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Abstract

An active learner is given a hypothesis class, a large set of unlabeled examples and
the ability to interactively query labels to an oracle of a subset of these examples;
the goal of the learner is to learn a hypothesis in the class that fits the data well by
making as few label queries as possible.

This work addresses active learning with labels obtained from strong and weak
labelers, where in addition to the standard active learning setting, we have an extra
weak labeler which may occasionally provide incorrect labels. An example is
learning to classify medical images where either expensive labels may be obtained
from a physician (oracle or strong labeler), or cheaper but occasionally incorrect
labels may be obtained from a medical resident (weak labeler). Our goal is to
learn a classifier with low error on data labeled by the oracle, while using the weak
labeler to reduce the number of label queries made to this labeler. We provide an
active learning algorithm for this setting, establish its statistical consistency, and
analyze its label complexity to characterize when it can provide label savings over
using the strong labeler alone.

1 Introduction

An active learner is given a hypothesis class, a large set of unlabeled examples and the ability to
interactively make label queries to an oracle on a subset of these examples; the goal of the learner is
to learn a hypothesis in the class that fits the data well by making as few oracle queries as possible.

As labeling examples is a tedious task for any one person, many applications of active learning
involve synthesizing labels from multiple experts who may have slightly different labeling patterns.
While a body of recent empirical work [27, 28, 29, 25, 26, 11] has developed methods for combining
labels from multiple experts, little is known on the theory of actively learning with labels from
multiple annotators. For example, what kind of assumptions are needed for methods that use labels
from multiple sources to work, when these methods are statistically consistent, and when they can
yield benefits over plain active learning are all open questions.

This work addresses these questions in the context of active learning from strong and weak labelers.
Specifically, in addition to unlabeled data and the usual labeling oracle in standard active learning,
we have an extra weak labeler. The labeling oracle is a gold standard – an expert on the problem
domain – and it provides high quality but expensive labels. The weak labeler is cheap, but may pro-
vide incorrect labels on some inputs. An example is learning to classify medical images where either
expensive labels may be obtained from a physician (oracle), or cheaper but occasionally incorrect
labels may be obtained from a medical resident (weak labeler). Our goal is to learn a classifier in a
hypothesis class whose error with respect to the data labeled by the oracle is low, while exploiting
the weak labeler to reduce the number of queries made to this oracle. Observe that in our model
the weak labeler can be incorrect anywhere, and does not necessarily provide uniformly noisy labels
everywhere, as was assumed by some previous works [7, 23].
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A plausible approach in this framework is to learn a difference classifier to predict where the weak
labeler differs from the oracle, and then use a standard active learning algorithm which queries the
weak labeler when this difference classifier predicts agreement. Our first key observation is that
this approach is statistically inconsistent; false negative errors (that predict no difference when O
and W differ) lead to biased annotation for the target classification task. We address this problem
by learning instead a cost-sensitive difference classifier that ensures that false negative errors rarely
occur. Our second key observation is that as existing active learning algorithms usually query labels
in localized regions of space, it is sufficient to train the difference classifier restricted to this region
and still maintain consistency. This process leads to significant label savings. Combining these
two ideas, we get an algorithm that is provably statistically consistent and that works under the
assumption that there is a good difference classifier with low false negative error.

We analyze the label complexity of our algorithm as measured by the number of label requests to
the labeling oracle. In general we cannot expect any consistent algorithm to provide label savings
under all circumstances, and indeed our worst case asymptotic label complexity is the same as that
of active learning using the oracle alone. Our analysis characterizes when we can achieve label
savings, and we show that this happens for example if the weak labeler agrees with the labeling
oracle for some fraction of the examples close to the decision boundary. Moreover, when the target
classification task is agnostic, the number of labels required to learn the difference classifier is of a
lower order than the number of labels required for active learning; thus in realistic cases, learning
the difference classifier adds only a small overhead to the total label requirement, and overall we get
label savings over using the oracle alone.

Related Work. There has been a considerable amount of empirical work on active learning where
multiple annotators can provide labels for the unlabeled examples. One line of work assumes a
generative model for each annotator’s labels. The learning algorithm learns the parameters of the
individual labelers, and uses them to decide which labeler to query for each example. [28, 29, 12]
consider separate logistic regression models for each annotator, while [18, 19] assume that each
annotator’s labels are corrupted with a different amount of random classification noise. A second
line of work [11, 15] that includes Pro-Active Learning, assumes that each labeler is an expert
over an unknown subset of categories, and uses data to measure the class-wise expertise in order to
optimally place label queries. In general, it is not known under what conditions these algorithms are
statistically consistent, particularly when the modeling assumptions do not strictly hold, and under
what conditions they provide label savings over regular active learning.

[24], the first theoretical work to consider this problem, consider a model where the weak labeler
is more likely to provide incorrect labels in heterogeneous regions of space where similar examples
have different labels. Their formalization is orthogonal to ours – while theirs is more natural in a
non-parametric setting, ours is more natural for fitting classifiers in a hypothesis class. In a NIPS
2014 Workshop paper, [20] have also considered learning from strong and weak labelers; unlike
ours, their work is in the online selective sampling setting, and applies only to linear classifiers and
robust regression. [10] study learning from multiple teachers in the online selective sampling setting
in a model where different labelers have different regions of expertise.

Finally, there is a large body of theoretical work [1, 8, 9, 13, 30, 2, 4] on learning a binary classifier
based on interactive label queries made to a single labeler. In the realizable case, [21, 8] show
that a generalization of binary search provides an exponential improvement in label complexity
over passive learning. The problem is more challenging, however, in the more realistic agnostic
case, where such approaches lead to inconsistency. The two styles of algorithms for agnostic active
learning are disagreement-based active learning (DBAL) [1, 9, 13, 4] and the more recent margin-
based or confidence-based active learning [2, 30]. Our algorithm builds on recent work in DBAL [4,
14].

2 Preliminaries

The Model. We begin with a general framework for actively learning from weak and strong labelers.
In the standard active learning setting, we are given unlabelled data drawn from a distribution U over
an input space X , a label space Y = {−1,1}, a hypothesis class H , and a labeling oracle O to
which we can make interactive queries.
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In our setting, we additionally have access to a weak labeling oracle W which we can query inter-
actively. Querying W is significantly cheaper than querying O; however, querying W generates a
label yW drawn from a conditional distribution PW (yW |x) which is not the same as the conditional
distribution PO(yO|x) of O.

Let D be the data distribution over labelled examples such that: PD(x,y) = PU (x)PO(y|x). Our goal
is to learn a classifier h in the hypothesis class H such that with probability ≥ 1−δ over the sample,
we have: PD(h(x) �= y) ≤ minh′∈H PD(h

′(x) �= y)+ ε , while making as few (interactive) queries to
O as possible.

Observe that in this model W may disagree with the oracle O anywhere in the input space; this
is unlike previous frameworks [7, 23] where labels assigned by the weak labeler are corrupted by
random classification noise with a higher variance than the labeling oracle. We believe this feature
makes our model more realistic.

Second, unlike [24], mistakes made by the weak labeler do not have to be close to the decision
boundary. This keeps the model general and simple, and allows greater flexibility to weak labelers.
Our analysis shows that if W is largely incorrect close to the decision boundary, then our algorithm
will automatically make more queries to O in its later stages.

Finally note that O is allowed to be non-realizable with respect to the target hypothesis class H .

Background on Active Learning Algorithms. The standard active learning setting is very similar
to ours, the only difference being that we have access to the weak oracle W . There has been a long
line of work on active learning [1, 6, 8, 13, 2, 9, 4, 30]. Our algorithms are based on a style called
disagreement-based active learning (DBAL). The main idea is as follows. Based on the examples
seen so far, the algorithm maintains a candidate set Vt of classifiers in H that is guaranteed with
high probability to contain h∗, the classifier in H with the lowest error. Given a randomly drawn
unlabeled example xt , if all classifiers in Vt agree on its label, then this label is inferred; observe that
with high probability, this inferred label is h∗(xt). Otherwise, xt is said to be in the disagreement
region of Vt , and the algorithm queries O for its label. Vt is updated based on xt and its label, and
algorithm continues.

Recent works in DBAL [9, 4] have observed that it is possible to determine if an xt is in the dis-
agreement region of Vt without explicitly maintaining Vt . Instead, a labelled dataset St is maintained;
the labels of the examples in St are obtained by either querying the oracle or direct inference. To
determine whether an xt lies in the disagreement region of Vt , two constrained ERM procedures are
performed; empirical risk is minimized over St while constraining the classifier to output the label
of xt as 1 and −1 respectively. If these two classifiers have similar training errors, then xt lies in
the disagreement region of Vt ; otherwise the algorithm infers a label for xt that agrees with the label
assigned by h∗.

More Definitions and Notation. The error of a classifier h under a labelled data distribution Q is
defined as: errQ(h) = P(x,y)∼Q(h(x) �= y); we use the notation err(h,S) to denote its empirical error

on a labelled data set S. We use the notation h∗ to denote the classifier with the lowest error under D
and ν to denote its error errD(h

∗), where D is the target labelled data distribution.

Our active learning algorithm implicitly maintains a (1− δ )-confidence set for h∗ throughout the
algorithm. Given a set S of labelled examples, a set of classifiers V (S)⊆ H is said to be a (1−δ )-
confidence set for h∗ with respect to S if h∗ ∈V with probability ≥ 1−δ over S.

The disagreement between two classifiers h1 and h2 under an unlabelled data distribution U , denoted
by ρU (h1,h2), is Px∼U (h1(x) �= h2(x)). Observe that the disagreements under U form a pseudomet-
ric over H . We use BU (h,r) to denote a ball of radius r centered around h in this metric. The
disagreement region of a set V of classifiers, denoted by DIS(V ), is the set of all examples x ∈ X

such that there exist two classifiers h1 and h2 in V for which h1(x) �= h2(x).

3 Algorithm

Our main algorithm is a standard single-annotator DBAL algorithm with a major modification: when
the DBAL algorithm makes a label query, we use an extra sub-routine to decide whether this query
should be made to the oracle or the weak labeler, and make it accordingly. How do we make this
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decision? We try to predict if weak labeler differs from the oracle on this example; if so, query the
oracle, otherwise, query the weak labeler.

Key Idea 1: Cost Sensitive Difference Classifier. How do we predict if the weak labeler differs
from the oracle? A plausible approach is to learn a difference classifier hd f in a hypothesis class
H d f to determine if there is a difference. Our first key observation is when the region where
O and W differ cannot be perfectly modeled by H d f , the resulting active learning algorithm is
statistically inconsistent. Any false negative errors (that is, incorrectly predicting no difference)
made by difference classifier leads to biased annotation for the target classification task, which in
turn leads to inconsistency. We address this problem by instead learning a cost-sensitive difference
classifier and we assume that a classifier with low false negative error exists in H d f . While training,
we constrain the false negative error of the difference classifier to be low, and minimize the number
of predicted positives (or disagreements between W and O) subject to this constraint. This ensures
that the annotated data used by the active learning algorithm has diminishing bias, thus ensuring
consistency.

Key Idea 2: Localized Difference Classifier Training. Unfortunately, even with cost-sensitive
training, directly learning a difference classifier accurately is expensive. If d′ is the VC-dimension
of the difference hypothesis class H d f , to learn a target classifier to excess error ε , we need a
difference classifier with false negative error O(ε), which, from standard generalization theory, re-

quires Õ(d′/ε) labels [5, 22]! Our second key observation is that we can save on labels by training
the difference classifier in a localized manner – because the DBAL algorithm that builds the target
classifier only makes label queries in the disagreement region of the current confidence set for h∗.
Therefore we train the difference classifier only on this region and still maintain consistency. Addi-
tionally this provides label savings because while training the target classifier to excess error ε , we
need to train a difference classifier with only Õ(d′φk/ε) labels where φk is the probability mass of
this disagreement region. The localized training process leads to an additional technical challenge:
as the confidence set for h∗ is updated, its disagreement region changes. We address this through an
epoch-based DBAL algorithm, where the confidence set is updated and a fresh difference classifier
is trained in each epoch.

Main Algorithm. Our main algorithm (Algorithm 1) combines these two key ideas, and like [4],

implicitly maintains the (1− δ )-confidence set for h∗ by through a labeled dataset Ŝk. In epoch k,

the target excess error is εk ≈ 1
2k , and the goal of Algorithm 1 is to generate a labeled dataset Ŝk

that implicitly represents a (1−δk)-confidence set on h∗. Additionally, Ŝk has the property that the
empirical risk minimizer over it has excess error ≤ εk.

A naive way to generate such an Ŝk is by drawing Õ(d/ε2
k ) labeled examples, where d is the VC

dimension of H . Our goal, however, is to generate Ŝk using a much smaller number of label queries,
which is accomplished by Algorithm 5. This is done in two ways. First, like standard DBAL, we
infer the label of any x that lies outside the disagreement region of the current confidence set for h∗.
Algorithm 4 identifies whether an x lies in this region. Second, for any x in the disagreement region,
we determine whether O and W agree on x using a difference classifier; if there is agreement, we
query W , else we query O. The difference classifier used to determine agreement is retrained in the
beginning of each epoch by Algorithm 2, which ensures that the annotation has low bias.

The algorithms use a constrained ERM procedure CONS-LEARN. Given a hypothesis class H, a
labeled dataset S and a set of constraining examples C, CONS-LEARNH(C,S) returns a classifier in
H that minimizes the empirical error on S subject to h(xi) = yi for each (xi,yi) ∈C.

Identifying the Disagreement Region. Algorithm 4 (deferred to the Appendix) identifies if an
unlabeled example x lies in the disagreement region of the current (1− δ )-confidence set for h∗;

recall that this confidence set is implicitly maintained through Ŝk. The identification is based on two

ERM queries. Let ĥ be the empirical risk minimizer on the current labeled dataset Ŝk−1, and ĥ′ be

the empirical risk minimizer on Ŝk−1 under the constraint that ĥ′(x) = −ĥ(x). If the training errors

of ĥ and ĥ′ are very different, then, all classifiers with training error close to that of ĥ assign the same
label to x, and x lies outside the current disagreement region.
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Training the Difference Classifier. Algorithm 2 trains a difference classifier on a random set of
examples which lies in the disagreement region of the current confidence set for h∗. The training
process is cost-sensitive, and is similar to [16, 17, 5, 22]. A hard bound is imposed on the false-
negative error, which translates to a bound on the annotation bias for the target task. The number of
positives (i.e., the number of examples where W and O differ) is minimized subject to this constraint;
this amounts to (approximately) minimizing the fraction of queries made to O.

The number of labeled examples used in training is large enough to ensure false negative error
O(εk/φk) over the disagreement region of the current confidence set; here φk is the probability mass
of this disagreement region under U . This ensures that the overall annotation bias introduced by
this procedure in the target task is at most O(εk). As φk is small and typically diminishes with k,
this requires less labels than training the difference classifier globally which would have required
Õ(d′/εk) queries to O.

Algorithm 1 Active Learning Algorithm from Weak and Strong Labelers

1: Input: Unlabeled distribution U , target excess error ε , confidence δ , labeling oracle O, weak
oracle W , hypothesis class H , hypothesis class for difference classifier H d f .

2: Output: Classifier ĥ in H .

3: Initialize: initial error ε0 = 1, confidence δ0 = δ/4. Total number of epochs k0 = ⌈log 1
ε ⌉.

4: Initial number of examples n0 = O( 1

ε2
0

(d ln 1

ε2
0

+ ln 1
δ0
)).

5: Draw a fresh sample and query O for its labels Ŝ0 = {(x1,y1), . . . ,(xn0
,yn0

)}. Let σ0 =σ(n0,δ0).
6: for k = 1,2, . . . ,k0 do
7: Set target excess error εk = 2−k, confidence δk = δ/4(k+1)2.
8: # Train Difference Classifier

9: ĥ
d f
k ← Call Algorithm 2 with inputs unlabeled distribution U , oracles W and O, target excess

error εk, confidence δk/2, previously labeled dataset Ŝk−1.
10: # Adaptive Active Learning using Difference Classifier
11: σk, Ŝk ← Call Algorithm 5 with inputs unlabeled distribution U , oracles W and O, difference

classifier ĥ
d f
k , target excess error εk, confidence δk/2, previously labeled dataset Ŝk−1.

12: end for
13: return ĥ ← CONS-LEARNH ( /0, Ŝk0

).

Adaptive Active Learning using the Difference Classifier. Finally, Algorithm 5 (deferred to the

Appendix) is our main active learning procedure, which generates a labeled dataset Ŝk that is im-
plicitly used to maintain a tighter (1−δ )-confidence set for h∗. Specifically, Algorithm 5 generates

a Ŝk such that the set Vk defined as:

Vk = {h : err(h, Ŝk)− min
ĥk∈H

err(ĥk, Ŝk)≤ 3εk/4}

has the property that:

{h : errD(h)− errD(h
∗)≤ εk/2}⊆Vk ⊆ {h : errD(h)− errD(h

∗)≤ εk}

This is achieved by labeling, through inference or query, a large enough sample of unlabeled data
drawn from U . Labels are obtained from three sources - direct inference (if x lies outside the dis-
agreement region as identified by Algorithm 4), querying O (if the difference classifier predicts a
difference), and querying W . How large should the sample be to reach the target excess error? If
errD(h

∗) = ν , then achieving an excess error of ε requires Õ(dν/ε2
k ) samples, where d is the VC

dimension of the hypothesis class. As ν is unknown in advance, we use a doubling procedure in
lines 4-14 to iteratively determine the sample size.

1Note that if in Algorithm 3, the upper confidence bound of Px∼U (in disagr region(T̂ , 3ε
2 ,x) = 1) is lower

than ε/64, then we can halt Algorithm 2 and return an arbitrary hd f in H d f . Using this hd f will still guarantee
the correctness of Algorithm 1.
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Algorithm 2 Training Algorithm for Difference Classifier

1: Input: Unlabeled distribution U , oracles W and O, target error ε , hypothesis class H d f , confi-
dence δ , previous labeled dataset T̂ .

2: Output: Difference classifier ĥd f .

3: Let p̂ be an estimate of Px∼U (in disagr region(T̂ , 3ε
2
,x) = 1), obtained by calling Algo-

rithm 3(deferred to the Appendix) with failure probability δ/3. 1

4: Let U ′ = /0, i = 1, and

m =
64 ·1024p̂

ε
(d′ ln

512 ·1024p̂

ε
+ ln

72

δ
) (1)

5: repeat
6: Draw an example xi from U .

7: if in disagr region(T̂ , 3ε
2
,xi) = 1 then # xi is inside the disagreement region

8: query both W and O for labels to get yi,W and yi,O.
9: end if

10: U ′ =U ′ ∪{(xi,yi,O,yi,W )}
11: i = i+1
12: until |U ′|= m

13: Learn a classifier ĥd f ∈ H d f based on the following empirical risk minimizer:

ĥd f = argminhd f ∈H d f

m

∑
i=1

1(hd f (xi) = +1), s.t.
m

∑
i=1

1(hd f (xi) =−1∧ yi,O �= yi,W )≤ mε/256p̂

(2)

14: return ĥd f .

4 Performance Guarantees

We now examine the performance of our algorithm, which is measured by the number of label
queries made to the oracle O. Additionally we require our algorithm to be statistically consistent,
which means that the true error of the output classifier should converge to the true error of the best
classifier in H on the data distribution D.

Since our framework is very general, we cannot expect any statistically consistent algorithm to
achieve label savings over using O alone under all circumstances. For example, if labels provided
by W are the complete opposite of O, no algorithm will achieve both consistency and label savings.
We next provide an assumption under which Algorithm 1 works and yields label savings.

Assumption. The following assumption states that difference hypothesis class contains a good cost-
sensitive predictor of when O and W differ in the disagreement region of BU (h

∗,r); a predictor is
good if it has low false-negative error and predicts a positive label with low frequency. If there is no
such predictor, then we cannot expect an algorithm similar to ours to achieve label savings.

Assumption 1. Let D be the joint distribution: PD (x,yO,yW ) = PU (x)PW (yW |x)PO(yO|x). For any

r,η > 0, there exists an h
d f
η ,r ∈ H d f with the following properties:

PD (hd f
η ,r(x) =−1,x ∈ DIS(BU (h

∗,r)),yO �= yW )≤ η (3)

PD (hd f
η ,r(x) = 1,x ∈ DIS(BU (h

∗,r)))≤ α(r,η) (4)

Note that (3), which states there is a hd f ∈ H d f with low false-negative error, is minimally re-
strictive, and is trivially satisfied if H d f includes the constant classifier that always predicts 1.
Theorem shows that (3) is sufficient to ensure statistical consistency.

(4) in addition states that the number of positives predicted by the classifier h
d f
η ,r is upper bounded

by α(r,η). Note α(r,η)≤ PU (DIS(BU (h
∗,r))) always; performance gain is obtained when α(r,η)

is lower, which happens when the difference classifier predicts agreement on a significant portion of
DIS(BU (h

∗,r)).
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Consistency. Provided Assumption 1 holds, we next show that Algorithm 1 is statistically consis-
tent. Establishing consistency is non-trivial for our algorithm as the output classifier is trained on
labels from both O and W .

Theorem 1 (Consistency). Let h∗ be the classifier that minimizes the error with respect to D. If

Assumption 1 holds, then with probability ≥ 1− δ , the classifier ĥ output by Algorithm 1 satisfies:

errD(ĥ)≤ errD(h
∗)+ ε .

Label Complexity. The label complexity of standard DBAL is measured in terms of the dis-
agreement coefficient. The disagreement coefficient θ(r) at scale r is defined as: θ(r) =

suph∈H supr′≥r
PU (DIS(BU (h,r′))

r′ ; intuitively, this measures the rate of shrinkage of the disagreement

region with the radius of the ball BU (h,r) for any h in H . It was shown by [9] that the label com-

plexity of DBAL for target excess generalization error ε is Õ(dθ(2ν + ε)(1+ ν2

ε2 )) where the Õ

notation hides factors logarithmic in 1/ε and 1/δ . In contrast, the label complexity of our algo-

rithm can be stated in Theorem 2. Here we use the Õ notation for convenience; we have the same
dependence on log1/ε and log1/δ as the bounds for DBAL.

Theorem 2 (Label Complexity). Let d be the VC dimension of H and let d′ be the VC dimension
of H d f . If Assumption 1 holds, and if the error of the best classifier in H on D is ν , then with
probability ≥ 1−δ , the following hold:

1. The number of label queries made by Algorithm 1 to the oracle O in epoch k at most:

mk = Õ
�d(2ν + εk−1)(α(2ν + εk−1,

εk−1

1024
)+ εk−1)

ε2
k

+
d′
P(DIS(BU (h

∗,2ν + εk−1)))

εk

�

(5)

2. The total number of label queries made by Algorithm 1 to the oracle O is at most:

Õ
�

sup
r≥ε

α(2ν + r, r
1024

)+ r

2ν + r
·d

�

ν2

ε2
+1

�

+θ(2ν + ε)d′
�ν

ε
+1

��

(6)

4.1 Discussion

The first terms in (5) and (6) represent the labels needed to learn the target classifier, and second
terms represent the overhead in learning the difference classifier.

In the realistic agnostic case (where ν > 0), as ε → 0, the second terms are lower order compared
to the label complexity of DBAL. Thus even if d′ is somewhat larger than d, fitting the difference
classifier does not incur an asymptotically high overhead in the more realistic agnostic case. In the
realizable case, when d′ ≈ d, the second terms are of the same order as the first; therefore we should
use a simpler difference hypothesis class H d f in this case. We believe that the lower order overhead
term comes from the fact that there exists a classifier in H d f whose false negative error is very low.

Comparing Theorem 2 with the corresponding results for DBAL, we observe that instead of

θ(2ν + ε), we have the term supr≥ε
α(2ν+r,r/1024)

2ν+r
. Since supr≥ε

α(2ν+r,r/1024)
2ν+r

≤ θ(2ν + ε), the
worst case asymptotic label complexity is the same as that of standard DBAL. This label complexity

may be considerably better however if supr≥ε
α(2ν+r,r/1024)

2ν+r
is less than the disagreement coefficient.

As we expect, this will happen when the region of difference between W and O restricted to the dis-
agreement regions is relatively small, and this region is well-modeled by the difference hypothesis
class H d f .

An interesting case is when the weak labeler differs from O close to the decision boundary and agrees
with O away from this boundary. In this case, any consistent algorithm should switch to querying O
close to the decision boundary. Indeed in earlier epochs, α is low, and our algorithm obtains a good
difference classifier and achieves label savings. In later epochs, α is high, the difference classifiers
always predict a difference and the label complexity of the later epochs of our algorithm is the same
order as DBAL. In practice, if we suspect that we are in this case, we can switch to plain active
learning once εk is small enough.

Case Study: Linear Classfication under Uniform Distribution. We provide a simple example
where our algorithm provides a better asymptotic label complexity than DBAL. Let H be the class
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+
−

w∗

P({x : hw∗(x) �= yO}) = ν

+−

W

{x : P(yO �= yW |x)> 0}

P({x : h̄d f (x) = 1}) = g = o(
√

dν)

Figure 1: Linear classification over unit ball with d = 2. Left: Decision boundary of labeler O and
h∗ = hw∗ . The region where O differs from h∗ is shaded, and has probability ν . Middle: Decision
boundary of weak labeler W . Right: h̄d f , W and O. Note that {x : P(yO �= yW |x)> 0}⊆ {x : h̄d f (x) =
1}.

of homogeneous linear separators on the d-dimensional unit ball and let H d f = {hΔh′ : h,h′ ∈H }.
Furthermore, let U be the uniform distribution over the unit ball.

Suppose that O is a deterministic labeler such that errD(h
∗) = ν > 0. Moreover, suppose that W is

such that there exists a difference classifier h̄d f with false negative error 0 for which PU (h̄
d f (x) =

1) ≤ g. Additionally, we assume that g = o(
√

dν); observe that this is not a strict assumption on

H d f , as ν could be as much as a constant. Figure 1 shows an example in d = 2 that satisfies these
assumptions. In this case, as ε → 0, Theorem 2 gives the following label complexity bound.

Corollary 1. With probability ≥ 1−δ , the number of label queries made to oracle O by Algorithm 1

is Õ
�

d max( g
ν ,1)(

ν2

ε2 +1)+d3/2
�

1+ ν
ε

�

�

, where the Õ notation hides factors logarithmic in 1/ε

and 1/δ .

As g = o(
√

dν), this improves over the label complexity of DBAL, which is Õ(d3/2(1+ ν2

ε2 )).

Conclusion. In this paper, we take a step towards a theoretical understanding of active learning from
multiple annotators through a learning theoretic formalization for learning from weak and strong la-
belers. Our work shows that multiple annotators can be successfully combined to do active learning
in a statistically consistent manner under a general setting with few assumptions; moreover, under
reasonable conditions, this kind of learning can provide label savings over plain active learning.

An avenue for future work is to explore a more general setting where we have multiple labelers
with expertise on different regions of the input space. Can we combine inputs from such labelers
in a statistically consistent manner? Second, our algorithm is intended for a setting where W is
biased, and performs suboptimally when the label generated by W is a random corruption of the
label provided by O. How can we account for both random noise and bias in active learning from
weak and strong labelers?
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