(1), . . . ,o(B) as follows. If R(j) ∩ S(j)

i(j)
is empty, we

regard that the algorithm failed. Otherwise, we have two cases to consider:
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• Suppose that e(j) ∈ S(j)
i′ for some i′ 6= i(j). In this case, let o(j) be an arbitrary element in

R(j) ∩ S(j)

i(j)
. Then, we define o(j−1/2) and o(j) as in Section 4.1.

• Suppose that e(j) /∈ S(j)
i′ for any i′ 6= i(j). In this case, we set o(j) = e(j) if e(j) ∈ S(j)

i(j)

(and hence in R(j) ∩ S(j)

i(j)
), and we set o(j) to be an arbitrary element in R(j) ∩ S(j)

i(j)

otherwise. Then, we define o(j−1/2) and o(j) as in Section 4.1.

If o(1), . . . ,o(B) are well defined, or in other words, ifR(j)∩S(j)

i(j)
is not empty for each j ∈ [B], then

the rest of the analysis is completely the same as in Section 4.1, and we achieve an approximation
ratio of 1/3. Hence, it suffices to show that o(1), . . . ,o(B) are well defined with a high probability.

Lemma A.1. With probability at least 1− δ, we have R(j) ∩ S(j)

i(j)
is not empty for every j ∈ [B].

Proof. Fix j ∈ [B]. If |R(j)| = n, then we clearly have Pr[R(j) ∩ S(j)

i(j)
6= ∅] = 0. Otherwise we

have

Pr[R(j) ∩ S(j)

i(j)
6= ∅] =

(
1−

|S(j)

i(j)
|

|V \ suppi(j)(s
(j−1))|

)|R(j)|

=

(
1− Bi(j) − |suppi(j)(s

(j−1))|
n− |suppi(j)(s

(j−1))|

)|R(j)|

≤ exp

(
Bi(j) − |suppi(j)(s

(j−1))|
n− |suppi(j)(s

(j−1))|
n− |suppi(j)(s

(j−1))|
Bi(j) − |suppi(j)(s

(j−1))|
log

B

δ

)
=

δ

B
.

By the union bound over j ∈ [B], the lemma follows.

Proof of Theorem 4.2. By Lemma A.1 and the previous analysis in Section 4.1, we have that Algo-
rithm 4 outputs a 1/3-approximate solution with probability at least 1− δ.

The number of evaluations of f is at most

k
∑
j∈[B]

n− |suppi(j)(s
(j−1))|

Bi(j) − |suppi(j−1)(s(j))|
log

B

δ
≤ k

∑
i∈[k]

∑
j∈[Bi]

n− j + 1

Bi − j + 1
log

B

δ

=k
∑
i∈[k]

∑
j∈[Bi]

n−Bi + j

j
log

B

δ
= O

(
k
∑
i∈[k]

(Bi + (n−Bi) logBi) log
B

δ

)
=O
(
kn log

B

δ
·
∑
i∈[k]

logBi

)
= O

(
kn log

B

δ
· k log

∑
i∈[k]Bi

k

)
= O

(
k2n log

B

k
log

B

δ

)
,

where we used the AM-GM inequality in the last line.

B Proofs from Section 5

B.1 k-submodularity of the influence maximization problem

In this section, we show that the function σ : (k + 1)V → R+ used in the influence maximization
problem is monotone k-submodular. In order to show the k-submodularity of σ, it suffices to show
that σ is orthant submodular by Theorem 2.1. Pairwise monotonicity is obvious since σ is monotone.

To show the orthant submodularity of f , we first describe a convenient way of handling the diffusion
process. Fix topic i. Then for each edge (u, v) ∈ E, we preserve it with probability piu,v and discard
it with the remaining probability. Let Gi be the directed graph consisting of the preserved edges.
Given a seed s ∈ (k+ 1)V , the set of vertices reachable from suppi(s) in Gi corresponds to the set
Ai(suppi(s)). Recall that Ai(suppi(s)) is a random variable. Kempe et al. [11] showed that the
function E[|Ai(·)|] is submodular.
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Fix x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) with x � y, e 6∈
⋃
`∈[k] Y` and i ∈ [k]. We want to

show that ∆e,if(x) ≥ ∆e,if(y). Note that

∆e,if(x)−∆e,if(y) = E
[∣∣Ai(Xi ∪ {e}) ∪

⋃
j 6=i

Aj(Xj)
∣∣− ∣∣Ai(Xi) ∪

⋃
j 6=i

Aj(Xj)
∣∣]

−E
[∣∣Ai(Yi ∪ {e}) ∪⋃

j 6=i

Aj(Yj)
∣∣− ∣∣Ai(Yi) ∪⋃

j 6=i

Aj(Yj)
∣∣]. (3)

Let S =
⋃
j 6=iAj(Xj) and T =

⋃
j 6=iAj(Yj). Then,

(3) = E
[∣∣(Ai(Xi ∪ {e}) \Ai(Xi)) \ S

∣∣]−E
[∣∣(Ai(Yi ∪ {e}) \Ai(Yi)) \ T ∣∣]. (4)

Since S ⊆ T for every fixed Gj for j 6= i, we have

(4) ≥ E
[∣∣Ai(Xi ∪ {e}) \Ai(Xi)

∣∣]−E
[∣∣Ai(Yi ∪ {e}) \Ai(Yi)∣∣] ≥ 0.

The last inequality holds from the submodularity of Ai(·).

B.2 k-submodularity of the sensor placement problem

Recall that Ω = {Xi
e}i∈[k],e∈V , where Xi

e represents the observation collecting from a sen-
sor of the i-th kind at the e-th location and f : (k + 1)V → R+ was defined as f(y) =

H(
⋃
e∈supp(x){X

x(e)
e }), where H is the entropy function. It is well known that H is monotone

submodular. In order to show that f : (k + 1)V → R+ is a k-submodular function, it suffices to
show its pairwise monotonicity and orthant submodularity by Theorem 2.1.

We first show that f is monotone, which particularly implies that f is pairwise monotone. Let
y = (Y1, . . . , Yk) ∈ (k + 1)V . Then, we can associate y with a set Sy = {Xi

e | i ∈ [k], e ∈ Yi}.
Then for any i ∈ [k], and e ∈ V \

⋃
j∈` Yj , we have ∆i,ef(y) = H({Xi

e} | Sy). Since H(·) is
monotone, we have ∆i,ef(y) ≥ 0.

To see the orthant submodularity, let y = (Y1, . . . , Yk) and y′ = (Y ′1 , . . . , Y
′
k) with y � y′. Also, let

i ∈ [k] and e ∈ V \
⋃
j∈[k] Y

′
j . Then, ∆e,if(y) = H({Xi

e} | Sy) and ∆e,if(y′) = H({Xi
e} | Sy′).

Since Sy′ ⊆ Sy , we have ∆e,if(y) ≥ ∆e,if(y′) from the submodularity of H .
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