
A Recursive update for online M -statistic.

There is an efficient way to update the online M -statistic. Recall that we generate the statistic as
follows. When time goes from t to t+1, we add the new sample into the post-change block, remove
the oldest sample and move it to the reference pool. We will update the reference blocks similarly:
draw a batch of N distinct samples from the pool, add them to each of the reference block, and
purge the oldest sample from each reference block. Hence, we only need to compare a few number
of MMD statistic, due to the new samples added to the reference block and the new sample at time
t + 1. These calculations are illustrated in Fig. 4. At time t, for every paired blocks X(B

0

,t)

i

and
Y (B

0

,t), we compute the Gram matrix: for N background blocks and one testing blocks, we have
N such Gram matrices. We partition the Gram matrix by four windows (in red, black and blue,
as shown on the left). To get MMD2

(X(B

0

,t)

i

, Y (B

0

,t)

), we compute the shaded elements and take
an average within each the window. The diagonal entries in each window are removed since we
are using the unbiased expression for MMD for two-sample test when the two sample sizes are
equal. At time t + 1, we update X(B

0

,t)

i

and Y (B

0

,t) with a new data and purge the oldest data.
Consequently, for the Gram matrix, we move the colored window as shown on the right figure,
compute the elements within the new windows, and take an average. Note that for each window,
there are (B

0

� 1)(B
0

� 2) elements shared in common with the previous windows, thus we only
need to compute the right-most column and the bottom row. This way we recursively update the
kernel matrices and through which compute the statistic.

Xi
(B0 ,t ) Y (B0 ,t )

Xi
(B0 ,t )

Y (B0 ,t )

1
B0 (B0 −1)

k(Xi, j
(B0 ,t ),Xi,l

(B0 ,t ) )
j,l, j≠l

B0

∑

1
B0 (B0 −1)

k(Xi, j
(B0 ,t ),Yl

(B0 ,t ) )
j,l, j≠l

B0

∑

1
B0 (B0 −1)

k(Yj
(B0 ,t ),Yl

(B0 ,t ) )
j,l, j≠l

B0

∑

Time%t:%
Xi
(B0 ,t+1) Y (B0 ,t+1)

Xi
(B0 ,t+1)

Y (B0 ,t+1)

Time%t+1:%

Figure 4: Update the Gram matrix used in calculating the online M -statistics.
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B Proofs

We start with proving Lemma 5 and Lemma 6, which are useful in proving Lemma 1 and Lemma 2.

Lemma 5 (Variance of MMD, under the null.) Under null hypothesis,

Var

h
MMD

2

(X(B)

i

, Y (B)

)

i
=

✓
B

2

◆�1

E[h2

(x, x0, y, y0)], i = 1, . . . , N. (11)

Proof [Proof of Lemma 5] For notational simplicity, we drop the superscript B. Furthermore, under
the null hypothesis all data follow the same distribution, we can represent X

i,l

and X
i,j

as x and x0,
and Y

l

and Y
j

as y and y0, respectively. For any i = 1, 2, . . . , n, by definition of U-statistic, we have

Var

⇥
MMD

2

(X
i

, Y )

⇤
= Var

2

4
✓
B

2

◆�1X

l<j

h(X
i,l

, X
i,j

, Y
l

, Y
j

)

3

5

=

✓
B

2

◆�2

✓
B

2

◆✓
2

1

◆✓
B � 2

2� 1

◆
Var [E

x

i

y

[h(x, x0, y, y0)]] +

✓
B

2

◆✓
2

2

◆✓
B � 2

2� 2

◆
Var [h(x, x0, y, y0)]

�
.

(12)
Under null distribution, E

x

i

y

[h(x, x0, y, y0)] = 0. Thus, Var [E
x

i

y

[h(x, x0, y, y0)]] = 0, and

Var [h(x, x0, y, y0)] = E[h2

(x, x0, y, y0)]� E[h(x, x0, y, y0)]2 = E[h2

(x, x0, y, y0)].

Substitute these results in (12), we obtain the desired result (11).

Lemma 6 (Covariance of MMD, under the null, same block size.) For s 6= 0, under null hy-
pothesis

Cov

h
MMD

2

(X(B)

i

, Y (B)

),MMD

2

(X(B)

i+s

, Y (B)

)

i
=

✓
B

2

◆�1

Cov

⇥
h(x

i

, x0
i

, y, y0), h(x
i+s

, x0
i+s

, y, y0)
⇤
.

Proof [Proof of Lemma 6] For notational simplicity, we drop the superscript B. For i = 1, 2, . . . , N ,
and s = (1� i), (2� i), . . . , (N � i), s 6= 0,

Cov

⇥
MMD

2

(X
i

, Y ),MMD

2

(X
i+s

, Y )

⇤

= Cov

2

4
✓
B

2

◆�1X

l<j

h(X
i,l

, X
i,j

, Y
l

, Y
j

),

✓
B

2

◆�1X

p<q

h(X
i+s,p

, X
i+s,q

, Y
p

, Y
q

)

3

5

=

✓
B

2

◆�2

✓
B

2

◆✓
2

1

◆✓
B � 2

2� 1

◆
Cov [h(X

i,l

, X
i,j

, y, Y
j

), h(X
i+s,p

, X
i+s,q

, Y
p

, Y
q

)]

+

✓
B

2

◆�2

✓
B

2

◆✓
2

2

◆✓
B � 2

2� 2

◆
Cov [h(X

i,l

, X
i,j

, y, y0), h(X
i+s,p

, X
i+s,q

, y, y0)] .

Under null distribution,
Cov [h(X

i,l

, X
i,j

, y, Y
j

), h(X
i+s,p

, X
i+s,q

, y, Y
q

)]

=

Z
P[X

i,l

, X
i,j

, y, Y
j

, X
i+s,p

, X
i+s,q

, y, Y
q

]h(X
i,l

, X
i,j

, y, Y
j

)h(X
i+s,p

, X
i+s,q

, y, Y
q

)

=

Z
P[X

i,l

, y]P[X
i+s,p

, y]

Z
P[X

i,j

, Y
j

]h(X
i,l

, X
i,j

, y, Y
j

)

Z
P[X

i+s,q

, Y
q

]h(X
i+s,p

, X
i+s,q

, y, Y
q

) = 0.

Finally, we have:

Cov

⇥
MMD

2

(X
i

, Y ),MMD

2

(X
i+s

, Y )

⇤
=

✓
B

2

◆�1

Cov [h(X
i,l

, X
i,j

, y, y0), h(X
i+s,p

, X
i+s,q

, y, y0)] .
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Under null hypothesis, X
i,l

, X
i,j

, X
i+s,p

, and X
i+s,q

are independent and they follow the same null
distribution, so we may replace them with x, x0, x00, x000 respectively. Finally

Cov

⇥
MMD

2

(X
i

, Y ;B),MMD

2

(X
i+s

, Y ;B)

⇤
=

✓
B

2

◆�1

Cov [h(x, x0, y, y0), h(x00, x000, y, y0)] .

Proof [Proof for Lemma 1] For notational simplicity, we drop the superscript B. Using results in
Lemma 5 and Lemma 6, we have

Var[Z
B

] = Var

"
1

N

NX

i=1

MMD

2

(X
i

, Y )

#

=

1

N2

2

4NVar[MMD

2

(X
i

, Y )] +

X

i 6=j

Cov

⇥
MMD

2

(X
i

, Y ;B),MMD

2

(X
j

, Y )

⇤
3

5

=

1

N

✓
B

2

◆�1

E[h2

(x
i

, x0
i

, y, y0)] +
1

N2

X

i 6=j

✓
B

2

◆�1

Cov

⇥
h(x

i

, x0
i

, y, y0), h(x
j

, x0
j

, y, y0)
⇤

=

✓
B

2

◆�1


1

N
E[h2

(x, x0, y, y0)] +
N � 1

N
Cov [h(x, x0, y, y0), h(x00, x000, y, y0)]

�
.

Proof [Proof of Lemma 2] For the offline case, we have that the correlation

r
B,B+v

=

1p
Var[Z

B

]

1p
Var[Z

B+v

]

Cov [Z
B

, Z
B+v

] ,

where

Cov (Z
B

, Z
B+v

) = Cov

2

4 1

N

NX

i=1

MMD

2

(X(B)

i

, Y (B)

),
1

N

nX

j=1

MMD

2

(X(B+v)

j

, Y (B+v)

)

3

5

=

1

N
Cov

h
MMD2

(X(B)

i

, Y (B)

),MMD2

(X(B+v)

i

, Y (B+v)

)

i

+

1

N2

X

i 6=j

Cov

h
MMD2

(X(B)

i

, Y (B)

),MMD2

(X(B+v)

j

, Y (B+v)

)

i
.

Using results from Lemma 5 and Lemma 6, we have:

Cov (Z
B

, Z
B+v

) =

1

N

✓
B _ (B + v)

2

◆�1

E[h2

(x, x0, y, y0)]

+

N � 1

N

✓
B _ (B + v)

2

◆�1

Cov [h(x, x0, y, y0), h(x00, x000, y, y0)]

=

✓
B _ (B + v)

2

◆�1


1

N
E[h2

(x, x0, y, y0)] +
N � 1

N
Cov [h(x, x0, y, y0), h(x00, x000, y, y0)]

�
.

Finally, plugging in the expressions for Var[Z
B

] and Var[B + v], we have (7) for the offline case.

For the online case we need to analyze r0 = Cov (M
t

,M
t+s

) . Without loss of generality, assume
s > 0. We may use the covariance result above for a fixed block size B

0

to obtain

Cov
⇣

MMD2

(X(B

0

,t)

i

, Y (B

0

,t)

),MMD2

(X(B

0

,t+s)

i

, Y (B

0

,t+s)

)

⌘

=

✓
B

2

◆�2

✓
B � s

2

◆
Var[h(x, x0, y, y0)],

(13)
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and

Cov
⇣

MMD2

(X(B

0

,t)

i

, Y (B

0

,t)

),MMD2

(X(B

0

,t+s)

j

, Y (B

0

,t+s)

)

⌘

=

✓
B

2

◆�2

✓
B � s

2

◆
Cov(h(x, x0, y, y0), h(x00, x000, y, y0)).

(14)

Thus,
Cov (Z

B

0

,t

, Z
B

0

,k+s

)

= Cov

0

@ 1

N

NX

i=1

MMD2

(X(B

0

,t)

i

, Y (B

0

,t)

),
1

N

NX

j=1

MMD2

(X(B

0

,t+s)

j

, Y (B

0

,t+s)

)

1

A

=

✓
B

0

2

◆�2

✓
B

0

� s

2

◆
1

N
Var(h(x, x0, y, y0)) +

N � 1

N
Cov(h(x, x0, y, y0), h(x00, x000, y, y0))

�

(15)
We have:

r0
t,t+s

=

�
B

0

�s

2

�
�
B

0

2

� =

✓
1� s

B
0

◆✓
1� s

B
0

� 1

◆
. (16)

Lemma 7 (Covariance of MMD, under the null, different block sizes, same block index.) For
blocks with the same index i but with distinct block sizes, under the null hypothesis we have

Cov

⇥
MMD

2

(X
i

, Y ;B),MMD

2

(X
i

, Y ;B + v)
⇤
=

✓
B _ (B + v)

2

◆�1

E[h2

(x, x0, y, y0)] (17)

Proof [Proof of Lemma 7] Note that

Cov

h
MMD

2

(X(B)

i

, Y (B)

),MMD

2

(X(B+v)

i

, Y (B+v)

)

i

= Cov

2

4
✓
B

2

◆�1

BX

l<j

h(X
i,l

, X
i,j

, Y
l

, Y
j

),

✓
B + v

2

◆�1

B+vX

p<q

h(X
i,p

, X
i,q

, Y
p

, Y
q

)

3

5

=

✓
B

2

◆�1

✓
B + v

2

◆�1

Cov

2

4
BX

l<j

h(X
i,l

, X
i,j

, Y
l

, Y
j

),
B+vX

p<q

h(X
i,p

, X
i,q

, Y
p

, Y
q

)

3

5

=

✓
B

2

◆�1

✓
B + v

2

◆�1

✓
B ^ (B + v)

2

◆
Var[h(x, x0, y, y0)]

=

✓
B _ (B + v)

2

◆�1

E[h2

(x, x0, y, y0)],

where the second last equality is due to a similar argument as before to drop block indices as they
are i.i.d.under the null.

Lemma 8 (Covariance of MMD, under the null, different block sizes and different block indices.)
Under the null we have

Cov

h
MMD

2

(X(B)

i

, Y (B)

),MMD

2

(X(B+v)

i+s

, Y (B+v)

)

i
=

✓
B _ (B + v)

2

◆�1

Cov [h(x, x0, y, y0), h(x00, x000, y, y0)] .
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Proof [Proof of Lemma 8] Note that

Cov

h
MMD

2

(X(B)

i

, Y (B)

),MMD

2

(X(B+v)

i+s

, Y (B+v)

)

i

= Cov

2

4
✓
B

2

◆�1

BX

l<j

h(X(B)

i,l

, X(B)

i,j

, Y (B)

l

, Y (B)

j

),

✓
B + v

2

◆�1

B+vX

p<q

h(X(B+v)

i+s,p

, X(B+v)

i+s,q

, Y (B+v)

p

, Y (B+v)

q

)

3

5

=

✓
B

2

◆�1

✓
B + v

2

◆�1

Cov

2

4
BX

l<j

h(X(B)

i,l

, X(B)

i,j

, Y (B)

l

, Y (B)

j

),
B+vX

p<q

h(X(B+v)

i+s,p

, X(B+v)

i+s,q

, Y (B+v)

p

, Y (B+v)

q

)

3

5

=

✓
B

2

◆�1

✓
B + v

2

◆�1

✓
B ^ (B + v)

2

◆
Cov [h(x, x0, y, y0), h(x00, x000, y, y0)]

=

✓
B _ (B + v)

2

◆�1

Cov [h(x, x0, y, y0), h(x00, x000, y, y0)] ,

where the second last equality is due to a similar argument as before to drop block indices as they
are i.i.d.under the null.

Proof [Proof of Theorem 3.] Define Z 0
B

= Z
B

/
p

Var[Z
B

]. We would like to study
P1 �

max

B2[2,M ]

Z 0
B

> b
 

under null hypothesis. Recall that ⇠
B

is set to the solution to ˙ 
B

(✓) = b

and  
B

(✓) = logE[e✓Z0
B

] is the log moment generating function. Under null hypothesis, we may
approximate the distribution Z 0

B

⇠ N (0, 1). Hence,  
B

(✓
B

) = ✓2/2, and the solution ✓
B

to
˙ (✓) = b becomes

✓
B

= b, and  
B

(✓
B

) = b2/2.

In the following we will use the “likelihood ratio identity” trick, which computes a probability of
an event formulated in some distribution by reformulating it as an expectation in the context of
an alternative distribution [12, 16]. We use the notation E

B

[U ;A] to indicate that the expectation
involves the product between the random variable U and the indicator of the event A. Associate
with each B, B 2 [2,M ] a log-likelhood ratio of the form

`
B

= ✓
B

Z 0
B

�  
B

(✓
B

) = bZ 0
B

� b2/2. (18)
With the aid of such log-likelihood ratios we may produce the likelihood ratio identity:

P1
⇢

max

B2[2,B

max

]

Z 0
B

> b

�
= E

" P
B

max

B=2

e`B
P

B

max

s=2

e`s
| {z }

=1

; max

B2[2,B

max

]

Z 0
B

> b

#

=

B

maxX

B=2

E


e`BP
s

e`s
; max

B2[2,B

max

]

Z 0
B

> b

�
=

B

maxX

B=2

E
B


1P
s

e`s
; max

B2[2,B

max

]

Z 0
B

> b

�
,

(19)

where P
B

is the alternative distribution that is associated with the likelihood ratio `
B

, and

E
B

[U ] = E[Ue✓Z
0
B

��(✓)
].

A local random field is produced by the consideration of difference between the log-likelihood ratio
at B and the log-likelihood ratios at other parameter values for the block size. Using (18), the
components of the local field are:

`
s

� `
B

= b(Z 0
s

� Z 0
B

). (20)
Our approximation will depend on the summation and maximization statistics of the local field:

M
B

= max

B2[2,B

max

]

e`s�`B , and S
B

= max

B2[2,B

max

]

e`s�`B .

Also introduce the re-centered log-likelihood ratio:
˜`
B

:= ✓
B

(Z 0
B

� ˙ (✓
B

)) = b(Z 0
B

� b),
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By introducing and subtracting or dividing terms in (19), we may write it in a form that is convenient
to apply Theorem 5.2 in [16]:

B

maxX

B=2

e B

(✓

B

)�✓
B

bE
B

"
e✓B max

s2[2,B]

{Z0
s

�Z

0
B

}e�✓B[Z0
B

�b+max

s2[2,B

max

]

{Z0
s

�Z

0
B

}]
P

s2[2,B

max

]

e✓BZ

0
s

� 
B

(✓

B

)

;

Z 0
B

� b+ max

s2[2,B

max

]

{Z 0
s

� Z 0
B

} � 0

#

= e�b

2

/2

B

maxX

B=2

E
B


M

B

S
B

e�[
˜

`

B

+logM

B

]

;

˜`
B

+ logM
B

� 0

�
.

(21)

In order to apply the localization theorem (Theorem 5.2 in [16]) we need to identify the local limit
distribution of ˜`

B

and of the local field {`
s

� `
B

: s 2 [2, B
max

]} and prove asymptotic indepen-
dence between them. The analysis of the limiting distributions should be done under the alternative
distribution P

B

. Under the alternative distribution P
B

, we get that E
B

[

˜`
B

] = 0, since E
B

[`
B

] = b,
and the variance is Var

B

(

˜`
B

) = b2Var
B

(`
B

) = b2 ¨ 
B

(✓
B

) = b2, since  
B

(✓) = ✓2/2. On the
other hand, using a decomposition technique similar to that is used for the proof of Lemma 9, the
covariance between the local field {`

s

� `
B

} and the re-centered log-likelihood ratio ˜`
B

is given by

Cov(`
s

� `
B

, ˜`
B

) = E
B

[b(Z
s

� Z
B

) · b(Z
B

� b)] = �b2(1� r
s,B

)E
B

[Z
B

(Z
B

� b)]

= �b2(1� r
s,B

) ⇡ �b2
1

2

2(B � 1)

B(B � 1)

|B � s|. (22)

Hence, the asymptotic independence between the local field and the re-centered log-likelihood ratio
follows from the fact that, when b ! 1 and b/

p
B ! c for some constant c, if |B� s| is small, the

covariance between `
s

� `
B

and ˜`
B

is on the order of a constant. However, the standard deviation
of ˜`

B

diverges to infinity proportional to b. Consequently, the correlation between the global term
and local fields tends to 0.

We will approximate the limit joint distribution of the local field and the global term is Gaussian.
Computation of the expectation and covariance structure are sufficient for obtain the final approxi-
mation. Lemma 9 shows that the asymptotic distribution of {`

s

� `
B

}, for s = B + j and |j| not
too large, is a two-sided Gaussian random walk with a negative drift. The variance of an increment
of this random walk is µ2.

Using the localization theorem (Theorem 5.2 in [16]), since the local field and the re-centered log-
likelihood ratio are asymptotically independent when b ! 1, we have

E
B


M

B

S
B

e�[

˜

`

B

+logM

B

]

;

˜`
B

+ logM
B

� 0

�
⇡ µ2

2

⌫(µ)
1q

2⇡ ¨ (✓
B

)

=

µ2⌫(µ)

2

p
2⇡

. (23)

Finally, combine the results above we obtain (8).

Lemma 9 (Offline, analysis of mean and variance of local field. ) The mean and variance of the
local field {`

B+v

� `
B

}, for v = 0,±1,±2, . . ., are related by

E
B

[`
B+v

� `
B

] = �1

2

Var

B

[`
B+v

� `
B

]. (24)

Moreover, given µ = b
q

2B�1

B(B�1)

,

E
B

[`
B+v

� `
B

] ⇡ �µ2

2

|v|, Var

B

[`
B+v

� `
B

] ⇡ µ2|v|. (25)

Proof [Proof of Lemma 9] From the definition of the local field (9), we have that for s = B + v:

E
B

[`
B+v

� `
B

] = E
B

⇥
b(Z 0

B+v

� Z 0
B

)

⇤
= E

h
b(Z 0
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)ebZ
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q
1� r2
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W
⌘
ebZ

0
B

�b

2

/2

i
.

(26)
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The above representation results from the regression of Z 0
B+v

on Z 0
B

:

Z 0
B+v

= r
B+v,B

Z 0
B

+

q
1� r2

B+v,B

W,

with W being the standardized residual of the regression, and r = Cov
�
Z 0
B

, Z 0
B+v

�
. Since W is

zero-mean and independent of Z 0
B

, (26) becomes

E
B

[`
B+v

� `
B

] = �b(1� r)E
h
Z 0
B

ebZ
0
B

�b

2

/2

i
= �b2(1� r), (27)

and the last equality follows from the Gaussianity Z 0
B

⇠ N (0, 1):

E
h
Z 0
B

ebZ
0
B

� 1

2

b
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i
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Z
uebu�b
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/2 · e�u
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Z
ue�

(u�b)

2

2

= b. (28)

Similarly, we can compute the variance of the local field under the transformed measure

Var

B

[`
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� `
B
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B

⇥
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h
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i
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B
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⇥
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2
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)

2
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B

[b(r � 1)Z 0
B

]

2

= b2(1� r2) + b2(r � 1)

2

= 2b2(1� r).

Hence, we have the desired result (24).

Next, using results from Lemma 2, we have that

r
B,B+v

= Cov
⇥
Z 0
B

, Z 0
B+v

⇤
=

s✓
B

2

◆✓
B + v

2

◆
/

✓
B _ (B + v)

2

◆
. (29)

We will linearize r in terms of small increment v. For v > 0, using Taylor’s expansion (1+ u)�1

=

1� x+ o(u):

r
B,B+v

=

s
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(30)
and for v < 0,

r
B,B+v

=

s
(B + v)(B + v � 1)

B(B � 1)

=

s
⇣
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v

B
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v
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Combine these two cases, we have

r
B,B+v

=

s✓
1� |v|

B

◆✓
1� |v|

B � 1

◆
+ o(|v|) = 1� 1

2
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Substitute this in (27), we have that

E
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B

] = �b2

2

2B � 1

B(B � 1)

|v|+ o(|v|) = �µ2
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Lemma 10 (Tail of statistics under the null) When b ! 1,
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Proof [Proof for Theorem 4] Let Z 0
t

:= Z
B

0

,t

/
p

Var[Z
B

0

,t

]. We start with finding the tail proba-
bility of the online detection statistic. Note that
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)
(35)

Since the block size is fixed to be B
0

, using Lemma 1, we have that

Var(Z 0
t

) = Var(Z 0
t+s

) =
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�

(36)
Similar to previous analysis, we analyze the local field {`0

t+s

� `0
t

} where

`0
t

:= bZ 0
t

� b2/2, `0
t+s

:= bZ 0
t+s

� b2/2. (37)
Use a similar change-of-measure argument, for the sequential problem, we have that (35) can be
written as

e�
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2
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where the maximum and the sum of the local fields are
M

t

= max

t2[1,m]

e`m�`
t , S
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e`m�`
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and the re-centered log-likelihood ratio is given by
˜`
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= `
t

� b, m
t

= logM
t

. (40)

From Lemma 2, r0
t,t+s

⇡ 1 � 2B

0

�1

B

0

(B

0

�1)

s. With similar analysis as for the offline case, we can also
show that the mean and the variance of the local field terms are

E
t

{`
t+s

�`
t

} = �b2(1�r0
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µ
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|s| (41)

And similar, we may show that the local field terms and the re-centered log-likelihood ratio are
asymptotically independent. Then using the localization theorem (Theorem 5.2 in [16]), we can
write (38) as

P1 {T 6 m} ⇡ 1p
2⇡

e�
1

2

b

2

mX
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b2(2B � 1)
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B(B � 1)

!
,

(42)

where the last equation is due to the fact that the terms inside the sum are constants that are inde-
pendent of t. Using similar arguments as those in [13, 14], we may see that T is asymptotically
exponentially distributed and is uniformly integrable. Hence, if � denotes the factor multiplying m
on the right-hand side of (42), then for still larger m, in the range where m� is bounded away from
0 and 1, P1{T  m}� [1� exp(��m)] ! 0. Consequently E1{T} ⇠ ��1, which is equivalent
to (9).
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C Details for numerical examples.

Examples M -statistics. Figs. 2(a)-(c) are from the simulated data, where data before the change-
point are drawn i.i.d.from N (0, 1) and after the change-point at ⌧ = 250 are drawn i.i.d.from
Laplace(0, 1). The lower panels show the offline and online M -statistics in different settings. Note
that in this case, the mean and variance before and after the change-point are identical, and hence
conventional statistics based on mean and variance of the data cannot detect the change; however,
the M -statistic can detect the change-point in both the offline and the online setting. Also, the theo-
retical threshold obtained from Theorem 3 and Theorem 4 both effectively detect the change-point.
For Fig. 2(d), we select one segment of seismic data, where there is an evident change-point and
our online M -statistic can cross the theoretical threshold we set and detect the event quickly. Note
that the M -statistic will be affected by the kernel bandwidth, and choosing the bandwidth using the
median trick works for this case.

Accuracy of Lemma 1 for estimating Var[Z
B

]. We use Monte Carlo simulations to form 10000
instances of Z

B

using data follow the null distribution. Then we find the sample variance of Z
B

:
when B = 2, the sample variance is 0.0073, and when B = 200, the sample variance is 3.5220 ⇥
10

�7. Figs. 6(a) and (b) demonstrate the histograms of Z
B

in these two cases and the Gaussian
pdf’s with the sample mean and sample variance. Figs. 6(c) and (d) show the Q-Q plot for the two
cases and illustrate that the Gaussian assumption is reasonable, although there is certain skewness
in the statistic.

Note that using direct simulation to obtain sample variances of Z
B

requires huge amount of data.
For instance, to generate 10000 instances, we need a total of 10000(N + 1)B samples from the
reference data. On the other hand, estimate variance using Lemma 1 requires much smaller number
of samples, as we only need to evaluate E(h2

(x, x0, y, y0)) and Cov[h(x, x0, y, y0), h(x00.x000, y, y0)].
Figs. 6(e) and (f) show the percentage difference between theoretical estimate by Lemma 1, relative
those obtained from the complete simulation. It can be seen that the error decreases with more
reference data and the estimate is reasonably accurate with moderate amount of reference data.
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Figure 5: Accuracy of Lemma 1 in estimating the variance of Z
B

when B = 2 and B = 200.
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Accuracy of Theorem 3 for offline case. We compare the approximated tail probability from The-
orem 3 with that obtained from the empirical distribution with 5000 instances of M -statistics. As-
sume the data is 20-dimensional and the null distribution is N (0, I

20

) and set B
max

= 20. Fig.6 (a)
demonstrates how to determine the threshold from empirical distribution and Fig.6(b) demonstrates
that the approximation works well especially for small ↵ values.

Furthermore, we also show the thresholds for real speech signals in the CENSREC-1-C dataset, as
shown in Fig. 7. In this case, the reference distribution P is the unknown distribution of real speech
signal, and we only have a limited number of speech signals and we generate 10000 bootstrap
samples to estimate the empirical distribution. Note that in this harder case, the theoretical threshold
matches quite well with the bootstrapped threshold.

Table 1 contains more comparisons for B
max

= 10 and B
max

= 50.

−2 0 2 4 6 8 10
0

50

100

150

200

250

α = 0.05

b=2.88

2 2.5 3 3.5 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b
Si

gn
ifi

ca
nt

 L
ev

el
 

 

Formula
Sampling

(a) (b)

Figure 6: In the offline case: (a) illustration of choosing b by simulation from empirical distribution,
(b) comparison of SL ↵ for a range of b values using simulation and Theorem 3.
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Figure 7: Speech data: (a) illustration of background data; (b) choosing b by bootrapping sampling
5000 background data; (b) comparison of SL ↵ for a range of b values using bootstrapping and
Theorem 3.

Online case: accuracy of Theorem 4 and EDD. We generate 5000 instances to evaluate the accu-
racy of the threshold for the online case, for various null distributions. Fig. 3 demonstrates that the
theoretical threshold is accurate, especially for larger B

0

.

In the online setting, we compare the EDD of detecting a change-point where the signal is 20 di-
mensional, and the transition is from a zero-mean Gaussian N (0, I

20

) to a non-zero mean Gaussian
N (µ, I

20

) where the post-change mean vector µ is element-wise equal to a constant mean shift. Fig.
9 compares the EDDs for B

0

= 20, using a threshold 4.17 obtained from simulation, and a thresh-
old 3.73 obtained from Theorem 4, respectively. Note that when the mean shift is not too weak, the
difference between two EDDs is reasonable. Also, EDD decreases as the mean shift increases.

Dependence on block size. We evaluate the EDD versus block size under various Gaussian mean
shift from N (0, I). As shown in Figure 10 (a), we fix the Gaussian mean shift to be 0.2 and demon-
strate the log (EDD) versus B. We see B = 28 yields the smallest log (EDD), which is defined as
the optimal block size given mean shift equals 0.2. Similarly, we evaluate the specific optimal block
size by varying the mean shift from 0.1 to 1.2. See the obtained optimal block size in Figure 10 (b).
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D Details for real-data experiments.

CENSREC-1-C Speech dataset. CENSREC-1-C is a real-world speech dataset in the Speech Re-
source Consortium (SRC) corpora provided by National Institute of Informatics (NII) 3.

This dataset contains two categories of data:

• Simulated data
The simulated speech data are constructed by concatenating several utterances spoken by
one speaker. Each concatenated sequence is then added with 7 different levels of noise
from 8 different environments. So there are totally 56 different noise. Each noise setting
contains 104 sequences from 52 males and 52 females speakers.

• Recording data
The recording data is from two real-noisy environments (in university restaurant and in the
vicinity of highway), and with two Signal Noise Ratio (SNR) settings (lower and higher).
Ten subjects were employed for recording, and each one has four speech sequence data.

Experiment Settings. We will compare our algorithm with the baseline algorithm from [7]. [7]
only utilized 10 sequences from “STREET SNR HIGH” setting in recording data. Here we will use
all the settings in recording data, the SNR level 20db and clean signals from simulated data. See
Figure 11 for some examples of the testing data, as well as the statistics computed by our algorithm.
For each sequence, we decompose it into several segments. Each segment consists of two types of
signals (noise vs speech). Given the reference data from noise, we want to detect the point where
the signal changes from noise to speech.

Evaluation Metrics. We use Area Under Curve (AUC) to evaluate the computed statistics, like in [7].
Specifically, for each test sequence that consists of two signal distributions, we will mark the points
as change-points whose statistics exceed the given threshold. If the distance between detected point

3Available from http://research.nii.ac.jp/src/en/CENSREC-1-C.html
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Figure 10: In the online case, when the post-change distribution Q is N (µ, 20) and the post-change
mean is element-wise equal to a constant mean shift. (a) log(EDD) versus block size and the optimal
block size corresponds to the minimum detection delay; (b) optimal block sizes versus µ.

RH RL SH SL
ours 0.7800 0.7282 0.6507 0.6865

baseline 0.7503 0.6835 0.4329 0.6432

(a) Recording data
C1 C2 C3 C4 C5 C6 C7 C8

ours 0.9413 0.9446 0.9236 0.9251 0.9413 0.9446 0.9236 0.9251
baseline 0.9138 0.9262 0.8691 0.9128 0.9138 0.9216 0.8691 0.9128

(b) Simulate clean data
S1 S2 S3 S4 S5 S6 S7 S8

ours 0.7048 0.7160 0.7126 0.7129 0.7094 0.7633 0.6796 0.7145
baseline 0.7083 0.6681 0.6490 0.7119 0.6994 0.6815 0.6487 0.6541

(c) Simulated data with SNR=20db

Table 2: AUC results in CENSREC-1-C speech dataset. Simulated data are from 8 noise cate-
gories, and with two different noise levels (clean(C) and SNR 20db (S)); Recording data are from
RESTAURANT SNR HIGH (RH), RESTAURANT SNR LOW (RL), STREET SNR HIGH (SH)
and STREET SNR LOW (SL).

and true change-point is within the size of detection window, then we consider it as True Alarm
(True Positive). Otherwise it is a False Alarm (False Positive).

We use 10% of the sequences to tune the parameters of both algorithms, and use the rest 90% for
reporting AUC. The kernel bandwidth is tuned in {0.1d

med

, 0.5d
med

, d
med

, 2d
med

, 5d
med

}, where
d
med

is the median of pairwise distances of reference data. Block size is fixed to 50, and the number
of blocks is simply tuned in {10, 20, 30}.

Results. Table 2 shows the AUC of two algorithms on different background settings. Our algorithm
surpasses the baseline on most cases. Both algorithms are performing quite well on the simulated
clean data, since the difference between speech signals and background is more significant than the
noisy ones. The averaged AUC of our algorithm on all these settings is .8014, compared to .7578
achieved by baseline algorithm. See the ROC curves in Figure 12 for a better comparison.

HASC dataset. This data is from Human Activity Sensing Consortium (HASC) challenge 20114.
Each data consists of human activity information collected by portable three-axis accelerometers.
Following the setting in [7], we use the `

2

-norm of 3-dimensional data (i.e., the magnitude of accel-
eration) as the signals.

We use the ‘RealWorldData’ from HASC Challenge 2011, which consists of 6 kinds of human activ-
ities (walk/jog, stairUp/stairDown, elevatorUp/elevatorDown, escalatorUp/escalatorDown, moving-

4http://hasc.jp/hc2011
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Figure 11: Examples of speech dataset. The red vertical bar shown in the upper part of each figure is
the ground truth of change-point; The green vertical bar shown in the lower part is the change-point
detected by our algorithm (the point where the statistic exceeds the threshold). We also plot the
threshold as a red dash horizontal line in each figure. Once the statistics touch the threshold, we will
stop the detection.

Walkway, stay). We make pairs of signal sequences from different activity categories, and remove
the sequences which are too short. We finally get 381 sequences. We tune the parameters using the
same way as in CENSREC-1-C experiment. The AUC of our algorithm is .8871, compared to .7161
achieved by baseline algorithm, which greatly improved the performance.

Examples of the signals are shown in Figure 13. Some sequences are easy to find the change-
point, like Figure 13a, and 13d. Some pairs of the signals are hard to distinguish visually, like
Figure 13b and 13c. The examples show that our algorithm can tell the change-point from walk
to stairUp/stairDown, or from stairUp/stairDown to escalatorUp/escalatorDown. There are some
cases when our algorithm raises false alarm. See Figure 13h. It find a change-point during the
activity ‘elevatorUp/elevatorDown’. It is reasonable, since this type of action contains the phase
from acceleration to uniform motion, and the phase from uniform motion to acceleration.
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Figure 12: AUC comparison on speech dataset
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Figure 13: Examples of HASC dataset. The markers in this figure are the same as in Figure 11.
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