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Abstract

Estimating distributions over large alphabets is a fundamental machine-learning
tenet. Yet no method is known to estimate all distributions well. For example,
add-constant estimators are nearly min-max optimal but often perform poorly in
practice, and practical estimators such as absolute discounting, Jelinek-Mercer,
and Good-Turing are not known to be near optimal for essentially any distribution.
We describe the first universally near-optimal probability estimators. For every
discrete distribution, they are provably nearly the best in the following two com-
petitive ways. First they estimate every distribution nearly as well as the best
estimator designed with prior knowledge of the distribution up to a permutation.
Second, they estimate every distribution nearly as well as the best estimator de-
signed with prior knowledge of the exact distribution, but as all natural estimators,
restricted to assign the same probability to all symbols appearing the same number
of times.
Specifically, for distributions over k symbols and n samples, we show that for
both comparisons, a simple variant of Good-Turing estimator is always within KL
divergence of (3 + on(1))/n1/3 from the best estimator, and that a more involved
estimator is within Õn(min(k/n, 1/

√
n)). Conversely, we show that any esti-

mator must have a KL divergence at least Ω̃n(min(k/n, 1/n2/3)) over the best
estimator for the first comparison, and at least Ω̃n(min(k/n, 1/

√
n)) for the sec-

ond.

1 Introduction

1.1 Background

Many learning applications, ranging from language-processing staples such as speech recognition
and machine translation to biological studies in virology and bioinformatics, call for estimating large
discrete distributions from their samples. Probability estimation over large alphabets has therefore
long been the subject of extensive research, both by practitioners deriving practical estimators [1, 2],
and by theorists searching for optimal estimators [3].

Yet even after all this work, provably-optimal estimators remain elusive. The add-constant esti-
mators frequently analyzed by theoreticians are nearly min-max optimal, yet perform poorly for
many practical distributions, while common practical estimators, such as absolute discounting [4],
Jelinek-Mercer [5], and Good-Turing [6], are not well understood and lack provable performance
guarantees.

To understand the terminology and approach a solution we need a few definitions. The performance
of an estimator q for an underlying distribution p is typically evaluated in terms of the Kullback-
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Leibler (KL) divergence [7],
D(p||q) def

=
∑
x

px log
px
qx
,

reflecting the expected increase in the ambiguity about the outcome of p when it is approximated by
q. KL divergence is also the increase in the number of bits over the entropy that q uses to compress
the output of p, and is also the log-loss of estimating p by q. It is therefore of interest to construct
estimators that approximate a large class of distributions to within small KL divergence. We now
describe one of the problem’s simplest formulations.

1.2 Min-max loss

A distribution estimator over a support set X associates with any observed sample sequence x∗ ∈
X ∗ a distribution q(x∗) over X . Given n samples Xn def

= X1, X2, . . . , Xn, generated independently
according to a distribution p over X , the expected KL loss of q is

rn(q, p) = E
Xn∼pn

[D(p||q(Xn))].

Let P be a known collection of distributions over a discrete set X . The worst-case loss of an
estimator q over all distributions in P is

rn(q,P)
def
= max

p∈P
rn(q, p), (1)

and the lowest worst-case loss for P , achieved by the best estimator, is the min-max loss

rn(P)
def
= min

q
rn(q,P) = min

q
max
p∈P

rn(q, p). (2)

Min-max performance can be viewed as regret relative to an oracle that knows the underlying dis-
tribution. Hence from here on we refer to it as regret.

The most natural and important collection of distributions, and the one we study here, is the set
of all discrete distributions over an alphabet of some size k, which without loss of generality we
assume to be [k] = {1, 2, . . . k}. Hence the set of all distributions is the simplex in k dimensions,
∆k

def
= {(p1, . . . , pk) : pi ≥ 0 and

∑
pi = 1}. Following [8], researchers have studied rn(∆k) and

related quantities, for example see [9]. We outline some of the results derived.

1.3 Add-constant estimators

The add-β estimator assigns to a symbol that appeared t times a probability proportional to t+β. For
example, if three coin tosses yield one heads and two tails, the add-1/2 estimator assigns probability
1.5/(1.5 + 2.5) = 3/8 to heads, and 2.5/(1.5 + 2.5) = 5/8 to tails. [10] showed that as for every
k, as n→∞, an estimator related to add-3/4 is near optimal and achieves

rn(∆k) =
k − 1

2n
· (1 + o(1)). (3)

The more challenging, and practical, regime is where the sample size n is not overwhelmingly larger
than the alphabet size k. For example in English text processing, we need to estimate the distribution
of words following a context. But the number of times a context appears in a corpus may not be
much larger than the vocabulary size. Several results are known for other regimes as well. When the
sample size n is linear in the alphabet size k, rn(∆k) can be shown to be a constant, and [3] showed
that as k/n→∞, add-constant estimators achieve the optimal

rn(∆k) = log
k

n
· (1 + o(1)), (4)

While add-constant estimators are nearly min-max optimal, the distributions attaining the min-max
regret are near uniform. In practice, large-alphabet distributions are rarely uniform, and instead, tend
to follow a power-law. For these distributions, add-constant estimators under-perform the estimators
described in the next subsection.
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1.4 Practical estimators

For real applications, practitioners tend to use more sophisticated estimators, with better empirical
performance. These include the Jelinek-Mercer estimator that cross-validates the sample to find the
best fit for the observed data. Or the absolute-discounting estimators that rather than add a positive
constant to each count, do the opposite, and subtract a positive constant.

Perhaps the most popular and enduring have been the Good-Turing estimator [6] and some of its
variations. Let nx

def
= nx(xn) be the number of times a symbol x appears in xn and let ϕt

def
= ϕt(x

n)
be the number of symbols appearing t times in xn. The basic Good-Turing estimator posits that if
nx = t,

qx(xn) =
ϕt+1

ϕt
· t+ 1

n
,

surprisingly relating the probability of an element not just to the number of times it was observed,
but also to the number other elements appearing as many, and one more, times. It is easy to see
that this basic version of the estimator may not work well, as for example it assigns any element
appearing ≥ n/2 times 0 probability. Hence in practice the estimator is modified, for example,
using empirical frequency to elements appearing many times.

The Good-Turing Estimator was published in 1953, and quickly adapted for language-modeling
use, but for half a century no proofs of its performance were known. Following [11], several papers,
e.g., [12, 13], showed that Good-Turing variants estimate the combined probability of symbols
appearing any given number of times with accuracy that does not depend on the alphabet size, and
[14] showed that a different variation of Good-Turing similarly estimates the probabilities of each
previously-observed symbol, and all unseen symbols combined.

However, these results do not explain why Good-Turing estimators work well for the actual proba-
bility estimation problem, that of estimating the probability of each element, not of the combination
of elements appearing a certain number of times. To define and derive uniformly-optimal estimators,
we take a different, competitive, approach.

2 Competitive optimality

2.1 Overview

To evaluate an estimator, we compare its performance to the best possible performance of two es-
timators designed with some prior knowledge of the underlying distribution. The first estimator is
designed with knowledge of the underlying distribution up to a permutation of the probabilities,
namely knowledge of the probability multiset, e.g., {.5, .3, .2}, but not of the association between
probabilities and symbols. The second estimator is designed with exact knowledge of the distribu-
tion, but like all natural estimators, forced to assign the same probabilities to symbols appearing the
same number of times. For example, upon observing the sample a, b, c, a, b, d, e, the estimator must
assign the same probability to a and b, and the same probability to c, d, and e.

These estimators cannot be implemented in practice as in reality we do not have prior knowledge
of the estimated distribution. But the prior information is chosen to allow us to determine the best
performance of any estimator designed with that information, which in turn is better than the perfor-
mance of any data-driven estimator designed without prior information. We then show that certain
variations of the Good-Turing estimators, designed without any prior knowledge, approach the per-
formance of both prior-knowledge estimators for every underlying distribution.

2.2 Competing with near full information

We first define the performance of an oracle-aided estimator, designed with some knowledge of the
underlying distribution. Suppose that the estimator is designed with the aid of an oracle that knows
the value of f(p) for some given function f over the class ∆k of distributions.

The function f partitions ∆k into subsets, each corresponding to one possible value of f . We denote
the subsets by P , and the partition by P, and as before, denote the individual distributions by p.
Then the oracle knows the unique partition part P such that p ∈ P ∈ P. For example, if f(p) is
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the multiset of p, then each subset P corresponds to set of distributions with the same probability
multiset, and the oracle knows the multiset of probabilities.

For every partition part P ∈ P, an estimator q incurs the worst-case regret in (1),

rn(q, P ) = max
p∈P

rn(q, p).

The oracle, knowing the unique partition part P , incurs the least worst-case regret (2),

rn(P ) = min
q
rn(q, P ).

The competitive regret of q over the oracle, for all distributions in P is

rn(q, P )− rn(P ),

the competitive regret over all partition parts and all distributions in each is

rPn(q,∆k)
def
= max

P∈P
(rn(q, P )− rn(P )) ,

and the best possible competitive regret is

rPn(∆k)
def
= min

q
rPn(q,∆k).

Consolidating the intermediate definitions,

rPn(∆k) = min
q

max
P∈P

(
max
p∈P

rn(q, p)− rn(P )

)
.

Namely, an oracle-aided estimator who knows the partition part incurs a worst-case regret rn(P )
over each part P , and the competitive regret rPn(∆k) of data-driven estimators is the least overall
increase in the part-wise regret due to not knowing P . In Appendix A.1, we give few examples of
such partitions.

A partition P′ refines a partition P if every part in P is partitioned by some parts in P′. For example
{{a, b}, {c}, {d, e}} refines {{a, b, c}, {d, e}}. In Appendix A.2, we show that if P′ refines P then
for every q

rP
′

n (q,∆k) ≥ rPn(q,∆k). (5)

Considering the collection ∆k of all distributions over [k], it follows that as we start with single-part
partition {∆k} and keep refining it till the oracle knows p, the competitive regret of estimators will
increase from 0 to rn(q,∆k). A natural question is therefore how much information can the oracle
have and still keep the competitive regret low? We show that the oracle can know the distribution
exactly up to permutation, and still the regret will be very small.

Two distributions p and p′ permutation equivalent if for some permutation σ of [k],

p′σ(i) = pi,

for all 1 ≤ i ≤ k. For example, (0.5, 0.3, 0.2) and (0.3, 0.5, 0.2) are permutation equivalent.
Permutation equivalence is clearly an equivalence relation, and hence partitions the collection of
distributions over [k] into equivalence classes. Let Pσ be the corresponding partition. We construct
estimators q that uniformly bound rPσn (q,∆k), thus the same estimator uniformly bounds rPn(q,∆k)
for any coarser partition of ∆k, such as partitions into classes of distributions with the same support
size, or entropy. Note that the partition Pσ corresponds to knowing the underlying distribution up
to permutation, hence rPσn (∆k) is the additional KL loss compared to an estimator designed with
knowledge of the underlying distribution up to permutation.

This notion of competitiveness has appeared in several contexts. In data compression it is called
twice-redundancy [15, 16, 17, 18], while in statistics it is often called adaptive or local min-
max [19, 20, 21, 22, 23], and recently in property testing it is referred as competitive [24, 25, 26]
or instance-by-instance [27]. Subsequent to this work, [28] studied competitive estimation in `1
distance, however their regret is poly(1/ log n), compared to our Õ(1/

√
n).
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2.3 Competing with natural estimators

Our second comparison is with an estimator designed with exact knowledge of p, but forced to be
natural, namely, to assign the same probability to all symbols appearing the same number of times
in the sample. For example, for the observed sample a, b, c, a, b, d, e, the same probability must be
assigned to a and b, and the same probability to c, d, and e. Since data-driven estimators derive all
their knowledge of the distribution from the data, we expect them to be natural.

We compare the regret of data-driven estimators to that of natural oracle-aided estimators. LetQnat

be the set of all natural estimators. For a distribution p, the lowest regret of a natural estimator,
designed with prior knowledge of p is

rnat
n (p)

def
= min

q∈Qnat
rn(q, p),

and the regret of an estimator q relative to the least-regret natural-estimator is
rnat
n (q, p) = rn(q, p)− rnat

n (p).

Thus the regret of an estimator q over all distributions in ∆k is
rnat
n (q,∆k) = max

p∈∆k

rnat
n (q, p),

and the best possible competitive regret is rnat
n (∆k) = minq r

nat
n (q,∆k).

In the next section we state the results, showing in particular that rnat
n (∆k) is uniformly bounded. In

Section 5, we outline the proofs, and in Section 4 we describe experiments comparing the perfor-
mance of competitive estimators to that of min-max motivated estimators.

3 Results

Good-Turing estimators are often used in conjunction with empirical frequency, where Good-Turing
estimates low probabilities and empirical frequency estimates large probabilities. We first show that
even this simple Good-Turing version, defined in Appendix C and denoted q′, is uniformly optimal
for all distributions. For simplicity we prove the result when the number of samples is n′ ∼ poi(n),
a Poisson random variable with mean n. Let rPσpoi(n)(q

′,∆k) and rnat
poi(n)(q

′,∆k) be the regrets in this
sampling process. A similar result holds with exactly n samples, but the proof is more involved as
the multiplicities are dependent.
Theorem 1 (Appendix C). For any k and n,

rPσpoi(n)(q
′,∆k) ≤ rnat

poi(n)(q
′,∆k) ≤ 3 + on(1)

n1/3
.

Furthermore, a lower bound in [13] shows that this bound is optimal up to logarithmic factors.

A more complex variant of Good-Turing, denoted q′′, was proposed in [13]. We show that its regret
diminishes uniformly in both the partial-information and natural-estimator formulations.
Theorem 2 (Section 5). For any k and n,

rPσn (q′′,∆k) ≤ rnat
n (q′′,∆k) ≤ Õn

(
min

(
1√
n
,
k

n

))
.

Where Õn, and below also Ω̃n, hide multiplicative logarithmic factors in n. Lemma 6 in Section 5
and a lower bound in [13] can be combined to prove a matching lower bound on the competitive
regret of any estimator for the second formulation,

rnat
n (∆k) ≥ Ω̃n

(
min

(
1√
n
,
k

n

))
.

Hence q′′ has near-optimal competitive regret relative to natural estimators.

Fano’s inequality usually yields lower bounds on KL loss, not regret. By carefully constructing
distribution classes, we lower bound the competitive regret relative to the oracle-aided estimators.
Theorem 3 (Appendix D). For any k and n,

rPσn (∆k) ≥ Ω̃n

(
min

(
1

n2/3
,
k

n

))
.

5



3.1 Illustration and implications

Figure 1 demonstrates some of the results. The horizontal axis reflects the set ∆k of distributions
illustrated on one dimension. The vertical axis indicates the KL loss, or absolute regret, for clarity,
shown for k � n. The blue line is the previously-known min-max upper bound on the regret,
which by (4) is very high for this regime, log(k/n). The red line is the regret of the estimator
designed with prior knowledge of the probability multiset. Observe that while for some probability
multisets the regret approaches the log(k/n) min-max upper bound, for other probability multisets
it is much lower, and for some, such as uniform over 1 or over k symbols, where the probability
multiset determines the distribution it is even 0. For many practically relevant distributions, such
as power-law distributions and sparse distributions, the regret is small compared to log(k/n). The
green line is an upper bound on the absolute regret of the data-driven estimator q′′. By Theorem 2,
it is always at most 1/

√
n larger than the red line. It follows that for many distributions, possibly for

distributions with more structure, such as those occurring in nature, the regret of q′′ is significantly
smaller than the pessimistic min-max bound implies.

rn(∆k) = log k
n

Uniform distribution

KL loss

Distributions

≤ Õ
(

min(
(

1√
n
, kn

))

Figure 1: Qualitative behavior of the KL loss as a function of distributions in different formulations

We observe a few consequences of these results.

• Theorems 1 and 2 establish two uniformly-optimal estimators q′ and q′′. Their relative regrets
diminish to zero at least as fast as 1/n1/3, and 1/

√
n respectively, independent of how large the

alphabet size k is.
• Although the results are for relative regret, as shown in Figure 1, they lead to estimator with

smaller absolute regret, namely, the expected KL divergence.
• The same regret upper bounds hold for all coarser partitions of ∆k i.e., where instead of knowing

the multiset, the oracle knows some property of multiset such as entropy.

4 Experiments

Recall that for a sequence xn, nx denotes the number of times a symbol x appears and ϕt denotes
the number of symbols appearing t times. For small values of n and k, the estimator proposed
in [13] simplifies to a combination of Good-Turing and empirical estimators. By [13, Lemmas 10
and 11], for symbols appearing t times, if ϕt+1 ≥ Ω̃(t), then the Good-Turing estimate is close
to the underlying total probability mass, otherwise the empirical estimate is closer. Hence, for a
symbol appearing t times, if ϕt+1 ≥ t we use the Good-Turing estimator, otherwise we use the
empirical estimator. If nx = t,

qx =

{
t
N if t > ϕt+1,
ϕt+1+1
ϕt

· t+1
N else,

where N is a normalization factor. Note that we have replaced ϕt+1 in the Good-Turing estimator
by ϕt+1 + 1 to ensure that every symbol is assigned a non-zero probability.
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(a) Uniform
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(b) Step
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(c) Zipf with parameter 1
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(d) Zipf with parameter 1.5
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(e) Uniform prior (Dirichlet 1)
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(f) Dirichlet 1/2 prior

Figure 2: Simulation results for support 10000, number of samples ranging from 1000 to 50000,
averaged over 200 trials.

We compare the performance of this estimator to four estimators: three popular add-β estimators
and the optimal natural estimator. An add-beta estimator Ŝ has the form

qŜx =
nx + βŜnx
N(Ŝ)

,

where N(Ŝ) is a normalization factor to ensure that the probabilities add up to 1. The Laplace
estimator, βLt = 1∀ t, minimizes the expected loss when the underlying distribution is generated
by a uniform prior over ∆k. The Krichevsky-Trofimov estimator, βKTt = 1/2∀ t, is asymptotically
min-max optimal for the cumulative regret, and minimizes the expected loss when the underlying
distribution is generated according to a Dirichlet-1/2 prior. The Braess-Sauer estimator, βBS0 =
1/2, βBS1 = 1, βBSt = 3/4 ∀ t > 1, is asymptotically min-max optimal for rn(∆k). Finally,
as shown in Lemma 10, the optimal estimator qx =

Snx
ϕnx

achieves the lowest loss of any natural
estimator designed with knowledge of the underlying distribution.

We compare the performance of the proposed estimator to that of the four estimators above. We
consider six distributions: uniform distribution, step distribution with half the symbols having prob-
ability 1/2k and the other half have probability 3/2k, Zipf distribution with parameter 1 (pi ∝ i−1),
Zipf distribution with parameter 1.5 (pi ∝ i−1.5), a distribution generated by the uniform prior
on ∆k, and a distribution generated from Dirichlet-1/2 prior. All distributions have support size
k = 10000. n ranges from 1000 to 50000 and the results are averaged over 200 trials.

Figure 2 shows the results. Observe that the proposed estimator performs similarly to the best
natural estimator for all six distributions. It also significantly outperforms the other estimators for
Zipf, uniform, and step distributions.

The performance of other estimators depends on the underlying distribution. For example, since
Laplace is the optimal estimator when the underlying distribution is generated from the uniform
prior, it performs well in Figure 2(e), however performs poorly on other distributions.

Furthermore, even though for distributions generated by Dirichlet priors, all the estimators have
similar looking regrets (Figures 2(e), 2(f)), the proposed estimator performs better than estimators
which are not designed specifically for that prior.
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5 Proof sketch of Theorem 2

The proof consists of two parts. We first show that for every estimator q, rPσn (q,∆k) ≤ rnat
n (q,∆k)

and then upper bound rnat
n (q,∆k) using results on combined probability mass.

Lemma 4 (Appendix B.1). For every estimator q,
rPσn (q,∆k) ≤ rnat

n (q,∆k).

The proof of the above lemma relies on showing that the optimal estimator for every class in P ∈ Pσ
is natural.

5.1 Relation between rnat
n (q,∆k) and combined probability estimation

We now relate the regret in estimating distribution to that of estimating the combined or total prob-
ability mass, defined as follows. Recall that ϕt denotes the number of symbols appearing t times.
For a sequence xn, let St

def
= St(x

n) denote the total probability of symbols appearing t times. For
notational convenience, we use St to denote both St(xn) and St(Xn) and the usage becomes clear
in the context. Similar to KL divergence between distributions, we define KL divergence between S
and their estimates Ŝ as

D(S||Ŝ) =

n∑
t=0

St log
St

Ŝt
.

Since the natural estimator assigns same probability to symbols that appear the same number of
times, estimating probabilities is same as estimating the total probability of symbols appearing a
given number of times. We formalize it in the next lemma.
Lemma 5 (Appendix B.2). For a natural estimator q let Ŝt(xn) =

∑
x:nx=t qx(xn), then

rnat
n (q, p) = E[D(S||Ŝ)].

In Lemma 11(Appendix B.3), we show that there is a natural estimator that achieves rnat
n (∆k). Taking

maximum over all distributions p and minimum over all estimators q results in
Lemma 6. For a natural estimator q let Ŝt(xn) =

∑
x:nx=t qx(xn), then

rnat
n (q,∆k) = max

p∈∆k

E[D(S||Ŝ)].

Furthermore,
rnat
n (∆k) = min

Ŝ
max
p∈∆k

E[D(S||Ŝ)].

Thus finding the best competitive natural estimator is same as finding the best estimator for the
combined probability mass S. [13] proposed an algorithm for estimating S such that for all k and
for all p ∈ ∆k, with probability ≥ 1− 1/n ,

D(S||Ŝ) = Õn
(

1√
n

)
.

The result is stated in Theorem 2 of [13]. One can convert this result to a result on expectation easily
using the property that their estimator is bounded below by 1/2n and show that

max
p∈∆k

E[D(S||Ŝ)] = Õn
(

1√
n

)
.

A slight modification of their proofs for Lemma 17 and Theorem 2 in their paper using
∑n
t=1

√
ϕt ≤∑n

t=1 ϕt ≤ k shows that their estimator Ŝ for the combined probability mass S satisfies

max
p∈∆k

E[D(S||Ŝ)] = Õn
(

min

(
1√
n
,
k

n

))
.

The above equation together with Lemmas 4 and 6 results in Theorem 2.
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