
Supplementary material

A Proof of Theorem 1

Note: This proof is inspired by one of Bach [1]. We extend their result to the case of a gen-
eral sketching matrix S. Moreover, we believe their argument contains two problematic statements
(about monotonicity of the bias) that we rectify with Lemma 2 and Lemma 3 below. Their result
therefore holds also true with minimal change based on this argument.

For kernel ridge regression, the bias of the estimator f̂K can be expressed as

bias(K)2 = nλ2‖(K + nλI)−1f∗‖2

= nλ2f∗>(K + nλI)−2f∗.

For γ > 0, we consider again the regularized approximation Lγ = KS(S>KS + nγI)−1S>K
with S ∈ Rn×p the sketching matrix. The result of the theorem follows from the three following
lemmas.

Lemma 1. Let K = UΣU> where U is orthogonal and Σ diagonal positive. We have

Lγ � L � K. (1)

Moreover, let
D = Φ− Φ1/2U>SS>UΦ1/2

with Φ = Σ(Σ + nγI)−1. If λmax(D) ≤ t for t ∈ (0, 1) then

0 � K − Lγ �
nγ

1− t
I.

Lemma 2. If 0 � K − Lγ � nγ
1−tI then bias(Lγ) ≤

(
1 + γ/λ

1−t

)
bias(K).

Lemma 3. If 0 � K − Lγ � nγ
1−tI and λ ≥ 1

1−t‖S‖
2
op ·

λmax(K)
n then the map γ → bias(Lγ) is

increasing. This in particular implies that under the same conditions, bias(L) ≤ bias(Lγ).

We next prove the above lemmas.

Proof of Lemma 1. With K = UΣU> and R = Σ1/2U>S, L̄γ = R(R>R+ nγI)−1R>, we have

Lγ = UΣ1/2L̄γΣ1/2U>.

Due to the matrix inversion lemma, we have

L̄γ = RR>(RR> + nγI)−1

= I − nγ(RR> + nγI)−1

= I − nγ(Σ + nγI +RR> − Σ)−1

= I − nγ(Σ + nγI)−1/2(I −D)−1(Σ + nγI)−1/2

with

D = (Σ + nγI)−1/2(Σ−RR>)(Σ + nγI)−1/2

= Φ− Φ1/2U>SS>UΦ1/2,

and Φ = Σ(Σ + nγI)−1. This shows that for any γ ≥ 0

Lγ � L � K.

Now if λmax(D) ≤ t for t ∈ (0, 1),

I − L̄γ �
nγ

1− t
(Σ + nγI)−1
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which implies

0 � K − Lγ �
nγ

1− t
K(K + nγI)−1 � nγ

1− t
I.

Proof of Lemma 2.This proof was communicated to us by Francis Bach [2].

Since K − Lγ commutes with the identity, we have

(K − Lγ)2 � n2γ2

(1− t)2
I.

Now,

‖(Lγ + nλI)−1f∗ − (K + nλI)−1f∗‖2 = ‖(Lγ + nλI)−1(K − Lγ)(K + nλI)−1f∗‖2
≤ ‖(Lγ + nλI)−1(K − Lγ)‖op · ‖(K + nλI)−1f∗‖2.

On the other hand,

‖(Lγ + nλI)−1(K − Lγ)‖2op = ‖(Lγ + nλI)−1(K − Lγ)2(Lγ + nλI)−1‖op

≤ n2γ2

(1− t)2
‖(Lγ + nλI)−2‖op

≤ n2γ2

(1− t)2
‖(Lγ + nλI)−1‖2op.

This yields,

‖(Lγ + nλI)−1f∗‖2 ≤ ‖(K + nλI)−1f∗‖2 + ‖(Lγ + nλI)−1f∗ − (K + nλI)−1f∗‖2

≤ ‖(K + nλI)−1f∗‖2 ·
(

1 +
nγ

1− t
‖(Lγ + nλI)−1‖op

)
≤ ‖(K + nλI)−1f∗‖2 ·

(
1 +

γ/λ

1− t

)
.

Hence we have the bias inequality

bias(Lγ) ≤
(

1 +
γ/λ

1− t

)
bias(K).

Proof of Lemma 3. Let ϕ(γ) = f∗>(Lγ + nλI)−2f∗. The task is to prove that ϕ is increasing if
λ ≥ 1

1−t‖S‖
2
op
λmax(K)

n . We do so by computing the derivative of ϕ and showing that ϕ′ ≥ 0. Let
γ, γ′ > 0. We have

ϕ(γ)− ϕ(γ′) = f∗>
(
(Lγ + nλI)−2 − (Lγ′ + nλI)−2

)
f∗

= f∗>(Lγ + nλI)−2
(
(Lγ′ + nλI)2 − (Lγ + nλI)2

)
(Lγ′ + nλI)−2f∗

= f∗>(Lγ + nλI)−2
(
(L2

γ′ − L2
γ) + 2nλ(Lγ′ − Lγ)

)
(Lγ′ + nλI)−2f∗.

Now we compute the terms Lγ′ − Lγ and L2
γ′ − L2

γ :

Lγ′ − Lγ = KS(S>KS + nγ′I)−1S>K −KS(S>KS + nγI)−1S>K

= KS(S>KS + nγ′I)−1 (n(γ − γ′)) (S>KS + nγI)−1S>K.
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And

L2
γ′ − L2

γ = KS(S>KS + nγ′I)−1S>K2S(S>KS + nγ′I)−1S>K

−KS(S>KS + nγI)−1S>K2S(S>KS + nγI)−1S>K

= KS(S>KS + nγ′I)−1S>K2S(S>KS + nγ′I)−1S>K

−KS(S>KS + nγ′I)−1S>K2S(S>KS + nγI)−1S>K

+KS(S>KS + nγ′I)−1S>K2S(S>KS + nγI)−1S>K

−KS(S>KS + nγI)−1S>K2S(S>KS + nγI)−1S>K

= KS(S>KS + nγ′I)−1S>K2S
[
(S>KS + nγ′I)−1 − (S>KS + nγI)−1

]
S>K

+KS
[
(S>KS + nγ′I)−1 − (S>KS + nγI)−1

]
S>K2S(S>KS + nγ′I)−1S>K.

The first term is the last equality above is equal to

n(γ − γ′) ·KS(S>KS + nγ′I)−1S>K2S(S>KS + nγ′I)−1(S>KS + nγI)−1S>K,

and the second one is equal to

n(γ − γ′) ·KS(S>KS + nγ′I)−1(S>KS + nγI)−1S>K2S(S>KS + nγ′I)−1S>K.

Now combining the above and taking the limit γ′ → γ we have

lim
γ′→γ

ϕ(γ)− ϕ(γ′)

n(γ − γ′)
=

f∗>(Lγ + nλI)−2KS(S>KS + nγI)−1 ·Q · (S>KS + nγI)−1S>K(Lγ + nλI)−2f∗,

with

Q = 2nλI + S>K2S(S>KS + nγI)−1 + (S>KS + nγI)−1S>K2S := 2nλI + Q̄.

Therefore, the function ϕ is increasing for all γ such that Q � 0, and the latter is true if 2nλ ≥
−λmin(Q̄). Moreover, since Q̄ is symmetric we have

λmin(Q̄) ≥ −‖Q̄‖op ≥ −2‖S>K2S(S>KS + nγI)−1‖op,

and it is sufficient to verify the condition

nλ ≥ ‖S>K2S(S>KS + nγI)−1‖op. (2)

Now we finish the proof by showing that the above operator norm is smaller than
1

1−t‖S‖
2
opλmax(K). We have

nγS>K2S(S>KS + nγI)−1 = S>K2S(S>KS + nγI)−1(nγI + S>KS − S>KS)

= S>K2S − S>K2S(S>KS + nγI)−1S>KS

= S>K(K −KS(S>KS + nγI)−1S>K)S

= S>K(K − Lγ)S.

Taking operator norms, and using the assumption 0 � K − Lγ � nγ
1−tI ,

nγ‖S>K2S(S>KS + nγI)−1‖op ≤ ‖S>‖op ‖K‖op
nγ

1− t
‖S‖op.

Hence, (2) is satisfied if nλ ≥ 1
1−t‖S‖

2
opλmax(K) therefore concluding the proof.

B Proof of theorem 2

The proof uses the matrix Bernstein inequality (see e.g. Theorem 6.1.1 in [3]):
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Theorem 1. Consider a sequence (Xk) of independent random symmetric matrices with dimension
d. Assume that E(Xk) = 0, λmax(Xk) ≤ R, and let Y =

∑
kXk. Furthermore, assume that there

exists σ > 0 such that ‖E(Y 2)‖op ≤ σ2. Then

Pr
(
λmax(Y ) ≥ t

)
≤ d exp

( −t2/2
σ2 +Rt/3

)
.

Next, we exhibit the sequence (Xk) and Y in our case. We have

ΨΨ> =

m∑
i=1

ψiψ
>
i

and

ΨSS>Ψ> =
1

p

∑
i∈I

1

pi
ψiψ

>
i =

1

p

m∑
i=1

p∑
k=1

1

pi
zikψiψ

>
i

where (zik)1≤i≤m are i.i.d. binary random vectors for k ∈ {1, · · · , p} with Pr(zik = 1) = pi (i.e.
(zik)1≤i≤m is the indicator of the chosen column at trial k). Let Y = ΨΨ> −ΨSS>Ψ>, then

Y =
1

p

p∑
k=1

m∑
i=1

(1− zik
pi

)ψiψ
>
i .

We choose Xk to be 1
p

∑m
i=1(1 − zik

pi
)ψiψ

>
i for every k ∈ {1, · · · , p}. Now we verify the as-

sumptions of the above theorem. The matrices Xk inherit independence from the random vectors
(zik)1≤i≤m, and we have E(Xk) = 0, and λmax(Xk) ≤ 1

pλmax(
∑m
i=1 ψiψ

>
i ) = 1

pλmax(ΨΨ>).
Now we control the spectral norm of the second moment of Y . Again with E(Xk) = 0 we have
E(Y 2) =

∑p
k,k′=1 E(XkXk′) =

∑p
k=1 E(X2

k). And for k ∈ {1, · · · , p}

E(X2
k) =

1

p2

m∑
i,i′=1

E

((
1− zik

pi

)(
1− zi′k

pi′

))
ψi′ψ

>
i′ ψiψ

>
i

=
1

p2

m∑
i,i′=1

(
E(zikzi′k)

pipi′
− 1

)
ψi′ψ

>
i′ ψiψ

>
i .

To proceed, observe that for i 6= i′, zikzi′k = 0 since only one column is chosen at a time. This
yields

E(X2
k) =

1

p2

m∑
i=1

E(z2
ik)

p2
i

ψiψ
>
i ψiψ

>
i −

1

p2

m∑
i,i′=1

ψi′ψ
>
i′ ψiψ

>
i

=
1

p2

m∑
i=1

1

pi
‖ψi‖22ψiψ>i −

(
1

p

m∑
i=1

ψiψ
>
i

)2

� 1

p2

m∑
i=1

‖ψi‖22
pi

ψiψ
>
i .

Given that the probability distribution (pi) verifies pi ≥ β
‖ψi‖22
‖Ψ‖2F

, we get E(Y 2) �
‖Ψ‖2F
βp

∑m
i=1 ψiψ

>
i =

‖Ψ‖2F
βp ΨΨ>. Hence ‖E(Y 2)‖op ≤ ‖Ψ‖

2
F

βp λmax(ΨΨ>). We now apply the theo-

rem with R = 1
pλmax(ΨΨ>) and σ2 =

‖Ψ‖2F
βp λmax(ΨΨ>) which leads to the desired result.

C Proof of theorem 3

Monotonicity of the variance. First of all, we observe that the variance of the estimator f̂K is
matrix-increasing as a function of K. Indeed, we have

variance(K) =
σ2

n
Tr(K2(K + nλI)−2) =

σ2

n

n∑
j=1

λj(K)2

(λj(K) + nλ)2
,
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where λj(K) is the jth eigenvalue of K arranged in a decreasing order. The function x→ x2

(x+nλ)2

is increasing for x ≥ 0. Moreover, if L � K then by the Courant-Fischer minimax principle
λj(L) ≤ λj(K) for all j (e.g. see Corollary III.1.2 in [4]).

Risk bound. Now, using Theorem 1 combined with the above fact, we have

Eξ‖f̂L − f∗‖22 = bias(L)2 + variance(L)

≤
(

1 +
γ/λ

1− t

)2

bias(K)2 + variance(K)

≤
(

1 +
γ/λ

1− t

)2

(bias(K)2 + variance(K))

=

(
1 +

γ/λ

1− t

)2

Eξ‖f̂L − f∗‖22

We set γ = λε and t = 1/2. The above holds if λmax

(
Φ − Φ1/2U>SS>UΦ1/2

)
≤ t and

nλ ≥ 1
1−t‖S‖

2
opλmax(K). Now let Ψ = Φ1/2U>. Then we have ‖ψi‖22 = li(γ) and ‖Ψ‖2F = deff.

Using Theorem 2 on Ψ, and given that λmax(ΨΨ>) = λmax(Φ) ≤ 1, for the result to hold with
probability at least 1 − ρ, it is sufficient to set p such that n exp

(
−p(1/2)2/2
deff/β+1/6

)
≤ ρ which gives the

desired lower bound p ≥ 8(deff/β + 1/6) log
(
n
ρ

)
.

Remark: Note that if one uses the regularized Nyström approximation Lγ = KS(S>KS +
nγI)−1S>K with γ = λε instead of L = KS(S>KS)†S>K in the algorithm then the proof
would now be complete and the condition condition nλ ≥ 1

1−t‖S‖
2
opλmax(K) is not necessary. If

one uses L, then this latter condition needs to be verified to insure monotonicity of the bias (see
Lemma 3).

Controlling ‖S‖op. Now it remains to control the operator norm of the sketching matrix S ap-
pearing in the lower bound on λ. To this end we use a variant of the matrix Bernstein inequality
(Theorem 1) for controlling operator norms of random matrices (see Corollary 6.2.1 in [3]).
Theorem 2. Consider a sequence (Xk) of independent random symmetric matrices with dimension
d× d. Assume that E(Xk) = 0, ‖Xk‖op ≤ R, and let Y =

∑
kXk. Furthermore, assume that there

exists σ > 0 such that ‖E(Y 2)‖op ≤ σ2. Then

Pr (‖Y ‖op ≥ t) ≤ 2d exp

(
−t2/2

σ2 +Rt/3

)
.

We are interested in the sum

Y = SS> − I =
1

p

p∑
k=1

n∑
i=1

(
zik
pi
− 1

)
eie
>
i ,

and similarly to the previous section we consider the sequence Xk = 1
p

∑n
i=1( zikpi − 1)eie

>
i where

zik is defined as before and (ei)1≤i≤n in the standard basis in Rn. Since pi ≥ β · li(λε)/deff with
deff =

∑n
i=1 li(λε) we have

‖Xk‖op ≤
1

p
max
i

(
deff

βli(λε)
− 1

)
=

1

p

(
deff

βl
− 1

)
≤ deff

pβl
,

with l = mini li(λε). On the other hand,

E(X2
k) =

1

p2

n∑
i=1

E

((
zik
pi
− 1

)2
)
eie
>
i =

1

p2

n∑
i=1

(
1

pi
− 1

)
eie
>
i �

1

p2

deff

βl
I.

Hence
‖E(Y 2)‖op ≤

1

p

deff

βl
.
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By choosing σ2 = R = 1
p
deff
βl , we have ‖SS> − I‖op ≤ t with probability at least 1 −

2n exp
(
− t2/2
R(1+t/3)

)
. Taking t = max

{
1 , 8deff

3βl·p log
(

2n
ρ

)}
, the latter probability is greater

than 1 − ρ, and by the triangle inequality: ‖S‖2op ≤ 1 + t with the same probability. By taking

p ≥ 8(deff/β+1/6) log
(
n
ρ

)
(thereby verifying the condition from the previous paragraph) we have

8deff

3βl · p
log

(
2n

ρ

)
≤ 1

3l
· deff

(deff + β/6)
·

log
(

2n
ρ

)
log
(
n
ρ

) ≤ 1

3l
·

1 +
log 2

log
(
n
ρ

)
 ≤ 1

l

if n ≥ 2, and therefore ‖S‖2op ≤ 1 + 1/l (since l ≤ 1) with probability at least 1− ρ.

D Proof of theorem 4

First, it is clear that
l̃i = e>i B(B>B + nλI)−1B>ei

= e>i BB
>(BB> + nλI)−1ei

= diag(L(L+ nλI)−1)i

with ei the i-th element of the standard basis in Rn. Now we bound the approximations l̃i by com-
paring the matrices L(L+nλI)−1 andK(K+nλI)−1 with respect to the semidefinite order. Since
L � K (Appendix A) and the map K → K(K + nλI)−1 is matrix-increasing, we immediately get
the upper bound l̃i ≤ li(λ) for all i ∈ {1, · · · , n}. Next we derive the lower bound. For γ > 0, we
consider again the regularized approximation Lγ = KS(S>KS + nγI)−1S>K with S ∈ Rn×p
the sketching matrix. Due the matrix inversion lemma, Lγ � L (Appendix A). Hence to get a lower
bound on l̃i, it suffices to obtain a lower bound for the same quantity when L is replaced by Lγ . We
proved in Appendix A that if

λmax

(
ΨΨ> −ΨSS>Ψ>

)
≤ t

for t ≥ 0 with Ψ = Φ1/2U>, Φ = Σ(Σ + nγI)−1 then

K − Lγ �
nγ

1− t
K(K + nγI)−1 � nγ

1− t
I.

Therefore

Lγ(Lγ + nλI)−1 � (K − nγ

1− t
I)(K + nλI)−1

� K(K + nλI)−1 − γ/λ

1− t
I,

where the last line follows by distributing the product and using the inequality K + nλI � nλI

for the second term. Hence l̃i ≥ li(λ) − γ/λ
1−t . Now we choose again t = 1/2 and γ = ελ for

ε ∈ (0, 1/2), we get the additive error bound on l̃i and similarly to the proof of Theorem 3, it suffices
to have p ≥ 8(deff/β+ 1/6) log

(
n
ρ

)
. To finish the proof, we choose the sampling distribution (pi)i

and β appropriately. Since

li(γ) =

n∑
j=1

σj
σj + nγ

U2
ij ≤

n∑
j=1

σj
nγ
U2
ij =

1

nγ
Kii,

by choosing pi = Kii/Tr(K), we have pi ≥ β li(λε)/
∑n
i=1 li(λε) with β = nλεdeff/Tr(K),

which yields deff/β = Tr(K)/(nλε).

As for the multiplicative error bound, using K − Lγ � nγ
1−tK(K + nγ)−1 we get

Lγ(Lγ + nλI)−1 � (K − nγ

1− t
K(K + nγ)−1)(K + nλI)−1

= K(K + nλI)−1(I − nγ

1− t
(K + nγI)−1).

For t = 1/2, I − nγ
1−t (K + nγI)−1 = (K − nγI)(K + nγI)−1 � σn−nγ

σn+nγ I . The result follows.
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