
Mixed Robust/Average Submodular Partitioning:
Fast Algorithms, Guarantees, and Applications :

NIPS 2015 Extended Supplementary

Kai Wei1 Rishabh Iyer1 Shengjie Wang2 Wenruo Bai1 Jeff Bilmes1

1 Department of Electrical Engineering, University of Washington
2 Department of Computer Science, University of Washington

{kaiwei, rkiyer, wangsj, wrbai, bilmes}@u.washington.edu

Abstract

We investigate two novel mixed robust/average-case submodular data partitioning
problems that we collectively call Submodular Partitioning. These problems gen-
eralize purely robust instances of the problem, namely max-min submodular fair
allocation (SFA) [18] and min-max submodular load balancing (SLB) [40], and
also average-case instances, that is the submodular welfare problem (SWP) [44]
and submodular multiway partition (SMP) [8]. While the robust versions have been
studied in the theory community [17, 18, 27, 40, 44], existing work has focused
on tight approximation guarantees, and the resultant algorithms are not generally
scalable to large real-world applications. This is in contrast to the average case,
where most of the algorithms are scalable. In the present paper, we bridge this gap,
by proposing several new algorithms (including greedy, majorization-minimization,
minorization-maximization, and relaxation algorithms) that not only scale to large
datasets but that also achieve theoretical approximation guarantees comparable
to the state-of-the-art. We moreover provide new scalable algorithms that apply
to additive combinations of the robust and average-case objectives. We show that
these problems have many applications in machine learning (ML), including data
partitioning and load balancing for distributed ML, data clustering, and image seg-
mentation. We empirically demonstrate the efficacy of our algorithms on real-world
problems involving data partitioning for distributed optimization (of convex and
deep neural network objectives), and also purely unsupervised image segmentation.

1 Introduction

The problem of data partitioning is of great importance to many machine learning (ML) and data
science applications as is evidenced by the wealth of clustering procedures that have been and continue
to be developed and used. Most data partitioning problems are based on expected, or average-case,
utility objectives where the goal is to optimize a sum of cluster costs, and this includes the ubiquitous
k-means procedure [1]. Other algorithms are based on robust objective functions [16], where the
goal is to optimize the worst-case cluster cost. Such robust algorithms are particularly important
in mission critical applications, such as parallel and distributed computing, where one single poor
partition block can significantly slow down an entire parallel machine (as all compute nodes might
need to spin while waiting for a slow node to complete a round of computation). Taking a weighted
combination of both robust and average case objective functions allows one to balance between
optimizing worst-case and overall performance. We are unaware, however, of any previous work that
allows for a mixing between worst- and average-case objectives in the context of data partitioning.

1

This paper studies two new mixed robust/average-case partitioning problems of the following form:

Problem 1: max
π∈Π

[
λ̄min

i
fi(A

π
i) +

λ

m

m∑
j=1

fj(A
π
j)
]
, (1)

Problem 2: min
π∈Π

[
λ̄max

i
fi(A

π
i) +

λ

m

m∑
j=1

fj(A
π
j)
]
, (2)

where 0 ≤ λ ≤ 1, λ̄ , 1 − λ, the set of sets π = (Aπ1 , A
π
2 , · · · , Aπm) is a partition of a finite set

V (i.e, ∪iAπi = V and ∀i 6= j, Aπi ∩ Aπj = ∅), and Π refers to the set of all partitions of V into
m blocks. The parameter λ controls the objective: λ = 1 is the average case, λ = 0 is the robust
case, and 0 < λ < 1 is a mixed case. In general, Problems 1 and 2 are hopelessly intractable,
even to approximate, but we assume that the f1, f2, · · · , fm are all monotone non-decreasing (i.e.,
fi(S) ≤ fi(T) whenever S ⊆ T), normalized (fi(∅) = 0), and submodular [15] (i.e., ∀S, T ⊆ V ,
fi(S) + fi(T) ≥ fi(S ∪ T) + fi(S ∩ T)). These assumptions allow us to develop fast, simple, and
scalable algorithms that have approximation guarantees, as is done in this paper. These assumptions,
moreover, allow us to retain the naturalness and applicability of Problems 1 and 2 to a wide variety of
practical problems. Submodularity is a natural property in many real-world ML applications [48, 51,
35, 47, 31, 26, 10, 30, 46]. When minimizing, submodularity naturally model notions of interacting
costs and complexity, while when maximizing it readily models notions of diversity, summarization
quality, and information. Hence, Problem 1 asks for a partition whose blocks each (and that
collectively) are a good, say, summary of the whole. Problem 2 on the other hand, asks for a partition
whose blocks each (and that collectively) are internally homogeneous (as is typical in clustering).
Taken together, we call Problems 1 and 2 Submodular Partitioning. We further categorize these
problems depending on if the fi’s are identical to each other (homogeneous) or not (heterogeneous).1
The heterogeneous case clearly generalizes the homogeneous setting, but as we will see, the additional
homogeneous structure can be exploited to provide more efficient and/or tighter algorithms.

1.1 Sub-categorizations and Related Previous Work

Problem 1: Special cases of Problem 1 have appeared previously in the literature. Problem 1
with λ = 0 is called submodular fair allocation (SFA), which has been studied mostly in the
heterogeneous setting. When fi’s are all modular, the tightest algorithm, so far, is to iteratively round
an LP solution achieving O(1/(

√
m log3m)) approximation [2], whereas the problem is NP-hard

to 1/2 + ε approximate for any ε > 0 [18]. When fi’s are submodular, [18] gives a matching-based
algorithm with a factor 1/(n − m + 1) approximation that performs poorly when m � n. [27]
propose a binary search algorithm yielding an improved factor of 1/(2m− 1). Another approach
approximates each submodular function by its ellipsoid approximation (non-scalable) and reduces
SFA to its modular version leading to an approximation factor of O(

√
nm1/4 log n log3/2m). These

approaches are theoretically interesting, but they either do not fully exploit the problem structure or
cannot scale to large problems. On the other hand, Problem 1 for λ = 1 is called submodular welfare.
This problem has been extensively studied in the literature and can be equivalently formulated as
submodular maximization under a partition matroid constraint [44]. It admits a scalable greedy
algorithm that achieves a 1/2 approximation [14]. More recently a multi-linear extension based
algorithm nicely solves the submodular welfare problem with a factor of (1 − 1/e) matching the
hardness of this problem [44]. As far as we know, Problem 1 for general 0 < λ < 1 has not been
studied in the literature.

Problem 2: When λ = 0, Problem 2 is studied as submodular load balancing (SLB). When fi’s are
all modular, SLB is called minimum makespan scheduling. In the homogeneous setting, [19] give a
PTAS scheme ((1+ ε)-approximation algorithm which runs in polynomial time for any fixed ε), while
an LP relaxation algorithm provides a 2-approximation for the heterogeneous setting [32]. When the
objectives are submodular, the problem becomes much harder. Even in the homogeneous setting, [40]

1Similar sub-categorizations have been called the “uniform” vs. the “non-uniform” case in the past [40, 17].
2Results obtained in this paper are marked as ∗. Methods for only the homogeneous setting are marked as †.

2

Problem 1 (Max-(Min+Avg))
Approximation factor

λ = 0, BINSRCH [27] 1/(2m− 1)
λ = 0, MATCHING [18] 1/(n−m+ 1)

λ = 0, ELLIPSOID [17] O(
√
nm1/4 log n log3/2m)

λ = 1, GREEDWELFARE [14] 1/2
λ = 0, GREEDSAT∗ (1/2− δ, δ

1/2+δ)

λ = 0, MMAX∗ O(min
i

1+(|Aπ̂i |−1)(1−κfi (A
π̂
i))

|Aπ̂i |
√
m log3m

)

λ = 0, GREEDMAX†∗ 1/m
0 < λ < 1, GENERALGREEDSAT∗ λ/2

0 < λ < 1, COMBSFASWP∗ max{ βα
λ̄β+α

, λβ}
0 < λ < 1, COMBSFASWP†∗ max{min{α, 1

m},
βα

λ̄β+α
, λβ}

λ = 0, Hardness 1/2 [18]
λ = 1, Hardness 1− 1/e [44]

Table 1: Summary of our contributions and existing work on Problem 1.2 See text for details.

show that the problem is information theoretically hard to approximate within o(
√
n/ log n). They

provide a balanced partitioning algorithm yielding a factor of min{m,n/m} under the homogeneous
setting. They also give a sampling-based algorithm achieving O(

√
n/ log n) for the homogeneous

setting. However, the sampling-based algorithm is not practical and scalable since it involves solving,
in the worst-case, O(n3 log n) instances of submodular function minimization each of which in
general currently requires O(n5γ + n6) computation [37], where γ is the cost of a function valuation.
Similar to Submodular Fair Allocation, [17] applies the same ellipsoid approximation techniques
leading to a factor of O(

√
n log n) [17]. When λ = 1, Problem 2 becomes the submodular multiway

partition (SMP) for which one can obtain a relaxation based 2-approximation [8] in the homogeneous
case. In the non-homogeneous case, the guarantee is O(log n) [9]. Similarly, [50, 36] propose
a greedy splitting 2-approximation algorithm for the homogeneous setting. To the best of our
knowledge, there does not exist any work on Problem 2 with general 0 < λ < 1.

Problem 2 (Min-(Max+Avg))
Approximation factor

λ = 0, BALANCED† [40] min{m,n/m}
λ = 0, SAMPLING [40] O(

√
n log n)

λ = 0, ELLIPSOID [17] O(
√
n log n)

λ = 1, GREEDSPLIT† [50, 36] 2
λ = 1, RELAX [8] O(log n)

λ = 0, MMIN∗ max
i

2|Aπ
∗
i |

1+(|Aπ∗i |−1)(1−κfi (A
π∗
i))

λ = 0, LOVÁSZ ROUND∗ m
0 < λ < 1 GENERALLOVÁSZ ROUND∗ m

0 < λ < 1, COMBSLBSMP∗ min{ mα
mλ̄+λ

, β(mλ̄+ λ)}
0 < λ < 1, COMBSLBSMP†∗ min{m, mα

mλ̄+λ
, β(mλ̄+ λ)}

λ = 0, Hardness∗ m
λ = 1, Hardness 2− 2/m [12]

Table 2: Summary of our contributions and existing work on Problem 23.

1.2 Our Contributions

In contrast to Problems 1 and 2 in the average case (i.e., λ = 1), existing algorithms for the worst case
(λ = 0) are not scalable. This paper closes this gap, by proposing three new classes of algorithmic

3Results obtained in this paper are marked as ∗. Methods for only the homogeneous setting are marked as †.

3

frameworks to solve SFA and SLB: (1) greedy algorithms; (2) semigradient-based algorithms; and
(3) a Lovász extension based relaxation algorithm.

For SFA, when m = 2, we formulate the problem as non-monotone submodular maximization,
which can be approximated up to a factor of 1/2 with O(n) function evaluations [7]. For general
m, we give a simple and scalable greedy algorithm (GREEDMAX), and show a factor of 1/m in the
homogeneous setting, improving the state-of-the-art factor of 1/(2m− 1) under the heterogeneous
setting [27]. For the heterogeneous setting, we propose a “saturate” greedy algorithm (GREEDSAT)
that iteratively solves instances of submodular welfare problems. We show GREEDSAT has a
bi-criterion guarantee of (1/2− δ, δ/(1/2 + δ)), which ensures at least dm(1/2− δ)e blocks receive
utility at least δ/(1/2 + δ)OPT for any 0 < δ < 1/2. For SLB, we first generalize the hardness
result in [40] and show that it is hard to approximate better than m for any m = o(

√
n/ log n) even

in the homogeneous setting. We then give a Lovász extension based relaxation algorithm (LOVÁSZ
ROUND) yielding a tight factor of m for the heterogeneous setting. As far as we know, this is the first
algorithm achieving a factor ofm for SLB in this setting. For both SFA and SLB, we also obtain more
efficient algorithms with bounded approximation factors, which we call majorization-minimization
(MMIN) and minorization-maximization (MMAX).

Next we show algorithms to handle Problems 1 and 2 with general 0 < λ < 1. We first give
two simple and generic schemes (COMBSFASWP and COMBSLBSMP), both of which efficiently
combines an algorithm for the worst-case problem (special case with λ = 0), and an algorithm for
the average case (special case with λ = 1) to provide a guarantee interpolating between the two
bounds. Given the efficient algorithms proposed in this paper for the robust (worst case) problems
(with guarantee α), and an existing algorithm for the average case (say, with a guarantee β), we can
obtain a combined guarantee in terms of α, β and λ. We then generalize the proposed algorithms for
SLB and SFA to give more practical algorithmic frameworks to solve Problems 1 and 2 for general λ.
In particular we generalize GREEDSAT leading to GENERALGREEDSAT, whose guarantee smoothly
interpolates in terms of λ between the bi-criterion factor by GREEDSAT in the case of λ = 0 and the
constant factor of 1/2 by the greedy algorithm in the case of λ = 1. For Problem 2 we generalize
LOVÁSZ ROUND to obtain a relaxation algorithm (GENERALLOVÁSZ ROUND) that achieves an
m-approximation for general λ. Motivated by the computational limitation of GENERALLOVÁSZ
ROUND we also give a simple and efficient greedy heuristic called GENERALGREEDMIN that works
for the homogeneous setting of Problem 2.

Lastly we demonstrate a number of applications of submodular partitioning in real-world machine
learning problems. In particular we show Problem 1 is applicable in distributed training of statistical
models. Problem 2, on the other hand, is useful for data clustering, image segmentation, and
computational load balancing. In the experiments we empirically evaluate Problem 1 on data
partitioning for ADMM and distributed deep neural network training. The efficacy of Problem 2 is
tested on an unsupervised image segmentation task.

As an outline of this paper, we provide algorithms for SFA and SLB in Section 2. Algorithms for
Problems 1 and 2 with general λ are given in Section 3. Section 4 demonstrates several applications
of Problems 1 and 2 to machine learning, and empirical validation of the proposed algorithms is given
in Section 5. We conclude in Section 6.

2 Robust Submodular Partitioning (Problems 1 and 2 when λ = 0)

Notation: we define f(j|S) , f(S ∪ j)− f(S) as the gain of j ∈ V in the context of S ⊆ V . Then,
f is submodular if and only if f(j|S) ≥ f(j|T) for all S ⊆ T and j /∈ T . Also, f is monotone iff
f(j|S) ≥ 0,∀j /∈ S, S ⊆ V . We assume w.l.o.g. that the ground set is V = {1, 2, · · · , n}.

2.1 Approximation Algorithms for SFA (Problem 1 with λ = 0)

We first investigate a special case of SFA with m = 2. When m = 2, the problem becomes
max
A⊆V

g(A), (3)

where g(A) = min{f1(A), f2(V \A)} and is submodular thanks to Theorem 2.1.

Theorem 2.1. If f1 and f2 are monotone submodular, min{f1(A), f2(V \A)} is also submodular.

4

All proofs for the theoretical results are given in Appendix. Interestingly SFA for m = 2 can be
equivalently formulated as unconstrained submodular maximization. This problem has been well
studied in the literature [7, 11, 13]. A simple bi-directional randomized greedy algorithm [7] solves
Eqn 3 with a tight factor of 1/2. Applying this randomized algorithm to solve SFA then achieves a
guarantee of 1/2 matching the problem’s hardness. However, the same idea does not apply to the
general case of m > 2.

For general m, we approach SFA from the perspective of the greedy algorithms. Greedy is often
the algorithm that practitioners use for combinatorial optimization problems since they are intuitive,
simple to implement, and often lead to very good solutions. In this work we introduce two variants
of a greedy algorithm – GREEDMAX (Alg. 1) and GREEDSAT (Alg. 2), suited to the homogeneous
and heterogeneous settings, respectively.

Algorithm 1: GREEDMAX

1: Input: f , m, V .
2: Let A1 =, . . . ,= Am = ∅; R = V .
3: while R 6= ∅ do
4: j∗ ∈ argminj f(Aj);
5: a∗ ∈ argmaxa∈R f(a|Aj∗)
6: Aj∗ ← Aj∗ ∪ {a∗}; R← R \ a∗
7: end while
8: Output {Ai}mi=1.

GREEDMAX: The key idea of GREEDMAX (see Alg. 1) is to greedily add an item with the
maximum marginal gain to the block whose current solution is minimum. Initializing {Ai}mi=1 with
the empty sets, the greedy flavor also comes from that it incrementally grows the solution by greedily
improving the overall objective mini=1,...,m fi(Ai) until {Ai}mi=1 forms a partition. Besides its
simplicity, Theorem 2.2 offers the optimality guarantee.
Theorem 2.2. Under the homogeneous setting (fi = f for all i), GREEDMAX is guaranteed to find
a partition π̂ such that

min
i=1,...,m

f(Aπ̂i) ≥ 1

m
max
π∈Π

min
i=1,...,m

f(Aπi). (4)

By assuming the homogeneity of the fi’s, we obtain a very simple 1/m-approximation algorithm
improving upon the state-of-the-art factor 1/(2m− 1) [27]. Thanks to the lazy evaluation trick as
described in [34], Line 5 in Alg. 1 need not to recompute the marginal gain for every item in each
round, leading GREEDMAX to scale to large data sets.

Algorithm 2: GREEDSAT

1: Input: ε, {fi}mi=1, m, V , α.
2: Let F̄ c(π) = 1

m

∑m
i=1 min{fi(Aπi), c}.

3: Let cmin = 0, cmax = mini fi(V)
4: while cmax − cmin ≥ ε do
5: c = 1

2 (cmax + cmin)

6: π̂c ∈ argmaxπ∈Π F̄
c(π) // solved by GREEDSWP (Alg 3)

7: if F̄ c(π̂c) < αc then
8: cmax = c
9: else

10: cmin = c; π̂ ← π̂c

11: end if
12: end while
13: Output: π̂.

GREEDSAT: Though simple and effective in the homogeneous setting, GREEDMAX performs
arbitrarily poorly under the heterogeneous setting.Consider the following example: V = {v1, v2},
f1(v1) = 1, f1(v2) = 0, f1({v1, v2}) = 1, f2(v1) = 1 + ε, f2(v2) = 1, f2({v1, v2}) = 2 + ε. f1

5

Algorithm 3: GREEDSWP
Input: {fi}mi=1, c, V
Initialize: A1 =, . . . ,= Am = ∅, and R← V
while R 6= ∅ do

for i = 1, . . . ,m do
δi = maxr∈R min{fi(Ai ∪ r), c} −min{fi(Ai), c}
ai ∈ argmaxr∈R min{fi(Ai ∪ r), c} −min{fi(Ai), c}

j ∈ argmaxi δ(i)
Aj ← Aj ∪ {aj}
R← R \ aj

Output π̂c = (A1, . . . , Am).

and f2 are monotone submodular. The optimal partition is to assign v1 to f1 and v2 to f2 leading to a
solution of value 1. However, GREEDMAX may assign v1 to f2 and v2 to f1 leading to a solution of
value 0. Therefore, GREEDMAX performs arbitrarily poorly on this example.

To this end we provide another algorithm – “Saturate” Greedy (GREEDSAT, see Alg. 2). The key
idea of GREEDSAT is to relax SFA to a much simpler problem – Submodular Welfare (SWP), i.e.,
Problem 1 with λ = 0. Similar in flavor to the one proposed in [30] GREEDSAT defines an interme-
diate objective F̄ c(π) =

∑m
i=1 f

c
i (Aπi), where f ci (A) = 1

m min{fi(A), c} (Line 2). The parameter
c controls the saturation in each block. It is easy to verify that f ci satisfies submodularity for each i.
Unlike SFA, the combinatorial optimization problem maxπ∈Π F̄

c(π) (Line 6) is much easier and is an
instance of SWP. In this work, we solve Line 6 using the greedy algorithm as described in Alg 3, which
attains a constant 1/2-approximation [14]. Moreover the lazy evaluation trick also applies for Alg 3
enabling the wrapper algorithm GREEDSAT scalable to large data sets. One can also use a more com-
putationally expensive multi-linear relaxation algorithm as given in [44] to solve Line 6 with a tight
factor α = (1−1/e). Setting the input argument α as the approximation factor for Line 6, the essential
idea of GREEDSAT is to perform a binary search over the parameter c to find the largest c∗ such that the
returned solution π̂c

∗
for the instance of SWP satisfies F̄ c

∗
(π̂c
∗
) ≥ αc∗. GREEDSAT terminates after

solving O(log(mini fi(V)
ε)) instances of SWP. Theorem 2.3 gives a bi-criterion optimality guarantee.

Theorem 2.3. Given ε > 0, 0 ≤ α ≤ 1 and any 0 < δ < α, GREEDSAT finds a partition such that
at least dm(α− δ)e blocks receive utility at least δ

1−α+δ (maxπ∈Π mini fi(A
π
i)− ε).

For any 0 < δ < α Theorem 2.3 ensures that the top dm(α − δ)e valued blocks in the partition
returned by GREEDSAT are (δ/(1−α+δ)−ε)-optimal. δ controls the trade-off between the number of
top valued blocks to bound and the performance guarantee attained for these blocks. The smaller δ is,
the more top blocks are bounded, but with a weaker guarantee. We set the input argument α = 1/2 (or
α = 1− 1/e) as the worst-case performance guarantee for solving SWP so that the above theoretical
analysis follows. However, the worst-case is often achieved only by very contrived submodular
functions. For the ones used in practice, the greedy algorithm often leads to near-optimal solution
([30] and our own observations). Setting α as the actual performance guarantee for SWP (often very
close to 1) can improve the empirical bound, and we, in practice, typically set α = 1 to good effect.

Algorithm 4: MMAX

1: Input: {fi}mi=1, m, V , partition π0.
2: Let t = 0.
3: repeat
4: for i = 1, . . . ,m do
5: Pick a subgradient hi at Aπ

t

i for fi.
6: end for
7: πt+1 ∈ argmaxπ∈Π mini hi(A

π
i)

8: t = t+ 1;
9: until πt = πt−1

10: Output: π̂ ∈ argmaxπ=π1,...,πt mini fi(A
π
i).

6

MMAX: In parallel to GREEDSAT, we also introduce a semi-gradient based approach for solving
SFA under the heterogeneous setting. We call this algorithm minorization-maximization (MMAX,
see Alg. 4). Similar to the ones proposed in [25, 22, 20], the idea is to iteratively maximize tight
lower bounds of the submodular functions. Submodular functions have tight modular lower bounds,
which are related to the subdifferential ∂f (Y) of the submodular set function f at a set Y ⊆ V , which
is defined [15] as:

∂f (Y) = {y ∈ Rn : f(X)− y(X) ≥ f(Y)− y(Y) for all X ⊆ V }. (5)
For a vector x ∈ RV and X ⊆ V , we write x(X) =

∑
j∈X x(j). Denote a subgradient at Y by

hY ∈ ∂f (Y), the extreme points of ∂f (Y) may be computed via a greedy algorithm: Let σ be a
permutation of V that assigns the elements in Y to the first |Y | positions (σ(i) ∈ Y if and only if i ≤
|Y |). Each such permutation defines a chain with elements Sσ0 = ∅, Sσi = {σ(1), σ(2), . . . , σ(i)},
and Sσ|Y | = Y . An extreme point hσY of ∂f (Y) has each entry as

hσY (σ(i)) = f(Sσi)− f(Sσi−1). (6)
Defined as above, hσY forms a lower bound of f , tight at Y — i.e., hσY (X) =

∑
j∈X h

σ
Y (j) ≤

f(X),∀X ⊆ V and hσY (Y) = f(Y). The idea of MMAX is to consider a modular lower bound
tight at the set corresponding to each block of a partition. In other words, at iteration t+ 1, for each
block i, we approximate fi with its modular lower bound tight at Aπ

t

i and solve a modular version
of Problem 1 (Line 7), which admits efficient approximation algorithms [2]. MMAX is initialized
with a partition π0, which is obtained by solving Problem 1, where each fi is replaced with a simple
modular function f ′i(A) =

∑
a∈A fi(a). The following worst-case bound holds:

Theorem 2.4. MMAX achieves a worst-case guarantee of

O(min
i

1 + (|Aπ̂i | − 1)(1− κfi(Aπ̂i))

|Aπ̂i |
√
m log3m

),

where π̂ = (Aπ̂1 , · · · , Aπ̂m) is the partition obtained by the algorithm, and

κf (A) = 1−min
v∈V

f(v|A \ v)

f(v)
∈ [0, 1]

is the curvature of a submodular function f at A ⊆ V .

When each submodular function fi is modular, i.e., κfi(A) = 0,∀A ⊆ V, i, the approximation
guarantee of MMAX becomes O(1√

m log3m
), which matches the performance of the approximation

algorithm for the modular problem. When each fi is fully curved, i.e., κfi = 1, we still obtain
a bounded guarantee of O(1

n
√
m log3m

). Theorem 2.4 suggests that the performance of MMAX

improves as the curvature κfi of each objective fi decreases. This is natural since MMAX essentially
uses the modular lower bounds as the proxy for each objective and optimizes with respect to
the proxy functions. Lower the curvature of the objectives, the better the modular lower bounds
approximate, hence better performance guarantee.

Since the modular version of SFA is also NP-hard and cannot be exactly solved in polynomial
time, we cannot guarantee that successive iterations of MMAX improves upon the overall objective.
However we still obtain the following Theorem giving a bounded performance gap between the
successive iterations.

Theorem 2.5. Suppose modular version of SFA is solved with an approximation factor α ≤ 1, we
have for each iteration t that

min
i
fi(A

πt
i) ≥ αmin

i
fi(A

πt−1

i). (7)

2.2 Approximation Algorithms for SLB (Problem 2 with λ = 0)

In this section, we investigate the problem of submodular load balancing (SLB). It is a special case of
Problem 2 with λ = 0. We first analyze the hardness of SLB. We then show a Lovász extension-based
algorithm with a guarantee matching the problem’s hardness. Lastly we describe a more efficient
supergradient based algorithm.

Existing hardness for SLB is shown to be o(
√
n/ log n) [40]. However it is independent of m,

and [40] assumes m = Θ(
√
n/ log n) in their analysis. In most of the applications of SLB (cf.

Section 4), we find that the parameter m is such that m � n and can sometimes be treated as a

7

constant w.r.t. n. To this end we offer a more general hardness analysis that is dependent directly on
m.
Theorem 2.6. For any ε > 0, SLB cannot be approximated to a factor of (1 − ε)m for any
m = o(

√
n/ log n) with polynomial number of queries even under the homogeneous setting.

Though the proof technique for Theorem 2.6 mostly carries over from [40], the result strictly
generalizes the analysis in [40]. For any choice of m = o(

√
n/ log n) Theorem 2.6 implies that it is

information theoretically hard to approximate SLB better than m even for the homogeneous setting.
For the rest of the paper, we assume m = o(

√
n/ log n) for SLB, unless stated otherwise. It is worth

pointing out that arbitrary partition π ∈ Π already achieves the best approximation factor of m that
one can hope for under the homogeneous setting. Denote π∗ as the optimal partitioning for SLB, i.e.,
π∗ ∈ argminπ∈Π maxi f(Aπi). This can be verified by considering the following:

max
i
f(Aπi) ≤ f(V) ≤

m∑
i=1

f(Aπ
∗

i) ≤ mmax
i
f(Aπ

∗

i). (8)

It is therefore theoretically interesting to consider only the heterogeneous setting.

Algorithm 5: LOVÁSZ ROUND

1: Input: {fi}mi=1, {f̃i}mi=1, m, V .
2: Solve for {x∗i }mi=1 via convex relaxation.
3: Rounding: Let A1 =, . . . ,= Am = ∅.
4: for j = 1, . . . , n do
5: î ∈ argmaxi x

∗
i (j); Aî = Aî ∪ j

6: end for
7: Output π̂ = {Ai}mi=1.

LOVÁSZ ROUND: Next we propose a tight algorithm – LOVÁSZ ROUND (see Alg. 5) for the
heterogeneous setting of SLB. The algorithm proceeds as follows: (1) apply the Lovász extension
of submodular functions to relax SLB to a convex program, which is exactly solved to a fractional
solution (Line 2); (2) map the fractional solution to a partition using the θ-rounding technique as
proposed in [23] (Line 3 - 6). The Lovász extension, which naturally connects a submodular function
f with its convex relaxation f̃ , is defined as follows: given any x ∈ [0, 1]n, we obtain a permutation
σx by ordering its elements in non-increasing order, and thereby a chain of sets Sσx0 ⊂, . . . ,⊂ Sσxn
with Sσxj = {σx(1), . . . , σx(j)} for j = 1, . . . , n. The Lovász extension f̃ for f is the weighted sum
of the ordered entries of x:

f̃(x) =

n∑
j=1

x(σx(j))(f(Sσxj)− f(Sσxj−1)). (9)

Given the convexity of the f̃i’s , SLB is relaxed to the following convex program:

min
x1,...,xm∈[0,1]n

max
i
f̃i(xi), s.t

m∑
i=1

xi(j) ≥ 1, for j = 1, . . . , n (10)

Denoting the optimal solution for Eqn 10 as {x∗1, . . . , x∗m}, the θ-rounding step simply maps each
item j ∈ V to a block î such that î ∈ argmaxi x

∗
i (j) (ties broken arbitrarily). The bound for

LOVÁSZ ROUND is as follows:
Theorem 2.7. LOVÁSZ ROUND is guaranteed to find a partition π̂ ∈ Π such that

max
i
fi(A

π̂
i) ≤ mmin

π∈Π
max
i
fi(A

π
i)

.

We remark that, to the best of our knowledge, LOVÁSZROUND is the first algorithm that is tight
and that gives an approximation in terms of m for the heterogeneous setting.

MMIN: Similar to MMAX for SFA, we propose Majorization-Minimization (MMIN, see Alg. 6) for
SLB. Here, we iteratively choose modular upper bounds, which are defined via superdifferentials
∂f (Y) of a submodular function [26] at Y :

∂f (Y) = {y ∈ Rn : f(X)− y(X) ≤ f(Y)− y(Y); for all X ⊆ V }. (11)

8

Algorithm 6: MMIN

1: Input: {fi}mi=1, m, V , partition π0.
2: Let t = 0
3: repeat
4: for i = 1, . . . ,m do
5: Pick a supergradient mi at Aπ

t

i for fi.
6: end for
7: πt+1 ∈ argminπ∈Π maximi(A

π
i)

8: t = t+ 1;
9: until πt = πt−1

10: Output: πt.

Moreover, there are specific supergradients [21, 25] that define the following two modular upper
bounds (when referring to either one, we use mf

X):

mf
X,1(Y) , f(X)−

∑
j∈X\Y

f(j|X\j) +
∑

j∈Y \X

f(j|∅),

mf
X,2(Y) , f(X)−

∑
j∈X\Y

f(j|V \j) +
∑

j∈Y \X

f(j|X).

Then mf
X,1(Y) ≥ f(Y) and mf

X,2(Y) ≥ f(Y),∀Y ⊆ V and mf
X,1(X) = mf

X,2(X) = f(X). At
iteration t+ 1, for each block i, MMIN replaces fi with a choice of its modular upper bound mi tight
atAπ

t

i and solves a modular version of Problem 2 (Line 7), for which there exists an efficient LP relax-
ation based algorithm [32]. Similar to MMAX, the initial partition π0 is obtained by solving Problem
2, where each fi is substituted with f ′i(A) =

∑
a∈A fi(a). The following worst-case bound holds:

Theorem 2.8. MMIN achieves a worst-case guarantee of (2 maxi
|Aπ
∗
i |

1+(|Aπ∗i |−1)(1−κfi (A
π∗
i))

), where

π∗ = (Aπ
∗

1 , · · · , Aπ∗m) denotes the optimal partition.

Similar to MMax, we can show that MMin has bounded performance gaps in successive iterations.
Theorem 2.9. Suppose the modular version of SLB can be solved with an approximation factor
α ≥ 1, we have for each iteration t that

max
i
fi(A

πt
i) ≤ αmax

i
fi(A

πt−1

i). (12)

3 General Submodular Partitioning (Problems 1 and 2 when 0 < λ < 1)

In this section we study Problem 1 and Problem 2, in the most general case, i.e., 0 < λ < 1. We use
the proposed algorithms for the special cases of Problems 1 and 2 as the building blocks to design
algorithms for the general scenarios (0 < λ < 1). We first propose a simple and generic scheme that
provides performance guarantee in terms of λ for both problems. We then generalize the proposed
GREEDSAT to obtain a more practically interesting algorithm for Problem 1. For Problem 2 we
generalize LOVÁSZ ROUND to obtain a relaxation based algorithm.

Extremal Combination Scheme: First we describe the scheme that works for both problem 1 and 2.
It naturally combines an algorithm for solving the worst-case problem (λ = 0) with an algorithm for
solving the average case (λ = 1). We use Problem 1 as an example, but the same scheme easily works
for Problem 2. Denote ALGWC as the algorithm for the worst-case problem (i.e. SFA), and ALGAC
as the algorithm for the average case (i.e., SWP). The scheme is to first obtain a partition π̂1 by running
ALGWC on the instance of Problem 1 with λ = 0 and a second partition π̂2 by running ALGAC with
λ = 1. Then we output one of π̂1 and π̂2, with which the higher valuation for Problem 1 is achieved.
We call this scheme COMBSFASWP. Suppose ALGWC solves the worst-case problem with a factor
α ≤ 1 and ALGAC for the average case with β ≤ 1. When applied to Problem 2 we refer to this
scheme as COMBSLBSMP (α ≥ 1 and β ≥ 1). The following guarantee holds for both schemes:

Theorem 3.1. For any λ ∈ (0, 1) COMBSFASWP solves Problem 1 with a factor max{ βα
λ̄β+α

, λβ}
in the heterogeneous case, and max{min{α, 1

m},
βα

λ̄β+α
, λβ} in the homogeneous case. Similarly,

9

COMBSLBSMP solves Problem 2 with a factor min{ mα
mλ̄+λ

, β(mλ̄+ λ)} in the heterogeneous case,
and min{m, mα

mλ̄+λ
, β(mλ̄+ λ)} in the homogeneous case.

Algorithm 7: GENERALGREEDSAT

1: Input: ε, {fi}mi=1, m, V , λ, α.
2: Let F̄ cλ(π) = 1

m

∑m
i=1 min{λ̄fi(Aπi) + λ 1

m

∑m
j=1 fj(A

π
j), c}.

3: Let cmin = 0, cmax =
∑m
i=1 fi(V)

4: while cmax − cmin ≥ ε do
5: c = 1

2 (cmax + cmin)

6: π̂c ∈ argmaxπ∈Π F̄
c
λ(π) // solved by GREEDSWP (Alg. 3)

7: if F̄ c(π̂c) < αc then
8: cmax = c
9: else

10: cmin = c; π̂ ← π̂c

11: end if
12: end while
13: Output: π̂.

GeneralGreedSat: The drawback of COMBSFASWP and COMBSLBSMP is that they do not explicitly
exploit the trade-off between the average-case and worst-case in terms of λ. To obtain more practically
interesting algorithms, we first give GENERALGREEDSAT (See Alg. 7) that generalizes GREEDSAT
to solve Problem 1 for general λ. The key idea of GENERALGREEDSAT is again to relax Problem 1
to a simpler submodular welfare problem (SWP). Similar to GREEDSAT we define an intermediate
objective:

F̄ cλ(π) =
1

m

m∑
i=1

min{λ̄fi(Aπi) + λ
1

m

m∑
j=1

fj(A
π
j), c}. (13)

It is easy to verify that the combinatorial optimization problem maxπ∈Π F̄
c
λ(π) (Line 6) can be

formulated as the submodular welfare problem, for which we can solve efficiently with GREEDSWP
(see Alg. 3). Defining α as the optimality guarantee of the algorithm for solving Line 6 GENERAL-
GREEDSAT solves Problem 1 with the following bounds:

Theorem 3.2. Given ε > 0, 0 ≤ α ≤ 1, and 0 ≤ λ ≤ 1, GENERALGREEDSAT finds a partition π̂
that satisfies the following:

λ̄min
i
fi(A

π̂
i) + λ

1

m

m∑
i=1

fi(A
π̂
i) ≥ λα(OPT − ε) (14)

where OPT = maxπ∈Π λ̄mini fi(A
π
i) + λ 1

m

∑m
i=1 fi(A

π
i).

Moreover, let Fλ,i(π) = λ̄fi(A
π
i) + λ 1

m

∑m
j=1 fj(A

π
j). Given any 0 < δ < α, there is a set

I ⊆ {1, . . . ,m} such that |I| ≥ dm(α− δ)e and

Fi,λ(π̂) ≥ max{ δ

1− α+ δ
, λα}(OPT − ε),∀i ∈ I. (15)

Eqn 15 in Theorem 3.2 reduces to Theorem 2.3 when λ = 0, i.e., it recovers the bi-criterion
guarantee in Theorem 2.3 for the worst-case scenario (λ = 0). Eqn 14 in Theorem 3.2 implies that
α-approximation for the average-case objective can almost be recovered by GENERALGREEDSAT
if λ = 1. Moreover Theorem 3.2 shows that the guarantee of GENERALGREEDSAT improves as
λ increases suggesting that Problem 1 becomes easier as the mixed objective weights more on the
average-case objective. We also point out that the approximation guarantee of GENERALGREEDSAT
smoothly interpolates the two extreme cases in terms of λ.

GeneralLovász Round: Next we focus on designing practically more interesting algorithms for
Problem 2 with general λ. In particular we generalize LOVÁSZ ROUND leading to GENERALLOVÁSZ
ROUND as shown in Alg. 8. Sharing the same idea with LOVÁSZROUND, GENERALLOVÁSZROUND
first relaxes Problem 2 as a convex program (defined in Eqn 16) using the Lovász extension of each
submodular objective. Given the fractional solution to the convex program {x∗i }mi=1, the algorithm

10

Algorithm 8: GENERALLOVÁSZ ROUND

1: Input: {fi}mi=1, {f̃i}mi=1, λ, m, V .
2: Solve

min
x1,...,xm∈[0,1]n

max
i
λ̄f̃i(xi) + λ

1

m

m∑
j=1

f̃j(xj), s.t
m∑
i=1

xi(j) ≥ 1, for j = 1, . . . , n (16)

for {x∗i }mi=1 via convex relaxation.
3: Rounding: Let A1 =, . . . ,= Am = ∅.
4: for j = 1, . . . , n do
5: î ∈ argmaxi x

∗
i (j); Aî = Aî ∪ j

6: end for
7: Output π̂ = {Ai}mi=1.

then rounds it to a partition using the θ-rounding technique (Line 3- 6). Note the rounding technique
used for GENERALLOVÁSZROUND is the same as in LOVÁSZROUND. The following Theorem holds:

Theorem 3.3. GENERALLOVÁSZ ROUND is guaranteed to find a partition π̂ ∈ Π such that

max
i
λ̄fi(A

π̂
i) + λ

1

m

m∑
j=1

fj(A
π̂
j) ≤ mmin

π∈Π
max
i
λ̄fi(A

π
i) + λ

1

m

m∑
j=1

fj(A
π
j). (17)

Theorem 3.3 generalizes Theorem 2.7 when λ = 0. Moreover we achieve a factor of m by
GENERALLOVÁSZ ROUND for any λ. Though the approximation guarantee is independent of λ
the algorithm naturally exploits the trade-off between the worst-case and average-case objectives
in terms of λ. The drawback of GENERALLOVÁSZ ROUND is that it requires high order polynomial
queries of the Lovász extension of the submodular objectives, hence is not computationally feasible
for even medium sized tasks. Moreover, if we restrict ourselves to the homogeneous setting (fi’s
are identical), it is easy to verify that arbitrary partitioning already achieves a guarantee of m while
Problem 2, in general, cannot be approximated better than m as shown in Theorem 2.6.

GeneralGreedMin: In this case, we should resort to intuitive heuristics that are scalable to large-
scale applications to solve Problem 2 with general λ. To this end we design a greedy heuristic called
GENERALGREEDMIN (see Alg. 9).

Algorithm 9: GENERALGREEDMIN

1: Input: f , m, V , 0 ≤ λ ≤ 1;
2: Solve Sseed ∈ argmaxS⊆V ;|S|=m f(S) for m seeds with Sseed = {s1, . . . , sm}.
3: Initialize each block i by the seeds as Ai ← {si},∀i.
4: Initialize a counter as k = m and R = V \ Sseed.
5: while R 6= ∅ do
6: if k ≤ (1− λ)|V | then
7: j∗ ∈ argminj f(Aj)
8: a∗ ∈ mina∈R f(a|Aj∗)
9: Aj∗ ← Aj∗ ∪ a∗;R← R \ a∗

10: else
11: for i = 1, . . . ,m do
12: a∗i ∈ argmina∈R f(a|Ai)
13: end for
14: j∗ ∈ argmini=1,...,m f(a∗i |Ai);
15: Aj∗ ← Aj∗ ∪ a∗; R← R \ a∗j∗
16: end if
17: k = k + 1;
18: end while
19: Output {Ai}mi=1.

11

The algorithm first solves a constrained submodular maximization on f to obtain a set Sseed of m
seeds. Since f is submodular, maximizing f always leads to a set of diverse seeds, where the diversity
is measured by the objective f . We initialize each block Ai with one seed from Sseed. Defining k as
the number of items that have already been assigned. The main algorithm consists of two phases.
In the first phase (k ≤ (1 − λ)|V |), we, for each iteration, assign the item that has the smallest
marginal gain to the block whose valuation is the smallest. Since the functions are all monotone, any
additions to a block can (if anything) only increase its value. Such procedure inherently minimizes
the worst-case objective, since it chooses the minimum valuation block to add to in order to keep
the maximum valuation block from growing further. In the second phase (k > λ|V |), we assign an
item such that its marginal gain is the smallest among all remaining items and all blocks. The greedy
procedure in this phase, on the hand, is suitable for minimizing the average-case objective, since it, in
each iteration, assigns an item so that the valuation of the average-case objective increases the least.
The trade-off between the worse-case and the average-case objectives is controlled by λ, which is
used as the input argument to the algorithm. In particular, λ controls the fraction of the iterations in
the algorithm to optimize the average-case objective. When λ = 1, the algorithm solely focuses on
the average-case objective, while only the worst-case objective is minimized if λ = 0.

In general GENERALGREEDMIN requires O(m|V |2) function valuations, which may still be com-
putationally difficult for large-scale applications. In practice, one can relax the condition in Line 8
and 12. Instead of searching among all items in R, one can, in each round, randomly select a
subset R̂ ⊆ R and choose an item with the smallest marginal gain from only the subset R̂. The
resultant computational complexity is reduced to O(m|R̂||V |) function valuations. Empirically we
observe that GENERALGREEDMIN can be sped up more than 100 times by this trick without much
performance loss.

4 Applications of Problems 1 and 2 in Machine Learning and Data Science

In this section we show a number of applications of submodular partitioning in machine learning
and data science. We first discuss a number of distributed statistical training applications for which
Problem 1 can be useful to obtain good partitioning of the data set. Next we demonstrate how data
clustering, image segmentation, and computational load balancing can be formulated as an instance
of Problem 2.

4.1 Applications of Problem 1

Distributed statistical training: An important machine learning application is distributed training
of statistical models. As data set sizes grow, the need for statistical training procedures tolerant of
the distributed data partitioning becomes more important. Existing schemes are often developed
and performed assuming data samples are distributed to their computational clients in an arbitrary
or random fashion. As an alternate strategy, if the data is intelligently partitioned such that each
block of samples can itself lead to a good approximate solution, a consensus amongst the distributed
results could be reached more quickly than when under a poor partitioning. Submodular functions
can in fact express the value of a subset of training data for certain machine learning risk functions,
e.g., [46] in the case of classification. Using these functions within Problem 1, one can expect a
partitioning (by formulating the problem as an instance of Problem 1, λ ≈ 0) where each block is a
good representative of the entire set, thereby achieving faster convergence in distributed settings. We
demonstrate empirically, in Section 5, that this provides better results on several machine learning
tasks, including the training of deep neural networks.

4.2 Applications of Problem 2

Data clustering and image segmentation: Submodular functions naturally capture notions of
interacting cooperative costs and homogeneity and thus are useful for clustering and image segmenta-
tion [36, 5, 29, 28]. While the average case instance (Problem 2 with λ = 1) has been used before,
a more worst-case variant (i.e., Problem 2 with λ ≈ 0) is useful to produce balanced clusterings
(i.e., the submodular valuations of all the blocks should be similar to each other). Problem 2 also
addresses a problem in image segmentation, namely how to use only submodular functions (which
are instances of pseudo-Boolean functions) for multi-label (i.e., non-Boolean) image segmentation.

12

Problem 2 addresses this problem by allowing each segment j to have its own submodular function
fj , and the objective measures the homogeneity fj(Aπj) of segment j based on the image pixels
Aπj assigned to it. Moreover, by combining the average case and the worst case objectives, one can
achieve a tradeoff between the two. Empirically, we evaluate our algorithms on unsupervised image
segmentation (Section 5) and find that it outperforms other clustering methods including k-means,
k-medoids, graph cut, and spectral clustering.

Computational load balancing: Submodularity also accurately represents computational costs in
distributed systems, as shown in [33]. They consider a problem of text data partitioning for balancing
memory demands. Given a large collection of documents V = {v1, . . . , vn}, the goal is to distribute
the documents into m machines such that the memory requirements across the machines are balanced
and minimized. Each document v ∈ V consists a set of keys, and let U = {u1, . . . , uk} be the
set of all possible keys. |U | can be in the order of billions (e.g., the set of all unigrams, bigrams,
and trigrams). Let N(vi) ⊆ U be the set of keys contained by the document vi. Given a partition
π = (Aπ1 , . . . , A

π
m) of the documents V , the number of unique keys associated with the collection

Aπi on machine i is expressed as
fsc(A

π
i) = | ∪v∈Aπi N(v)|, (18)

where fsc is the set cover function. A hard constraint for a partition {X1, . . . , Xm} to satisfy is that
the number of unique keys on each machine has to be small enough so that they can be cached into
each machine’s memory. Since the memory needed to cache the keys on machine i is proportional
to | ∪v∈Xi N(v)|, a feasible partition of the documents satisfying the memory requirement can,
therefore, be found by solving the following:

min
π∈Π

max
i=1,...,m

fsc(A
π
i), (19)

which is an instance of Problem 2 for λ = 0 with fsc as the objective function.

5 Experiments

In this section we empirically evaluate the algorithms proposed for Problems 1 and 2. We first
compare the performance of the various algorithms discussed in this paper on a synthetic data set.
We then evaluate some of the scalable algorithms proposed for Problems 1 and 2 on large-scale
real-world data partitioning applications including distributed ADMM, distributed neural network
training, and lastly unsupervised image segmentation tasks.

5.1 Experiments on Synthetic Data

In this section we evaluate separately on four different cases: Problem 1 with λ = 0 (SFA), Problem 2
with λ = 0 (SLB), Problem 1 with 0 < λ < 1, and Problem 2 with 0 < λ < 1. Since some
of the algorithms, such as the Ellipsoidal Approximations [17] and Lovász relaxation algorithms,
are computationally intensive, we restrict ourselves to only 40 data instances, i.e., |V | = 40. For
simplicity we only evaluate on the homogeneous setting (fi’s are identical). For each case we test
with two types of submodular functions: facility location function, and the set cover function. The
facility location function is defined as follows:

ffac(A) =
∑
v∈V

max
a∈A

sv,a, (20)

where sv,a is the similarity between item v and a and is symmetric, i.e., sv,a = sa,v for any pair of v
and a. We define ffac on a complete similarity graph with each edge weight sv,a sampled uniformly
and independently from [0, 1]. The set cover function fsc is as defined in Eqn 18, where we choose
|U | = 40. The set cover function is defined by a bipartite graph between V and U , where we define
an edge between an item v ∈ V and a key u ∈ U independently with probability p = 0.2.

Problem 1 For λ = 0, i.e., SFA, we compare among 6 algorithms: GREEDMAX, GREEDSAT,
MMAX, Balanced Partition (BP), Ellipsoid Approximation (EA) [17], and Binary Search algorithm
(BS) [27]. Balanced Partition method simply partitions the ground set V into m blocks such that the
size of each block is balanced and is either d |V |m e or b |V |m c. We run 100 randomly generated instances
of the balanced partition method. GREEDSAT is implemented with the choice of the hyperparameter
α = 1. We compare the performance of these algorithms in Figure 1a and 1b, where we vary the
number of blocks m from 2 to 14. The three proposed algorithms (GREEDMAX, GREEDSAT, and

13

(a) Problem 1 on ffac with λ = 0

m

2 4 6 8 10 12 14

O
b

je
c
ti
v
e

 v
a

lu
a

ti
o

n

22

24

26

28

30

32

34

BinarySearch

GreedSat

GreedMax

MMax

EA

Random Partition

(b) Problem 1 on fsc with λ = 0

m

2 4 6 8 10 12 14

O
b

je
c
ti
v
e

 v
a

lu
a

ti
o

n

5

10

15

20

25

30

35
BinarySearch

GreedSat

GreedMax

MMax

EA

Random Partition

(c) Problem 1 on ffac with varying λ

λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b

je
c
ti
v
e

 v
a

lu
a

ti
o

n

30

30.5

31

31.5

32

32.5

33

33.5

34

34.5

GeneralGreedSat

Balanced Partition

(d) Problem 1 on fsc with varying λ

λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b

je
c
ti
v
e

 v
a

lu
a

ti
o

n

16

18

20

22

24

26

28

30

32

34

36

GeneralGreedSat

Balanced Partition

Figure 1: Synthetic experiments on Problem 1 with λ = 0 on facility location function (a) and set
cover function (b). Problem 1 with general 0 < λ < 1 on facility location function (c) and set cover
function (d).

MMAX) significantly and consistently outperform all baseline methods for both ffac and fsc. Among
the proposed algorithms we observe that GREEDMAX, in general, yields the superior performance.
Given the empirical success, computational efficiency, and tight theoretical guarantee, we suggest
GREEDMAX as the first choice of algorithm to solve SFA under the homogeneous setting.

Next we evaluate Problem 1 with general 0 < λ < 1. Baseline algorithms for SFA such as Ellipsoidal
Approximations, Binary Search do not apply to the mixed scenario. Similarly the proposed algorithms
such as GREEDMAX, MMAX do not simply generalize to this scenario. We therefore only compare
GENERALGREEDSAT with the Balanced Partition as a baseline. The results are summarized in
Figure 1c and 1d. We observe that GENERALGREEDSAT consistently and significantly outperform
even the best of 100 instances of the baseline method for all cases of λ.

Problem 2 For λ = 0, i.e., SLB, we compare among 5 algorithms: LOVÁSZ ROUND, MMIN, GEN-
ERALGREEDMIN, Ellipsoid Approximation (EA) [17], and Balanced Partition [41]. We implement
GENERALGREEDMIN with the input argument λ = 0. We also run 100 randomly generated instances
of the Balanced Partition method as a baseline. We show the results in Figure 2a and 2b. Among all
five algorithms MMIN and GENERALGREEDMIN, in general, perform the best. Between MMIN and
GENERALGREEDMIN we observe that GENERALGREEDMIN performs marginally better, especially
on fsc. The computationally intensive algorithms, such as Ellipsoid Approximation and LOVÁSZ
ROUND, do not perform well, though they carry better worst-case approximation factors for the
heterogeneous setting.

Lastly we evaluate Problem 2 with general 0 < λ < 1. Since MMIN and Ellipsoid Approximation do
not apply for the mixed scenario, we test only on GENERALLOVÁSZ ROUND, GENERALGREEDMIN,
and Balanced Partition. Again we test on 100 instances of randomly generated balanced partitions.
We vary λ in this experiment. The results are shown in Figure 2c and 2d. The best performance is
consistently achieved by GENERALGREEDMIN.

14

(a) Problem 2 on ffac with λ = 0

m

2 4 6 8 10 12 14

O
b

je
c
ti
v
e

 v
a

lu
a

ti
o

n

28

29

30

31

32

33

34

35

36

LovaszRound

GeneralGreedMin

MMin

EA

Balanced Partition

(b) Problem 2 on fsc with λ = 0

m

2 4 6 8 10 12 14

O
b

je
c
ti
v
e

 v
a

lu
a

ti
o

n

15

20

25

30

35

40

LovaszRound

GeneralGreedMin

MMin

EA

Balanced Partition

(c) Problem 2 on ffac with varying λ

λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b

je
c
ti
v
e

 v
a

lu
a

ti
o

n

33

33.5

34

34.5

35
LovaszRound

GeneralGreedMin

Balanced Partition

(d) Problem 2 on fsc with varying λ

λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
b
je

c
ti
v
e
 v

a
lu

a
ti
o
n

20

22

24

26

28

30

32

34

36

LovaszRound

GeneralGreedMin

Balanced Partition

Figure 2: Synthetic experiments on Problem 2 with λ = 0 on facility location function (a) and set
cover function (b). Problem 2 with general 0 < λ < 1 on facility location function (c) and set cover
function (d).

5.2 Problem 1 for Distributed Training

In this section we focus on applications of Problem 1 to real-wold machine learning problems. In
particular we examine how a partition obtained by solving Problem 1 with certain instances of
submodular functions perform for distributed training of various statistical models.

Distributed Convex Optimization: We first consider data partitioning for distributed convex
optimization. We evaluate the distributed convex optimization on a text categorization task. We use
20 Newsgroup data set 4, which consists of 18,774 articles divided almost evenly across 20 classes.
The text categorization task is to classify an article into one newsgroup (of twenty) to which it was
posted. We randomly split 2/3 and 1/3 of the whole data as the training and test data. The task
is solved as a multi-class classification problem, which we formulate as an `2 regularized logistic
regression. We solve this convex optimization problem in a distributive fashion, where the data
samples are partitioned and distributed across multiple machines. In particular we implement an
ADMM algorithm as described in [4] to solve the distributed convex optimization problem. Given a
partition π of the training data into m separate clients, in each iteration, ADMM first assigns each
client i to solve an `2 regularized logistic regression on its block of data Aπi using L-BFGS, aggregate
the solutions from all m clients according to the ADMM update rules, and then sends the aggregated
solution back to each client. This iterative procedure is carried out so that solutions on all clients
converge to a consensus, which is the global solution of the overall large-scale convex optimization
problem.

We formulate the data partitioning problem as an instance of SFA (Problem 1 with λ = 0) under the
homogeneous setting. In the experiment, we solve the data partitioning using GREEDMAX, since it
is efficient and attains the tightest guarantee among all algorithms proposed for this setting. Note,
however, GREEDSAT and MMAX may also be used in the experiment. We model the utility of a data

4Data set is obtained at http://qwone.com/∼jason/20Newsgroups/

15

subset using the feature-based submodular function [47, 46, 42], which has the form:
ffea(A) =

∑
u∈U

mu(V) logmu(A), (21)

where U is the set of “features”, mu(A) =
∑
a∈Amu(a) with mu(a) measuring the degree that

the article a possesses the feature u ∈ U . In the experiments, we define U as the set of all words
occurred in the entire data set and mu(a) as the number of occurrences of the word u ∈ U in
the article a. ffea is in the form of a sum of concave over modular functions, hence is monotone
submodular [39]. The class of feature-based submodular function has been widely applied to model
the utility of a data subset on a number of tasks, including speech data subset selection [47, 49], and
image summarization [42]. Moreover ffea has been shown in [46] to model the log-likelihood of a
data subset for a Naı̈ve Bayes classifier.

We compare the submodular partitioning with the random partitioning for m = 5 and m = 10. We
test with 10 instances of random partitioning. We first examine how balanced the sizes of the blocks
yielded by submodular partitioning are. This is important since if the block sizes vary a lot in a
partition, the computational loads across the blocks are imbalanced, and the actual efficiency of the
parallel system is significantly reduced. Fortunately we observe that submodular partitioning yields
very balanced partition. The sizes of all blocks in the resultant partitioning for m = 5 range between
2, 225 and 2, 281. In the case of m = 10 the maximum block is of size 1, 140, while the smallest
block has 1, 109 items.

Number of iterations
5 10 15 20 25 30 35

T
es

t a
cc

ur
ac

y
(%

)

79

80

81

82

83

84

85

86

5-Partition on 20newsgroup with ADMM

Submodular partition
Random partition

Number of iterations
5 10 15 20 25 30 35

T
es

t a
cc

ur
ac

y
(%

)

74

76

78

80

82

84

10-Partition on 20newsgroup with ADMM

Submodular partition
Adversarial partition
Random partition

Figure 3: Distributed convex optimization tested on 20Newsgroups.

The comparison between submodular partitioning and random partitioning in terms of the accuracy
of the model attained at any iteration is shown in Fig 3. For m = 10 we also run an instance on an
adversarial partitioning, where each block is formed by grouping every two of the 20 classes in the
training data. We observe submodular partitioning converges faster than the random partitioning,
both of which perform significantly better than the adversarial partition. In particular significant and
consistent improvement over the best of 10 random instances is achieved by the submodular partition
across all iterations when m = 5.

Distributed Deep Neural Network Training: Next we evaluate our framework on distributed
neural network training. We test on two tasks: 1) handwritten digit recognition on the MNIST
database 5; 2) phone classification on the TIMIT data.

The data for the handwritten digit recognition task consists of 60,000 training and 10,000 test samples.
Each data sample is an image of handwritten digit. The training and test data are almost evenly
divided into 10 different classes. For the phone classification task, the data consists of 1,124,823
training and 112,487 test samples. Each sample is a frame of speech. The training data is divided into
50 classes, each of which corresponds to a phoneme. The goal of this task to classify each speech
sample into one of the 50 phone classes.

A 4-layer DNN model is applied to the MNIST experiments, and we train a 5-layered DNN for
the TIMIT experiments. We apply the same distributed training procedure for both tasks. Given a

5Data set is obtained at yann.lecun.com/exdb/mnist

16

partitioning of the training data, we distributively solve m instances of sub-problems in each iteration.
We define each sub-problem on a separate block of the data. We employ the stochastic gradient
descent as the solver on each instance of the sub-problem. In the first iteration we use a randomly
generated model as the initial model shared among the m sub-problems. Each sub-problem is solved
with 10 epochs of the stochastic gradient decent training. We then average the weights in the m
resultant models to obtain a consensus model, which is used as the initial model for each sub-problem
in the successive iteration. Note that this distributed training scheme is similar to the ones presented
in [38].

The submodular partitioning for both tasks is obtained by solving the homogeneous case of Problem 1
(λ = 0) using GREEDMAX on a form of clustered facility location, as proposed and used in [46].
The function is defined as follows:

fc-fac(A) =
∑
y∈Y

∑
v∈V y

max
a∈A∩V y

sv,a (22)

where sv,a is the similarity measure between sample v and a, Y is the set of class labels, and V y is
the set of samples in V with label y ∈ Y . Note {V y}y∈Y forms a disjoint partitioning of the ground
set V . In both the MNIST and TIMIT experiments we compute the similarity sv,a as the RBF kernel
between the feature representation of v and a. [46] show that fc-fac models the log-likelihood of a
data subset for a Nearest Neighbor classifier. They also empirically demonstrate the efficacy of fc-fac
in the case of neural network based classifiers.

Number of iterations
5 10 15 20

T
es

t a
cc

ur
ac

y
(%

)

98.3

98.4

98.5

98.6

98.7

98.8

98.9

99

99.1

5-Partition on MNIST with Distributed NN

Submodular partition
Random partition

Number of iterations
5 10 15 20

T
es

t a
cc

ur
ac

y
(%

)

97.8

98

98.2

98.4

98.6

98.8

99

99.2
10-Partition on MNIST with Distributed NN

Submodular partition
Random partition

Figure 4: MNIST

Number of iterations
5 10 15 20 25 30 35 40 45 50 55

T
es

t a
cc

ur
ac

y
(%

)

15

20

25

30

35

40

45

50

30-Partition on TIMIT

Submodular partition
Random partition

Number of iterations
5 10 15 20 25 30 35 40 45 50 55

T
es

t a
cc

ur
ac

y
(%

)

10

15

20

25

30

35

40

45

50

40-Block Partition on TIMIT with Distributed NN

Submodular partition
Random partition

Figure 5: TIMIT

Similar to the ADMM experiment we also observe that submodular partitioning yields very balanced
partitions in all cases of this experiment. In the cases of m = 5 and m = 10 for the MNIST data set
the sizes of the blocks in the resultant submodular partitioning are within the range [11991, 12012]
and [5981, 6019], respectively. For the TIMIT data set, the block sizes range between 37, 483 and
37510 in the case of m = 30, and the range of [28121, 28122] is observed for m = 40.

We also run 10 instances of random partitioning as a baseline. The comparison between submodular
partitioning and random partitioning in terms of the accuracy of the model attained at any iteration is
shown in Fig 4 and 5. The adversarial partitioning, which is formed by grouping items with the same

17

class, cannot even be trained in both cases. Consistent and significant improvement is again achieved
by submodular partitioning for all cases.

5.3 Problem 2 for Unsupervised Image Segmentation

Lastly we test the efficacy of Problem 2 on the task of unsupervised image segmentation. We
evaluate on the Grab-Cut data set, which consists of 30 color images. Each image has ground
truth foreground/background labels. By “unsupervised”, we mean that no labeled data at any time
in supervised or semi-supervised training, nor any kind of interactive segmentation, was used in
forming or optimizing the objective. In our experiments, the image segmentation task is solved as
unsupervised clustering of the pixels, where the goal is to obtain a partitioning of the pixels such that
the majority of the pixels in each block share either the same foreground or the background labels.

Let V be the ground set of pixels of an image, π be an m-partition of the image, and {yv}v∈V as the
pixel-wise ground truth label (yv = {0, 1} with 0 being background and 1 being foreground). We
measure the performance of the partition π in the following two steps: (1) for each block i, predict
ŷv for all the pixels v ∈ Aπi in the block as either 0 or 1 having larger intersection with the ground
truth labels, i.e., predict ŷv = 1,∀v ∈ Aπi , if

∑
v∈Aπi

1{yv = 1} ≥
∑
v∈Aπi

1{yv = 0}, and predict
ŷv = 0,∀v ∈ Aπi otherwise. (2) report the performance of the partition π as the F-measure of the
predicted labels {ŷv}v∈V relative to the ground truth label {yv}v∈V .

In the experiment we first preprocess the data by downsampling each image by a factor 0.25 for
testing efficiency. We represent each pixel v as 5-dimensional features xv ∈ R5, including the
RGB values and pixel positions. We normalize each feature within [0, 1]. To obtain a segmentation
of each image we solve an instance of Problem 2 (0 < λ < 1) under the homogeneous setting
using GENERALGREEDMIN (Alg. 9). We use the facility location function ffac as the objective for
Problem 2. The similarity sv,a between the pixels v and a is computed as sv,a = C − ‖xv − xa‖2
with C = maxv,v′∈V ‖xv − x′v‖2 being the maximum pairwise Euclidean distance. Since the facility
location function ffac is defined on a pairwise similarity graph, which requires O(|V |2) memory
complexity. It becomes computationally infeasible for medium sized images. Fortunately a facility
location function that is defined on a sparse k-nearest neighbor similarity graph performs just as well
with k being very sparse [45]. In the experiment, we instantiate ffac by a sparse 10-nearest neighbor
sparse graph, where each item v is connected only to its 10 closest neighbors.

A number of unsupervised methods are tested as baselines in the experiment, including k-means,
k-medoids, graph cuts [6] and spectral clustering [43]. We use the RBF kernel sparse similarity
matrix as the input for spectral clustering. The sparsity of the similarity matrix is k and the width
parameter of the RBF kernel σ. We test with various choices of σ and k and find that the setting of
σ = 1 and k = 20 performs the best, with which we report the results. For graph cuts, we use the
MATLAB implementation [3], which has a smoothness parameter α. We tune α = 0.3 to achieve the
best performance and report the result of graph cuts using this choice.

lambda

0 0.2 0.4 0.6 0.8 1

a
v
e
ra

g
e
d
 F

-m
e
a
s
u
re

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Comparison with various lambda

m=5

m=10

m=15

m=20

m=25

Figure 6:

m

5 10 15 20 25

a
v
e
ra

g
e
d
 F

-m
e
a
s
u
re

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Comparison with various m

Submodular partition

K-means

K-medoids

Spectral clustering

Graph cut

Figure 7

The proposed image segmentation method involves a hyperparameter λ, which controls the trade-
off between the worst-case objective and the average-case objective. First we examine how the

18

performance of our method varies with different choices of λ in Figure 6. The performance is
measured as the averaged F -measure of a partitioning method over all images in the data set.
Interestingly we observe that the performance smoothly varies as λ increases from 0 to 1. In
particular the best performance is achieved when λ is within the range [0.7, 0.9]. It suggests that
using only the worst-case or the average-case objective does not suffice for the unsupervised image
segmentation / clustering task, and an improved result is achieved by mixing these two extreme
cases. In the subsequent experiments we show only the result of our method with λ = 0.2. Next we
compare the proposed approach with baseline methods on various m in Figure 7. In general, each
method improves as m increases. Submodular partitioning method performs the best on almost all
cases of m. Lastly we show in Figure 8 example segmentation results on several example images
as well as averaged F-measure in the case of m = 15. We observe that submodular partitioning, in
general, leads to less noisy and more coherent segmentation in comparison to the baselines.

Original
F-measure on
all of GrabCut

1.0

0.810

0.823

0.854

0.870

Ground
Truth

k-means

k-medoids

Spectral
Clustering

0.853 Graph
Cut

Submodular
Partitioning

Figure 8: Unsupervised image segmentation (right: some examples).

6 Conclusions

In this paper, we considered two novel mixed robust/average-case submodular partitioning problems,
which generalize four well-known problems: submodular fair allocation (SFA), submodular load
balancing (SLB), submodular welfare problem (SWP), and submodular multiway partition (SMP).
While the average case problems, i.e., SWP and SMP, admit efficient and tight algorithms, existing
approaches for the worst case problems, i.e., SFA and SLB, are, in general, not scalable. We bridge
this gap by providing several new algorithms that not only scale to large data sets but that also achieve
comparable theoretical guarantees. Moreover we provide a number of efficient frameworks for solving
the general mixed robust/average-case submodular partitioning problems. We also demonstrate that
submodular partitioning is applicable in a number of machine learning problems involving distributed
optimization, computational load balancing, and unsupervised image segmentation. Lastly we
empirically show the effectiveness of the proposed algorithms on these machine learning tasks.

References
[1] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In SODA, 2007.
[2] A. Asadpour and A. Saberi. An approximation algorithm for max-min fair allocation of

indivisible goods. In SICOMP, 2010.
[3] S. Bagon. Matlab wrapper for graph cut, December 2006.
[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical

learning via the alternating direction method of multipliers. Foundations and Trends in Machine
Learning, 2011.

[5] Y. Boykov and M. Jolly. Interactive graph cuts for optimal boundary and region segmentation
of objects in n-d images. In ICCV, 2001.

19

[6] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for
energy minimization in vision. IEEE transactions on Pattern Analysis and Machine Intelligence,
26(9):1124–1137, September 2004.

[7] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. A tight linear time (1/2)-approximation
for unconstrained submodular maximization. In FOCS, 2012.

[8] C. Chekuri and A. Ene. Approximation algorithms for submodular multiway partition. In
FOCS, 2011.

[9] C. Chekuri and A. Ene. Submodular cost allocation problem and applications. In Automata,
Languages and Programming, pages 354–366. Springer, 2011.

[10] A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset selection,
sparse approximation and dictionary selection. arXiv preprint arXiv:1102.3975, 2011.

[11] S. Dobzinski and A. Mor. A deterministic algorithm for maximizing submodular functions.
arXiv preprint arXiv:1507.07237, 2015.

[12] A. Ene, J. Vondrák, and Y. Wu. Local distribution and the symmetry gap: Approximability of
multiway partitioning problems. In SODA, 2013.

[13] U. Feige, V. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular functions. SIAM
J. COMPUT., 40(4):1133–1155, 2011.

[14] M. Fisher, G. Nemhauser, and L. Wolsey. An analysis of approximations for maximizing
submodular set functions—II. In Polyhedral combinatorics, 1978.

[15] S. Fujishige. Submodular functions and optimization, volume 58. Elsevier, 2005.
[16] L. A. Garcı́a-Escudero, A. Gordaliza, C. Matrán, and A. Mayo-Iscar. A review of robust

clustering methods. Advances in Data Analysis and Classification, 4(2-3):89–109, 2010.
[17] M. Goemans, N. Harvey, S. Iwata, and V. Mirrokni. Approximating submodular functions

everywhere. In SODA, 2009.
[18] D. Golovin. Max-min fair allocation of indivisible goods. Technical Report CMU-CS-05-144,

2005.
[19] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for scheduling on

uniform processors: Using the dual approximation approach. In SICOMP, 1988.
[20] R. Iyer and J. Bilmes. Algorithms for approximate minimization of the difference between

submodular functions, with applications. 2012.
[21] R. Iyer and J. Bilmes. The submodular Bregman and Lovász-Bregman divergences with

applications. In NIPS, 2012.
[22] R. Iyer and J. Bilmes. Submodular Optimization with Submodular Cover and Submodular

Knapsack Constraints. In NIPS, 2013.
[23] R. Iyer, S. Jegelka, and J. Bilmes. Monotone closure of relaxed constraints in submodular

optimization: Connections between minimization and maximization: Extended version.
[24] R. Iyer, S. Jegelka, and J. Bilmes. Curvature and Efficient Approximation Algorithms for

Approximation and Minimization of Submodular Functions. Manuscript, 2013.
[25] R. Iyer, S. Jegelka, and J. Bilmes. Fast semidifferential based submodular function optimization.

In ICML, 2013.
[26] S. Jegelka and J. Bilmes. Submodularity beyond submodular energies: coupling edges in graph

cuts. In CVPR, 2011.
[27] S. Khot and A. Ponnuswami. Approximation algorithms for the max-min allocation problem.

In APPROX, 2007.
[28] P. Kohli, A. Osokin, and S. Jegelka. A principled deep random field model for image segmenta-

tion. In CVPR, 2013.
[29] V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts? In

TPAMI, 2004.
[30] A. Krause, B. McMahan, C. Guestrin, and A. Gupta. Robust submodular observation selection.

In JMLR, 2008.
[31] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian processes:

Theory, efficient algorithms and empirical studies. In JMLR, 2008.

20

[32] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling unrelated
parallel machines. In Mathematical programming, 1990.

[33] M. Li, D. Andersen, and A. Smola. Graph partitioning via parallel submodular approximation
to accelerate distributed machine learning. In arXiv preprint arXiv:1505.04636, 2015.

[34] M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In
Optimization Techniques, 1978.

[35] K. Nagano, Y. Kawahara, and S. Iwata. Minimum average cost clustering. In Advances in
Neural Information Processing Systems, pages 1759–1767, 2010.

[36] M. Narasimhan, N. Jojic, and J. A. Bilmes. Q-clustering. In NIPS, 2005.
[37] J. Orlin. A faster strongly polynomial time algorithm for submodular function minimization.

Mathematical Programming, 2009.
[38] D. Povey, X. Zhang, and S. Khudanpur. Parallel training of deep neural networks with natural

gradient and parameter averaging. arXiv preprint arXiv:1410.7455, 2014.
[39] P. Stobbe and A. Krause. Efficient minimization of decomposable submodular functions. In

NIPS, 2010.
[40] Z. Svitkina and L. Fleischer. Submodular approximation: Sampling-based algorithms and lower

bounds. In FOCS, 2008.
[41] Z. Svitkina and L. Fleischer. Submodular approximation: Sampling-based algorithms and lower

bounds. SIAM Journal on Computing, 40(6):1715–1737, 2011.
[42] S. Tschiatschek, R. K. Iyer, H. Wei, and J. A. Bilmes. Learning mixtures of submodular

functions for image collection summarization. In Advances in Neural Information Processing
Systems, pages 1413–1421, 2014.

[43] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

[44] J. Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In STOC, 2008.

[45] K. Wei, R. Iyer, and J. Bilmes. Fast multi-stage submodular maximization. In Proceedings of
the 31st International Conference on Machine Learning (ICML-14), pages 1494–1502, 2014.

[46] K. Wei, R. Iyer, and J. Bilmes. Submodularity in data subset selection and active learning. In
ICML, 2015.

[47] K. Wei, Y. Liu, K. Kirchhoff, C. Bartels, and J. Bilmes. Submodular subset selection for
large-scale speech training data. In Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal
Processing, Florence, Italy, 2014.

[48] K. Wei, Y. Liu, K. Kirchhoff, and J. Bilmes. Using document summarization techniques for
speech data subset selection. In North American Chapter of the Association for Computational
Linguistics/Human Language Technology Conference (NAACL/HLT-2013), Atlanta, GA, June
2013.

[49] K. Wei, Y. Liu, K. Kirchhoff, and J. Bilmes. Unsupervised submodular subset selection for
speech data. In IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Florence, Italy, 2014.

[50] L. Zhao, H. Nagamochi, and T. Ibaraki. On generalized greedy splitting algorithms for multiway
partition problems. Discrete applied mathematics, 143(1):130–143, 2004.

[51] J. Zheng, Z. Jiang, R. Chellappa, and J. P. Phillips. Submodular attribute selection for action
recognition in video. In NIPS, 2014.

Appendix

Proof for Theorem 2.1

Theorem. If f1 and f2 are monotone submodular, min{f1(A), f2(V \A)} is also submodular.

Proof. To prove the Theorem, we show a more general result: Let f and h be submodular, and f − h
be either monotone increasing or decreasing, then g(S) = min{f(S), h(S)} is also submodular. The

21

Theorem follows by this result, since f(S) = f1(S) and h(S) = f2(V \ S) are both submodular and
f(S)− h(S) = f1(S)− f2(V \ S) is monotone increasing.

In order to show g is submodular, we prove that g satisfies the following:
g(S) + g(T) ≥ g(S ∩ T) + g(S ∪ T),∀S, T ⊆ V (23)

If g agrees with either f or h on both S and T , and since
f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) (24)
h(S) + h(T) ≥ h(S ∪ T) + h(S ∩ T), (25)

(26)
Eqn 23 follows.

Otherwise, w.l.o.g. we consider g(S) = f(S) and g(T) = h(T). For the case where f − h is
monotone non-decreasing, consider the following:
g(S) + g(T) = f(S) + h(T) (27)

≥ f(S ∪ T) + f(S ∩ T)− (f(T)− h(T)) // submodularity of f (28)
≥ f(S ∪ T) + f(S ∩ T)− (f(S ∪ T)− h(S ∪ T)) // monotonicity of f − h (29)
= f(S ∩ T) + h(S ∪ T) (30)
≥ g(S ∩ T) + g(S ∪ T). (31)

Similarly, for the case where f − h is monotone non-increasing, consider the following:
g(S) + g(T) = f(S) + h(T) (32)

≥ h(S ∩ T) + h(S ∪ T) + (f(S)− h(S)) // submodularity of h (33)
≥ h(S ∪ T) + h(S ∩ T) + (f(S ∪ T)− h(S ∪ T)) // monotonicity of f − h (34)
= h(S ∩ T) + f(S ∪ T) (35)
≥ g(S ∩ T) + g(S ∪ T). (36)

Proof for Theorem 2.2

Theorem. Under the homogeneous setting (fi = f for all i), GREEDMAX is guaranteed to find a
partition π̂ such that

min
i=1,...,m

f(Aπ̂i) ≥ 1

m
max
π∈Π

min
i=1,...,m

f(Aπi). (37)

Proof. We prove that the guarantee of 1/m, in fact, even holds for a streaming version of the greedy
algorithm (STREAMGREED, see Alg. 10). In particular, we show that STREAMGREED provides a
factor of 1/m for SFA under the homogeneous setting. Theorem 2.2 then follows since GREEDMAX
can be seen as running STREAMGREED with a specific order.

Algorithm 10: STREAMGREED

Input: V = {v1, v2, . . . , vn}, f , m
Initialize: A1 =, . . . ,= Am = ∅, k = 1
while k ≤ n do

i∗ ∈ argminj f(Aj)
Ai∗ ← Ai∗ ∪ {vk}
k ← k + 1

To prove the guarantee for STREAMGREED, we consider the resulting partitioning after an instance of
STREAMGREED: π = (Aπ1 ∪Aπ2 , . . . , Aπm). For simplicity of notation, we write Aπi as Ai for each
i in the remaining proof. We refer OPT to the optimal solution, i.e., OPT = maxπ mini f(Ai).
W.l.o.g., we assume f(A1) = mini f(Ai). Let ai be the last item to be chosen in block Ai for
i = 2, . . . ,m.

Claim 1:
OPT ≤ f(V \ {a2, . . . , am}) (38)

22

To show this claim, consider the following: If we enlarge the singleton value of ai, i = 2, . . . ,m, we
obtain a new submodular function:

f ′(A) = f(A) + α

m∑
i=2

|A ∩ ai|, (39)

where α is sufficiently large. Then running STREAMGREED on f ′ with the same ordering of the
incoming items leads to the same solution, since only the gain of the last added item for each block is
changed.

Note that f ′(A) ≥ f(A),∀A ⊆ V , we then have maxπ mini f
′(Aπi) ≥ OPT . The optimal

partitioning for f ′ can be easily obtained as π′ = (V \ {a2, . . . , am}, a2, . . . , am). Therefore, we
have that

OPT ≤ max
π

min
i
f ′(Aπi) = f ′(V \ {a2, . . . , am}) = f(V \ {a2, . . . , am}). (40)

Lastly, we have that f(A1) ≥ f(Ai \ ai) for any i = 2, . . . ,m due to the procedure of STREAM-
GREED. Therefore we have the following:

f(A1) ≥ 1

m
(f(A1) +

m∑
i=2

f(Ai \ ai)) (41)

≥ 1

m
f(V \ {a2, . . . , am}) // submodularity of f (42)

≥ 1

m
OPT // Claim 1 (43)

Proof for Theorem 2.3

Theorem. Given ε, α and any 0 < δ < α, GREEDSAT finds a partition such that at least dm(α−δ)e
blocks receive utility at least δ

1−α+δ (maxπ mini fi(A
π
i)− ε).

Proof. When GREEDSAT terminates, it identifies a cmin such that the returned solution π̂cmin satisfies
F̄ cmin(π̂cmin) ≥ αcmin. Also it identifies a cmax such that the returned solution π̂cmax satisfies
F̄ cmax(π̂cmax) < αcmax. The gap between cmax and cmin is bounded by ε, i.e., cmax − cmin ≤ ε.
Next, we prove that there does not exist any partitioning π that satisfies mini fi(A

π
i) ≥ cmax, i.e.,

cmax ≥ maxπ∈Π mini fi(A
π
i).

Suppose otherwise, i.e., ∃π∗ : mini fi(A
π∗

i) = cmax + γ with γ ≥ 0. Let c = cmax + γ, consider the
intermediate objective F̄ c(π) = 1

m

∑m
i=1 min{fi(Aπi), c}, we have that F̄ c(π∗) = c. An instance of

the algorithm for SWP on F̄ c is guaranteed to lead to a solution π̂c such that F̄ c(π̂c) ≥ αc. Since c ≥
cmax, it should follow that the returned solution π̂cmax for the value cmax also satisfies F̄ cmax(π̂) ≥
αcmax. However it contradicts with the termination criterion of GREEDSAT. Therefore, we prove that
cmax ≥ maxπ∈Π mini fi(A

π
i), which indicates that cmin ≥ cmax − ε ≥ maxπ∈Π mini fi(A

π
i)− ε.

Let c∗ = cmax+cmin

2 and the partitioning returned by running for c∗ be π̂ (the final output partitioning
from GREEDSAT). We have that F̄ c

∗
(π̂) ≥ αc∗, we are going to show that for any 0 < δ < α, at

least a dm(α− δ)e blocks given by π̂ receive utility larger or equal to δ
1−α+δ c

∗.

Just to restate the problem: we say that the ith block is (α, δ)-good if fi(Aπ̂i) ≥ δ
1−α+δ c

∗. Then the
statement becomes: Given 0 < δ < α, there is at least mdα− δe blocks that are (α, δ)-good.

To prove this statement, we assume, by contradiction, that there is strictly less than dm(α − δ)e
(α, δ)-good blocks. Denote the number of (α, δ)-good blocks as mgood. Then we have that mgood ≤
dm(α − δ)e − 1 < m(α − δ). Let θ =

mgood

m be the fraction of (α, δ) good blocks, then we have
that 0 ≤ θ < (α − δ) < 1. The remaining fraction (1 − θ) of blocks are not good, i.e., they have

23

valuation strictly less than δ
1−α+δ c

∗. Then, consider the following:

F̄ c
∗
(π̂) =

1

m

m∑
i=1

min{fi(Aπ̂i), c∗} (44)

(a)
< θc∗ + (1− θ) δ

1− α+ δ
c∗ (45)

=
δ

1− α+ δ
c∗ +

1− α
1− α+ δ

θc∗ (46)

(b)
<

δ

1− α+ δ
c∗ +

1− α
1− α+ δ

(α− δ)c∗ (47)

= αc∗ (48)
Inequality (a) follows since good blocks are upper bounded by c∗, and not good blocks have values
upper bounded by δ

1−α+δ c
∗. Inequality (b) follows by the assumption on θ. This therefore contradicts

the assumption that F̄ c
∗
(π̂) ≥ αc∗, hence the statement is true.

This statement can also be proved using a different strategy. Let f c
∗

i = min{fi(Aπ̂i), c∗} and
fi = fi(A

π̂
i) for all i. For any 0 ≤ β ≤ 1 the following holds:

αc∗ ≤ F̄ c
∗
(π̂) =

1

m

∑
i

f c
∗

i ≤
1

m
fi =

1

m

∑
i:fi<βc∗

fi +
1

m

∑
i:fi≥βc∗

fi <
1

m
mbadβc

∗ +
1

m
mgoodc

∗

(49)
where m = mbad +mgood and mgood are the number that are β-good (i.e., i is β-good if fi ≥ βc∗).
The goal is to place a lower bound on mgood. From the above

α < (1−
mgood

m
)β +

mgood

m
(50)

which means

mgood ≥ d
α− β
1− β

me (51)

Let β = δ
1−α+δ , the statement immediately follows.

Note c∗ = cmin+cmax

2 ≥ cmax − ε ≥ maxπ∈Π mini fi(A
π
i) − ε. Combining pieces together,

we have shown that at least dm(α − δ)e blocks given by π̂ receive utility larger or equal to
δ

1−α+δ (maxπ∈Π mini fi(A
π
i)− ε).

Proof for Theorem 2.4

Theorem. MMAX achieves a worst-case guarantee of O(mini
1+(|Aπ̂i |−1)(1−κfi (A

π̂
i))

|Aπ̂i |
√
m log3m

), where π̂ =

(Aπ̂1 , · · · , Aπ̂m) is the partition obtained by the algorithm, and κf (A) = 1−minv∈V
f(v|A\v)
f(v) ∈ [0, 1]

is the curvature of a submodular function f at A ⊆ V .

Proof. We assume the approximation factor of the algorithm for solving the modular version of
Problem 1 is α = O(1√

m log3m
) [2]. For notation simplicity, we write π̂ = (Â1, . . . , Âm) as the

resulting partition after the first iteration of MMAX, and π∗ = (A∗1, . . . , A
∗
m) as its optimal solution.

Note that first iteration suffices to yield the performance guarantee, and the subsequent iterations are
designed so as to improve the empirical performance. Since the proxy function for each function fi
used for the first iteration are the simple modular upper bound with the form: hi(X) =

∑
j∈X fi(j).

Given the curvature of each submodular function fi, we can tightly bound a submodular function fi
in the following form [24]:

fi(X) ≤ hi(X) ≤ |X|
1 + (|X| − 1)(1− κfi(X))

fi(X),∀X ⊆ V (52)

24

Consider the following:

min
i
fi(Âi) ≥ min

i

1
|Âi|

1+(|Âi|−1)(1−κfi (Âi))

hi(Âi) (53)

≥ min
i

1
|Âi|

1+(|Âi|−1)(1−κfi (Âi))

min
i
hi(Âi) (54)

≥ αmin
i

1 + (|Âi| − 1)(1− κfi(Âi))
|Âi|

min
i
hi(A

∗
i) (55)

≥ αmin
i

1 + (|Âi| − 1)(1− κfi(Âi))
|Âi|

min
i
fi(A

∗
i) (56)

= O(min
i

1 + (|Âi| − 1)(1− κfi(Âi))
|Âi|
√
m log3m

) min
i
fi(A

∗
i). (57)

Proof for Theorem 2.5

Theorem. Suppose there exists an algorithm for solving the modular version of SFA with an approxi-
mation factor α ≤ 1, we have that

min
i
fi(A

πt
i) ≥ αmin

i
fi(A

πt−1

i). (58)

Proof. Consider the following:
min
i
fi(A

πt−1

i) = min
i
hi(A

πt−1

i)// tightness of modular lower bound. (59)

≤ αmin
i
hi(A

πt
i)// approximation factor of the modular SFA. (60)

≤ αhj(Aπtj)//j ∈ argmin
i

fi(A
πt
i) (61)

≤ αfj(Aπtj)//hj(A
πt−1

j) upper bounds fj everywhere. (62)

= αmin
i
fi(A

πt
i) (63)

Proof for Theorem 2.6

Theorem. For any ε > 0, SLB cannot be approximated to a factor of (1 − ε)m for any m =

o(
√
n/ log n) with polynomial number of queries even under the homogeneous setting.

Proof. We use the same proof techniques as in [40]. Consider two submodular functions:
f1(S) = min{|S|, α}; (64)

f2(S) = min{
m∑
i=1

min{β, |S ∩ Vi|}, α}; (65)

where {Vi}mi=1 is a uniformly random partitioning of V into m blocks, α = n
m and β = n

m2(1−ε) . To
be more precise about the uniformly random partitioning, we assign each item into any one of the m
blocks with probability 1/m. It can be easily verified that OPT1 = minπ∈Π maxi f1(Aπi) = n/m
and OPT2 = minπ∈Π maxi f2(Aπi) = n

m2(1−ε) . The gap is then OPT1

OPT2
= m(1− ε).

Next, we show that f1 and f2 cannot be distinguished with nω(1) number of queries.

Since f1(S) ≥ f2(S) holds for any S, this is equivalent as showing P{f1(S) > f2(S)} < n−ω(1).

25

As shown in [40], P{f1(S) > f2(S)} is maximized when |S| = α. It suffices to consider only the
case of |S| = α as follows:

P{f1(S) > f2(S) : |S| = α} = P{
m∑
i=1

min{β, |S ∩ Vi|} < α : |S| = α} (66)

The necessary condition for
∑m
i=1 min{β, |S ∩ Vi|} < α is that |S ∩ Vi| > β is satisfied for some

i. Using the Chernoff bound, we have that for any i, it holds P{|S ∩ Vi| > β} ≤ e−
ε2n
3m2 = n−ω(1)

when m = o(
√
n/ log n). Using the union bound, it holds that the probability for any one block Vi

such that |S ∩ Vi| > β is also upper bounded by n−ω(1). Combining all pieces together, we have the
following:

P{f1(S) > f2(S)} ≤ n−ω(1). (67)

Finally, we come to prove the Theorem. Suppose the goal is to solve an instance of SLB with f2.
Since f1 and f2 are hard to distinguish with polynomial number of function queries, any polynomial
time algorithm for solving f2 is equivalent to solving for f1. However, the optimal solution for f1

is α = n
m , whereas the optimal solution for f2 is β = n

m2(1−ε) . Therefore, no polynomial time
algorithm can find a solution with a factor m(1− ε) for SLB in this case.

Proof for Theorem 2.7

Theorem. LOVÁSZROUND is guaranteed to find a partition π̂ ∈ Π such that maxi fi(A
π̂
i) ≤

mminπ∈Π maxi fi(A
π
i).

Proof. It suffices to bound the performance loss at the step of rounding the fractional solution
{x∗i }mi=1, or equivalently, the following:

max
i
f̃i(x

∗
i) ≥

1

m
max
i
fi(Ai), (68)

where {Ai}mi=1 is the resulting partitioning after the rounding. To show Eqn 68, it suffices to show
that f̃i(x∗i) ≥ 1

mfi(Ai) for all i = 1, . . . ,m. Next, consider the following:

fi(Ai) = f̃i(1Ai) = mf̃i(
1

m
1Ai)// positive homogeneity of Lovász extension (69)

For any item vj ∈ Ai, we have x∗i (j) ≥ 1
m , since

∑m
i=1 x

∗
i (j) ≥ 1 and x∗i (j) = maxi′ xi′(j).

Therefore, we have 1
m1Ai ≤ x∗i . Since fi is monotone, its extension f̃i is also monotone. As a result,

fi(Ai) = mf̃i(
1
m1Ai) ≤ mf̃i(x∗i).

Proof for Theorem 2.8

Theorem. MMIN achieves a worst-case guarantee of (2 maxi
|Aπ
∗
i |

1+(|Aπ∗i |−1)(1−κfi (A
π∗
i))

), where

π∗ = (Aπ
∗

1 , · · · , Aπ∗m) denotes the optimal partition.

Proof. Let α = 2 be the approximation factor of the algorithm for solving the modular version
of Problem 2 [32]. For notation simplicity, we write π̂ = (Â1, . . . , Âm) as the resulting partition
after the first iteration of MMIN, and π∗ = (A∗1, . . . , A

∗
m) as its optimal solution. Again the first

iteration suffices to yield the performance guarantee, and the subsequent iterations are designed so as
to improve the empirical performance. Since the supergradients for each function fi used for the first
iteration are the simple modular upper bound with the form: hi(X) =

∑
j∈X fi(j), we can again

tightly bound a submodular function fi in the following form:

fi(X) ≤ hi(X) ≤ |X|
1 + (|X| − 1)(1− κfi(X))

fi(X),∀X ⊆ V (70)

26

Consider the following:
max
i
fi(Âi) ≤ max

i
hi(Âi) (71)

≤ αmax
i
hi(A

∗
i) (72)

≤ αmax
i

|A∗i |
1 + (|A∗i | − 1)(1− κfi(A∗i))

fi(A
∗
i) (73)

≤ αmax
i

|A∗i |
1 + (|A∗i | − 1)(1− κfi(A∗i))

max
i
fi(A

∗
i) (74)

Proof for Theorem 2.9

Theorem. Suppose there exists an algorithm for solving the modular version of SLB with an approx-
imation factor α ≥ 1, we have for each iteration t that

max
i
fi(A

πt
i) ≤ αmax

i
fi(A

πt−1

i). (75)

Proof. The proof is symmetric to the one for Theorem 2.5.

Proof for Theorem 3.1

We prove separately for Problem 1 and Problem 2.

Theorem. Given an instance of Problem 1 with 0 < λ < 1, COMBSFASWP provides an ap-
proximation guarantee of max{min{α, 1

m},
βα

λ̄β+α
, λβ} in the homogeneous case, and a factor

of max{ βα
λ̄β+α

, λβ} in the heterogeneous case, where α and β are the approximation factors of
ALGWC and ALGAC for SFA and SWP respectively.

Proof. We first prove the result for heterogeneous setting. For notation simplicity we write the
worst-case objective as F1(π) = mini=1,...,m f(Aπi) and the average-case objective as F2(π) =
1
m

∑
i=1,...,m f(Aπi).

Suppose ALGWC outputs a partition π̂1 and ALGAC outputs a partition π̂2. Let π∗ ∈
arg maxπ∈Π λ̄F1(π) + λF2(π) be the optimal partition.

We use the following facts:

Fact1
F1(π̂1) ≥ αF1(π) (76)

Fact2
F2(π2) ≥ βF2(π) (77)

Fact3
F1(π) ≤ F2(π) (78)

Then we have that

λ̄F1(π̂2) + λF2(π̂2) ≥ λF2(π̂2) (79)
≥ λβF2(π∗) (80)

≥ λβ
[
λ̄F1(π∗) + λF2(π∗)

]
(81)

and

27

λ̄F1(π̂1) + λF2(π̂1) ≥ µ
[
λ̄F1(π̂1) + λF2(π̂1)

]
+ (1− µ)

[
λ̄F1(π̂1) + λF2(π̂1)

]
(82)

≥ µ
[
λ̄αF1(π∗) + λαF1(π∗)

]
+ (1− µ) [0 + λβF2(π∗)] (83)

≥ µα

λ̄
λ̄F1(π∗) + (1− µ)βλF2(π∗) (84)

≥ min{µα
λ̄
, (1− µ)β}

[
λ̄F1(π∗) + λF2(π∗)

]
(85)

min{µα
λ̄
, (1−µ)β} is a function over 0 ≤ µ ≤ 1 and µ∗ ∈ arg maxµ min{µα

λ̄
, (1−µ)β}. It is easy

to show

µ∗ =
λ̄β

λ̄β + α
(86)

max
µ

min{µα
λ̄
, (1− µ)β} =

βα

λ̄β + α
(87)

λ̄F1(π̂1) + λF2(π̂1) ≥ βα

λ̄β + α

[
λ̄F1(π∗) + λF2(π∗)

]
(88)

Taking the max over the two bounds leads to

max{λ̄F1(π̂1) + λF2(π̂1), λ̄F1(π̂2) + λF2(π̂2)} ≥ max{ βα

λ̄β + α
, λβ}max

π∈Π
λ̄F1(π) + λF2(π)

(89)

Next we are going to show the result for the homogeneous setting. We have the following facts that
hold for arbitrary partition π:

F1(π̂1) ≥ αF1(π), F2(π̂2) ≥ βF2(π) (90)

F1(π) ≤ F2(π), F2(π1) ≥ 1

m
F2(π) (91)

Consider the following:

λ̄F1(π̂1) + λF2(π̂1) ≥ αλ̄F1(π∗) +
λ

m
F2(π∗) (92)

≥ min{α, 1

m
}
[
λ̄F1(π∗) + λF2(π∗)

]
(93)

and
λ̄F1(π̂2) + λF2(π̂2) ≥ λF2(π̂2) (94)

≥ λβF2(π∗) (95)

≥ λβ
[
λ̄F1(π∗) + λF2(π∗)

]
(96)

Taking the max over the two bounds and the result shown in Eqn 88 gives the following:

max{λ̄F1(π̂1) + λF2(π̂1), λ̄F1(π̂2) + λF2(π̂2)} ≥ max{min{α, 1

m
}, βα

λ̄β + α
, λβ}max

π∈Π
λ̄F1(π) + λF2(π).

(97)

Theorem. COMBSLBSMP provides an approximation guarantee of min{m, mα
mλ̄+λ

, β(mλ̄ + λ)}
in the homogeneous case, and a factor of min{ mα

mλ̄+λ
, β(mλ̄+ λ)} in the heterogeneous case, for

Problem 2 with 0 ≤ λ ≤ 1.

Proof. Let π̂1 be the solution of ALGWC and π̂2 be the solution of ALGAC. Let π∗ ∈
arg minπ∈Π λ̄F1(π) + λF2(π) be the optimal partition. The following facts hold for all π ∈ Π:

Fact1
F1(π̂1) ≤ αF1(π) (98)

Fact2
F2(π̂2) ≤ βF2(π) (99)

28

Fact3
F2(π) ≤ F1(π) ≤ mF2(π) (100)

Then we have the following:
λ̄F1(π̂1) + λF2(π̂1) ≤ F1(π̂1) (101)

≤ αF1(π∗) (102)

≤ α

λ̄+ λ
m

[
λ̄F1(π∗) +

λ

m
F1(π∗)

]
(103)

≤ mα

mλ̄+ λ

[
λ̄F1(π∗) + λF2(π∗)

]
(104)

and
λ̄F1(π̂2) + λF2(π̂2) ≤ βmλ̄F2(π∗) + βλF2(π∗) (105)

≤ (mλ̄+ λ)βF2(π∗) (106)

≤ (mλ̄+ λ)β
[
λ̄F1(π∗) + λF2(π∗)

]
(107)

(108)
Taking the minimum over the two leads to the following:

min{λ̄F1(π̂1) + λF2(π̂1), λ̄F1(π̂2) + λF2(π̂2)} ≤ min{ mα

mλ̄+ λ
, β(mλ̄+ λ)}min

π∈Π
λ̄F1(π) + λF2(π)

(109)
Equation 109 gives us a bound for both the homogeneous setting and the heterogeneous settings.

Furthermore, in the homogeneous setting, for arbitrary partition π, we have

λ̄F1(π) + λF2(π) ≤ mmin
π∈Π

λ̄F1(π) + λF2(π) (110)

and we can tighten the bound for the homogeneous setting as follows:

min{λ̄F1(π̂1) + λF2(π̂1), λ̄F1(π̂2) + λF2(π̂2)} ≤ min{m, mα

mλ̄+ λ
, β(mλ̄+ λ)}max

π∈Π
λ̄F1(π) + λF2(π)

(111)

Proof for Theorem 3.2

Theorem. Given ε, α, and, 0 ≤ λ ≤ 1, GENERALGREEDSAT finds a partition π̂ that satisfies the
following:

λ̄min
i
fi(A

π̂
i) + λ

1

m

m∑
i=1

fi(A
π̂
i) ≥ λα(OPT − ε), (112)

where OPT = maxπ∈Π λ̄mini fi(A
π
i) + λ 1

m

∑m
i=1 fi(A

π
i).

Moreover, let Fλ,i(π) = λ̄fi(A
π
i) + λ 1

m

∑m
j=1 fj(A

π
j). Given any 0 < δ < α, there is a set

I ⊆ {1, . . . ,m} such that |I| ≥ dm(α− δ)e and

Fi,λ(π̂) ≥ max{ δ

1− α+ δ
, λα}(OPT − ε),∀i ∈ I. (113)

Proof. Denote intermediate objective F̄ c(π) = 1
m

∑m
i=1 min{λ̄fi(Aπi) + λ 1

m

∑m
j=1 fj(A

π
j), c}.

Also we define the overall objective as F (π) = λ̄mini fi(A
π
i) + λ 1

m

∑m
i=1 fi(A

π
i). When the

algorithm terminates, it identifies a cmin such that the returned solution π̂cmin satisfies F̄ cmin(π̂cmin) ≥
αcmin. Also it identifies a cmax such that the returned solution π̂cmax satisfies F̄ cmax(π̂cmax) < αcmax.
The gap between cmax and cmin is bounded by ε, i.e., cmax − cmin ≤ ε.
Next, we prove that there does not exist any partitioning π that satisfies F (π) ≥ cmax, i.e., cmax ≥
OPT .

Suppose otherwise, i.e., ∃π∗ : F (π∗) = cmax + γ with γ ≥ 0. Let c = cmax + γ, consider the
intermediate objective F̄ c(π), we have that F̄ c(π∗) = c. An instance of the algorithm for SWP on
F̄ c is guaranteed to lead to a solution π̂c such that F̄ c(π̂c) ≥ αc. Since c ≥ cmax, it should follow

29

that the returned solution π̂cmax for the value cmax also satisfies F̄ cmax(π̂) ≥ αcmax. However it
contradicts with the termination criterion of GREEDSAT. Therefore, we prove that cmax ≥ OPT ,
which indicates that cmin ≥ cmax − ε ≥ OPT − ε.
Let c∗ = cmax+cmin

2 and the partitioning returned by running for c∗ be π̂ (the final output partitioning
from the algorithm). We have that F̄ c

∗
(π̂) ≥ αc∗.

Next we are ready to prove the Theorem: F (π̂) ≥ λα. For simplicity of notation, we rewrite
yi = λ̄fi(A

π̂
i)+λ 1

m

∑m
j=1 fj(A

π̂
j) and xi = min{λ̄fi(Aπ̂i)+λ 1

m

∑m
j=1 fj(A

π̂
j), c∗} = min{yi, c∗}

for each i. Furthermore, we denote the sample mean as x̄ = 1
m

∑m
i=1 xi and ȳ = 1

m

∑m
i=1 yi. Then,

we have F (π̂) = mini yi and F̄ c
∗
(π̂) = x̄. We list the following facts to facilitate the analysis:

1. 0 ≤ xi ≤ c∗ holds for all i;

2. yi ≥ λȳ holds for all i;

3. xi ≥ λx̄ holds for all i;

4. x̄ ≥ αc∗;

5. xi = min{yi, c∗},∀i.

The second fact follows since

ȳ =
1

m

m∑
i=1

yi (114)

=
1

m

m∑
i=1

{λ̄fi(Aπ̂i) + λ
1

m

m∑
j=1

fj(A
π̂
j)} (115)

=
1

m

m∑
j=1

fj(A
π̂
j) ≤ yi

λ
(116)

Given the second fact, we can prove the third fact as follows. Let i∗ ∈ argmini yi. By definition
xi = min{yi, c∗}, then i∗ ∈ argmini xi. We consider the two cases:

(1) yi∗ ≤ c∗: In this case, we have that xi∗ = yi∗ . Since xi ≤ yi,∀i, it holds that x̄ ≤ ȳ. The third
fact follows as xi∗ = yi∗ ≥ λȳ ≥ λx̄.

(2) yi∗ > c∗: In this case, yi ≥ c∗ holds for all i. As a result, we have xi = c∗,∀i. Therefore,
xi = x̄ = c∗ ≥ λc∗.
Combining fact 3 and 4, it follows for each i:

λ̄fi(A
π̂
i) + λ

1

m

m∑
j=1

fj(A
π̂
j) = yi ≥ xi ≥ λx̄ ≥ αλc∗ ≥ αλ(OPT − ε). (117)

The first part of the Theorem is then proved.

The second part of the Theorem simply follows from the proof in Theorem 2.3 and Eqn 117.

6.1 Proof for Theorem 3.3

Define Fλ(π) = λ̄maxi fi(A
π
i) + λ 1

m

∑m
i=1 fi(A

π
i) for any 0 ≤ λ ≤ 1. GENERALLOVÁSZ

ROUND is guaranteed to find a partition π̂ ∈ Π such that
Fλ(π̂) ≤ mmin

π∈Π
Fλ(π) (118)

Proof. We essentially use the same proof technique in Theorem 2.7 to show this result. After solving
for the continuous solution {x∗i ∈ Rn}mi=1, the rounding step simply chooses for each j = 1, . . . , n,
assigns the item to the block i∗ ∈ argmaxi=1,...,m x

∗
i (j). We denote the resulting partitioning as

π̂ = {Aπ̂i }mi=1.

30

It suffices to bound the performance loss at the step of rounding the fractional solution {x∗i }mi=1, or
equivalently, the following:

f̃i(x
∗
i) ≥

1

m
fi(A

π̂
i), (119)

Given Eqn 119, the Theorem follows since

Fλ(π∗) ≥ λ̄max
i
f̃i(x

∗
i) + λ

1

m

m∑
j=1

f̃j(x
∗
j) (120)

≥ 1

m
[λ̄max

i
fi(A

π̂
i) +

λ

m

m∑
j=1

fj(A
π̂
j)] (121)

≥ 1

m
Fλ(π̂). (122)

To prove Eqn 68, consider the following:

fi(A
π̂
i) = f̃i(1Aπ̂i) = mf̃i(

1

m
1Aπ̂i)// positive homogeneity of Lovász extension (123)

For any item vj ∈ Aπ̂i , we have x∗i (j) ≥ 1
m , since

∑m
i=1 x

∗
i (j) ≥ 1 and x∗i (j) = maxi′ xi′(j).

Therefore, we have 1
m1Ai ≤ x∗i . Since fi is monotone, its extension f̃i is also monotone. As a result,

fi(Ai) = mf̃i(
1
m1Ai) ≤ mf̃i(x∗i).

31

	Introduction
	Sub-categorizations and Related Previous Work
	Our Contributions

	Robust Submodular Partitioning (Problems 1 and 2 when = 0)
	Approximation Algorithms for SFA (Problem 1 with =0)
	Approximation Algorithms for SLB (Problem 2 with =0)

	General Submodular Partitioning (Problems 1 and 2 when 0 < < 1)
	Applications of Problems 1 and 2 in Machine Learning and Data Science
	Applications of Problem 1
	Applications of Problem 2

	Experiments
	Experiments on Synthetic Data
	Problem 1 for Distributed Training
	Problem 2 for Unsupervised Image Segmentation

	Conclusions
	Proof for Theorem 3.3

