LL-LVM supplementary material

Notation The vectorized version of a matrix is vec(M). We denote an identity matrix of size m with I,,. Other
notations are the same as used in the main text.

A  Matrix normal distribution

The matrix normal distribution generalises the standard multivariate normal distribution to matrix-valued variables.
A matrix A € R™*? is said to follow a matrix normal distribution MN,, ,(M, U, V) with parameters U and V if
its density is given by

exp (-3 Tr [V7HA-M)TU (A -M)])

P(A|M, U, V) = (2m)mP/2[V|n/2| U [P/

(1)
If A ~ MN (M, U, V), then vec(A) ~ N (vec(M), V® U), a relationship we will use to simplify many expressions.

B Matrix normal expressions of priors and likelihood

Recall that G;; = 7.

Prior on low dimensional latent variables

« n 1 n n

logp(x|G, @) = —5 > Ixil? - 3 SO nisllxi — %517 — log Zx (2)
i=1 i=1 j=1
1 | e

=-3 log |27 TI| — X I x, (3)

where

ot.= olyqg, + Q-
Ql=2Lel,,
L :=diag(G1) — G.

L is known as a graph Laplacian. It follows that p(x|G, a) = N (0,II). The prior covariance IT can be rewritten as

Mm'=al,®l;, +2Lol, (4)
= (al, +2L)®1,,, (5)
II = (oI, + 2L) ' @ 1. (6)

By the relationship of a matrix normal and multivariate normal distributions described in section A, the equivalent
prior for the matrix X = [x1x3 - - X,,] € R%*" constructed by reshaping x, is given by

p(X|G,a) = MN(X|0, I, , (oI, +2L)71). (7)

Prior on locally linear maps

Recall that C = [Cy, ..., C,] € R%>"% where each C; € R%* % We formulate the log prior on C as

€ n 1 n n
logp(CIG) = ~SI > Cill = 5 37 S nilICi — Gyl — log Ze,
i=1 i=1 j=1

= —<Tr(C3I’CT) - %Tr (27'CTC) —log Zc, where J :=1, ®1,,,

Tr [(JIT + Q7 HC'C| - log Ze. (8)

N =N



In the first line, the first term imposes a constraint that the mean of C; should not be too large. The second term
encourages the the locally linear maps of neighbouring points ¢ and j to be similar in the sense of the Frobenius
norm. Notice that the last line is in the form of a the log of a matrix normal density with mean 0 where Z, is given
by

log Z, =

d.d d
n = log 27| — 2 log |eJI T + 07| 9)

The expression is equivalent to
p(C|G) = MN(C|0,14,, (eJIT +Q71)71). (10)

In our implementation, we fix € to a small value, since the magnitude of C; and x; can be controlled by the
hyper-parameter «, which is optimized in the M-step.

Likelihood
We penalise linear approximation error of the tangent spaces. Assume that the noise precision matrix is a scaled
identify matrix ei.g., V7! = Ya, -

n
€
logp(y|x,C,V,G) = —§||Zyi|\2 —log Zy (11)

-3 Z Z% —yi) = Ci(x; = %) TV ((y; — vi) — Calx — x3)),

i=1 j=1
= —%(yTEyfly —2y'e+ f) —log Z, (12)
where
y=' v eRM (13)
Syl = (1,1, ) ®1y, + 2LV, (14)
e=[e;, -,e, | € R, (15)

Zn]z +C )( Xi)a (16)

f= ZZ% )TCTVTIC(x; — x)). (17)

=1 j=1

By completing the quadratic form in y, we want to write down the likelihood as a multivariate Gaussian ! :

p(ylx,C,V,G) = N(ny, Zy), (18)
y = Lye. (19)
I The equivalent expression in term of matrix normal distribution for Y = [y1,y2, - ,yn] € Rdy*n

p(Y[x,C,7, G) = MN(Y|My, I, , (eln1n | +29L)71),
My = E(el,1, | +2yL) 7!
where E = [e1,--- ,e,] € R%*™. The covariance in Eq. (13) decomposes
Nyt = (11, ) ® I, +2L@ V™
= (elpln | +29L) @14,
Sy = (lnly | +29L) ' @14, .



By equating Eq. (11) with Eq. (18), we get the normalisation term Z,

1 _ 1 _ 1
0TSy —2y et ) ~log Zy = o (y — py) T8 (v — pay) — 5 log |20y . (20)
1 _ 1
log Zy, = §(uy—r2y1uy -+ 3 log |27%y |, (21)
_ 1
Zy = eXP(%(NyTZylﬂy — f)I2rEy|z, (22)
= exp(3(eTTye — f))|2n%y 5. (23)

Therefore, the normalised log-likelihood can be written as

1 _ 1
logp(y|x,C,V,G) = —§(yTEy ly —oyTe+ eTEye) ~5 log |27%y|. (24)

Convenient form for EM

For the EM derivation in the next section, it is convenient to write the exponent term in terms of linear and
quadratic functions in x and C, respectively. The linear terms appear in y e, which we write as a linear function
in x or C

y'e=x"b, (25)
=Tr(C'V'H), (26)
where
H= [Hl, e ,Hn} S Rdyxnd’”7 Where Hl = Z’Ih](y] — yz)(Xj — Xi)T, (27)
j=1
b= [blT, s ,bnT]T € Rndm, where bi = ij(CjTV_l(yi — yj) — CiTV_l(yj — yi))- (28)
j=1

The quadratic terms appear in eTZye, which we write as a quadratic function of x or a quadratic function of C
eTZye = XTAETZyAEX7 (29)
— THQLQTCTC], (30)

where the i, jth (d, x d;) chunk of A € R"®*"de g given by

Ap(i,j) = —ni; V(Cj + Ci) + 635 : (31)

Z nx V" (Ck + Cy)
K

The matrix L = (1,1," +29L)"' and Q = [q; q2 --- Q] € R™=*" and the ith column of this matrix is denoted
by q; € R"¥. The jth chunk (of length d,) of the ith column is given by

ai(j) = ni; V7 (xi — x5) + 6

kav_l(xi - ch)‘| . (32)
k

C Variational inference

In LL-LVM, the goal is to infer the latent variables (x,C) as well as to learn the hyper-parameters 6 = {a,vy}. We
infer them by maximising the lower bound of the marginal likelihood of the observations y.

logp(yl0,G) = log//p(y,C7x|G,0) dx dC,

///q(c,x) longde,
F(g(C,x

), 9).

v



For computational tractability, we assume that the posterior over (C,x) factorizes as

9(C,x) = q(x)q(C). (33)

where ¢(x) and ¢(C) are multivariate normal distributions.
We maximize the lower bound w.r.t. ¢(C, x) and 0 by the variational expectation maximization algorithm, which
consists of (1) the variational expectation step for determining ¢(C, x) by

q(x) o exp [/q(C)logp(y, C,X|G,9)dC] ) (34)
(C) xexp | [ ax)togaty. C.xIG. O)ix|. (39)
followed by (2) the maximization step for estimating 6, @ = arg maxy F(q(C,x), ).

C.1 VE step
C.1.1 Computing g(x)

In variational E-step, we compute ¢(x) by integrating out C from the total log joint distribution:

logq(x) = Eyc)llogp(y,C,x|G,8)] + const, (36)
Eq(c) logp(y|C,x, G, 8) + log p(x|G, 8) + log p(C|G, 8)] + const. (37)

To determine ¢(x), we firstly re-write p(y|C, x, G, 0) as a quadratic function in x :

1
logp(y|C,x, G, 0) = —g(XTAETEyAEX —2x " b) + const, (38)
where

A:=Ap"S,Ap, (39)

Ay Ap - Ay,
A= eRndendw’ (40)

A,y - o AL,
A= Y Lp.g)Ar(p,i)" Ar(q, ) (41)

p=1qg=1

where L := (elnl;[ + 2yL)~!. With the likelihood expressed as a quadratic function of x, the log posterior over x
is given by

1
log g(x) = _iEq(c) [XTAX —2x'b+ XTH*IX] + const, (42)
1 _
=3 [XT(<A>q(C) +II 1)x - 2XT<b>q(c)] + const, (43)

The posterior over x is given by

q(x) = N (x|px, ), (44)

where
St = (Ao + 1T, (45)
HPx = Ex<b>q(C)- (46)

Notice that the parameters of ¢(x) depend on the sufficient statistics (A),c) and (b)) whose explicit forms are
given in section C.1.2.



C.1.2 Sufficient statistics A and b for ¢(x)

Given the posterior over ¢, the sufficient statistics (A)q(c) and (b)4(c) necessary to characterise ¢(x) are computed
as following:

(Aij)ae) = D Y L, 0)(AE(p, i) AE(q,5))q(e): (47)
p:l q:l
= ~? L(p, 9) (=i (Cp + Ci) + 6 (Cr +Cp)) " (=14 (Cy + C;) + 645 (Cr + Cy)))
Y p,q MpilCp i pi Npk\ Lk P Nqi\*oq J qj Nk \“k q))/q(c)
p=1qg=1 k k'’

L(p, q)( npingi(Cp Cq+ C, C;j +C; T Cy + C; T Cj)y o)

|
P%:
M:

1

lgq

=
Il

- npiéqj Z’]]qk/ <CPTCk/ =+ CpTCq —+ CiTCk/ + CiTCq>q(c)
k/

—1gi0pi Y Mpk(Cr ' Cq + Cr'C; + C, T Cy + C, T Cj) g(c)
k

+ 8pidy; Z Z NokTak (Crk ' Crr + Cr ' Cq + Cp ' Cir + G, Cyly(e) )
k kK’

Thanks to the delta function, the last three terms above are non-zero only when p = 7 and ¢ = j. Therefore, we
can replace p with 4, and ¢ with j, which simplifies the above as

72 Z Z i(p, q) NpiTlgj <CpTCq + CpTCj + CiTCq + C,’TCj>q(c)

p=1q=1
- '72 Z Z f‘(paj)npinjk’<cpTCk/ + CPTCj + CiTCk/ + CZ‘TCj>q(C)
p=1 k'
- Z Z f‘(% Q)nanik<CkTCq + CkTCJ’ + CiTC‘I + CiTCj>‘J(°)
q=1 k
+97L(6,5) > miknir (Cr T Crr + CpTCj + C; T Crr + C; T Cj)g(e

kK

We can make the equation above even simpler by replacing &’ with ¢ (second line), k with p (third line), and both
k and k" with p and ¢ (fourth line), which gives us

(Aij)aey =7 DY _[L(p,q) = L(p,4) — L(i,q) + L6, )] nping;(Cp Cq+ Cp Cj + Ci"Cy + Ci T Cj)y(e).  (48)

For b;, we have

(bi)ae) =7 >_mii((Cidate) (¥i = ¥5) = (Cidate) (¥ = ¥i)); (49)
j=1
where (50)
(Ci)q(c) = i-th chunk of pc, where each chunk is (dy, x d,) (51)
(CiTCj)ge) = (i,j)-th(dy x dy) chunk of dySc + (Ci)g(e) ' (Cj)g(e)s (52)
C.1.3 Computing ¢(C)

Next, we compute ¢(C) by integrating out x from the total log joint distribution:
log q(C) = Eq(x) [log p(y, C, X|G, 0)] + const, (53)
= Ey(x) [log p(y|C, x, G, 0) + log p(x|G, 8)] + log p(C|G, 8) + const. (54)



We re-write p(y|C, x, G, 0) as a quadratic function in C:

1 -
logp(y|C,x, G, 0) = —§Tr(QLQTCTC —2CTV~H) + const,

where
r':=QLQ',
Fll 1-‘12 e Fln
L= :
| Tun
Tij = > Lk K)ar(i)aw (5)

The log posterior over C is given by

1

log ¢(C) = —5Tr [(T)qx)CTC—2CTV 1 {H) ) + (eJIT +Q 1)CTC] + const,

The posterior over C is given by

Bl = (D +eJIT+Q NI

=35 '®I, where B! = (T gx) + JIT+ Q7!
pe =V H)wZc
Therefore, the approximate posterior over C is given by
q(C) = MN(H’C7Ia EC)

The parameters of ¢(C) depend on the sufficient statistics (T')

C.1.4 Sufficient statistics I' and H

(55)

(60)

q(x) and (H),(x) which are given in section C.1.4.

Given the posterior over x, the sufficient statistics (I")4(x) and (H)4(x) necessary to characterise ¢(C) are computed

as follows. Similar to (A), we can simplify (T'j;)q(x) as

(Cijdao) =7° D > [Llk, k') = Lk, j) — L(i, k') + L3, )] meimwj (xuxnr T = xx; " = x0T+ %% ) o). (61)

k=1k'=1

For (H;)(x), we have

(Hi)g = > i {(y; = ¥) (%5 — %) ) g,
=1
=Y (¥ (a0 |~ YiKidaeo | — VilKi)aeo |+ Yi(XKi)ae0 s
=1
where (x;%; " )q(x) = =) 4 (Xi)g(x) (Xj)q(x) | and ») = cov(x;, X;).

C.2 VM step

We set the parameters 8 = (@, ) by maximising the free energy w.r.t. 6:

0= arg mgx ]Eq(x)q(C) [logp(Ya Ca X|G7 0) - IOg Q(X7 C)]a

= argmax B, g4(0)[log p(y|C, x, G, 8) +10g p(C[G, 0) +log p(x|G, 0) — log ¢(x) — log ¢(C)].

Once we update all the parameters, we achieve the following lower bound:

L(q(x,C),0) = Eqpq(c)[log p(y|C, %, G, 0)] = Dic1.((C)|Ip(C|G)) — Dicr.(4(x)|[p(x|G, 6)).



Update for ~

Recall that the precision matrix in the likelihood term is V=1 = 714, . For updating 7, it is sufficient to consider
the log conditional likelihood integrating out x, C:

E,x)q(c)[log p(¥|C, x, G, 0)] = Eyx)q(c) f%Tr(I‘CTC —2C'V'H) - %yTE;Iy - %log 278y,  (66)
which is
1 T Tyv-1 L 1
— iEq(C)Tr(ﬂ")q(x)C C-2C' 'V (H)yx) — iy 3y - 5 log |27%, |,
—sEqc) [CT(<I‘>q(x) ®1Iy,)c — 2chec(V_1<H>q(x))] — %yTE;ly — %log [27%y |,
= 2 Tr({T)g0 Bc) — %Tr(<F>q<x)ucTuc) +9Tr(pe " (H)ge) — %yTE;ly - %log 275y |-
The log determinant term is further simplified as
—% log |27%, | = _any log(27) + % log 1,1, " + 27L|. (67)
We denote the objective function for updating v by (), which consists of all the terms that depend on « above
I(y) = —%M(Dq(x)(dyﬁc +pc ' pe) +1Tr(pe (H)gx) - %yT((elnlnT +29L) @ Iay )y + %‘” log[el,1, " + 291,
=h(y) + () +13(7) + (),
where each term is given below. From the definition of I" = QLQ", we rewrite the first term above as
h(1) = 5 TrQEQ )y (d, B + i ).
We separate v from Q and plug in the definition of L, which gives us
() = =57 T(QEQT (4,0 + o kc).
where the jth chunk (of length d,) of ith column of Q € R™=*" ig given by §; (7) = mij (% —=%5)+055[> 0 mine (x5 —x1)]

We can explicitly write down L in terms of ~ using orthogonality of singular vectors between e1,1, ' and 2vL,
where we denote the singular decomposition of L = U; DV T

L= (elnlnT + 2’yL)71,

1
0 0 0 ) o TXERY 0 0
=V U, +—V 1 U’
L |0 +27 L 0 TXeR) L
0 L 0 0
- 1 -
:LE+7LL
2

Hence, 11 () is given by
1 e N
li(y) = *i’szr«QLeQT)q(x)(dyEc + e pe)) - ZTI‘(<QLLQT>q(x) (dyTc + pc' pne)).

Let (T) := (QL.Q")y(x)- Similar to Eq. 61, we have

(Teij) =7

k=1Fk'

n

[Le(k, k') — Le(k, §) — Le(i, k') + Le(i, )] meanerj (xixie T — xix5 T — XixXpr T 4+ X% ) g)-
=1

Because L is symmetric, Uy, = V, in the SVD and U, contains the eigenvectors of L. So f:e(p, q) =UL(p,n)UL(n,q)
where we refer to the n' (last) eigenvector of L. However, the last eigenvector of L corresponding to the eigen-
value 0 has the same element in each coordinate i.e., Uy (:,n) = al,, for some constant a € R. This implies that

1
€N



=

(p,q) = aaé. The elements of L. have the same value, implying [I:e(k,k’) - f;i(k,j) — f;e(i,k') + I:e(i,j)] =
[aa — aa — aa + aa] = 0 and (' ;;) = 0 for all 4, j blocks. We have

1) = =3 T((QLLQ )y (dy B + e o).

|~

€

S

The second term l3(7y) is given by
l(7) =1Tr(pc " (H)40),
and the third term I3(7) is rewritten as
ly(7) = —/TH(LYTY).

Finally, the last term is simplified as

n—1

d d

?y log |e1,1, " +29L| = ?y <Z log Dy (i,i) + log(ne) + (n — 1) log(2'y)> .
i=1

Hence,

dy

la(v) = 5 (n = 1) log(27).

The update for « is thus given by
7 = argmaxi(y) = argmaxy (7) + l2(y) + l3(7) +1a(+)
dy(n—1)/2
—ITr((QLLQT g (dyEc + e T pe)) + Tr(pe T (H)gx) — TH(LYTY)

Update for o

We update a by maximizing Eq. (64) which is equivalent to maximizing the following expression.

—Di1(a(x)|[p(x|G, 0)) = Ey(x)q(c)llog (x| G, 8) — log ¢(x)] (68)

N (x|px, Bx)
=—/d x; 2x ) log —————=—=,
[ Nl B 10 = s
1 1 1
= log |=, It — 5T 'Sy — g, — 5uxTH‘1ux, (69)
1 1 -1 « 1 1 ndy, o T 1+
_21og|2x|+210g|a1+9 | 2Tr[§]x] QTT[Q ]+ 5 o Hx B — 5 Hx Q7 px
(70)
= fa(@) (71)
The stationarity condition of « is given by
0 1 T 1 1
5aEatoao)logp(x|G, ) —log q(x)] = S Tr((aT+ Q7)) = STr [B] = Spa’ pi = 0, (72)
which is not closed-form and requires finding the root of the equation.
For updating «, we will find o = argmax,, f():
o = argmaxlog |af + Q71 — aTr [By] — o | pic. (73)
[0
Assume Q7! = EQVQEg by eigen-decomposition and Vo = diag (v11,. ..., Und, nd,). The main difficult in
optimizing a comes from the first term.
log |al + @ Y log |aEq EL + EqVaEd| (74)
=log|Eq(al + Vo)Eq| (75)
ndg
b
© log |al + Vo| = Zlog(a + v;) (76)
i=1
© d, Z log(a + 2w;) (77)

j=1



where at (a) we use the fact that Eq is orthogonal. At (b), the determinant of a product is the product of
the determinants, and that the determinant of an orthogonal matrix is 1. Assume that L = ELVLEZ by eigen-
decomposition and V;, = diag ({wl}:lzl) Recall that Q71 =2L ® I;,. By Theorem 1, v;; = 2w; and 2w; appears d
times for each ¢ = 1,...,n. This explains the d, factor in (c¢).

In the implementation, we use fminbnd in Matlab to optimize the negative of Eq. (73) to get an update for a.
The eigen-decomposition of L (not Q~! which is bigger) is needed only once in the beginning. We only need the
eigenvalues of L, not the eigenvectors.

KL divergence of C

— Dr(q(C)|Ip(C|G))
=E;(x)q(c)[log p(C|G, 0) — log ¢(c)]

N (c|pec, )
- /dc N(elpe: Ze)lo 3767337 T ) o1 1)’

:% log |Zc((eJIT + Q7 H@T)| - %Tr (Z( I+ Hel) -1 - %uCT((eJJT +Q ) @1)p.,

:% log |(Zc(eJIT + Q7)) 1| - %Tr (Zc(e I+ )11 - %Tr((eJJT +Q YHuc pe),

d d 1 1
Z?y log [Zc(eJIT + Q71| - EyTr[Ec(eJJT + QY+ 5"y — 5Tr((eJJT + Q@ Huc pe).

D Connection to GP-LVM

To see how our model is related to GP-LVM, we integrate out C from the likelihood:

p(ylx, G, 8)

/ p(yle, x, 0)p(c|G)de,

1 1 1
o /exp [—2(CT(F ®1) ¢ —2c'vec(VIH)) — inE;ly - §CT((6JJT +Q HeI) c} dc,

1 1
x /exp [—2(CT((I‘ +eJIT+Q HeI)c— 2chec(V_1H))] de — EyTE;ly,
1 1
X exp {2vec(V1H)T((1" +eJIT + Q) @I) 7T vec(VIH) — 2yTEyly} ,

where the last line comes from the fact : [ exp [—%CTMC + ch] dc o< exp [%mTM_Tm].
The term vec(V~1H) is linear in y where

n
H, = > nyly; —y)x—x)7,
j=1

n n
= Zij'j(Xj -x)" —yi Znij(xj —-x)",
j=1 j=1

= Yu;+yvi,

where the vectors u; and v; are defined by

Y = [y1 - yal

i1 (X1 — Xi)T N
i = : ; Vz':*ij(Xj*Xi)T-

j=1

nin(xn - Xi)T !

Using these notations, we can write H as
H = [H17"'>Hn}7
= YW,



where

W = U,+V,,
U, [uh...,un])
vi 0 - 0
0 Vo 0
vV, = ]
0 : 0
0 0 v,
So, we can explicitly write down vec(V~1H) as
vec(VTIH) = vec(VIYW),
= (W' @V Hvec(Y),
= (Wiavly.

Using all these, we can rewrite the likelihood as

1 _
p(Y|Xa Ga 0) X exp |:_2yT KL}; y:| )
where the precision matrix is given by

K;; = 3,/ -(W eV HTAWT oV,
A = (T+JI+o hHen .

E Useful results

In this section, we summarize theorems and matrix identities useful for deriving update equations of LL-LVM. The
notation in this section is independent of the rest.

Theorem 1. Let A € R™*"™ have eigenvalues A;, and let B € R™*™ have eigenvalues pj. Then the mn eigenviaues
of A® B are

)\1N17 . '7>\1,um7)‘2,u'17 LR AQIU'ma c 7)\nﬂm

Theorem 2. A graph Laplacian L € R™*™ is positive semi-definite. That is, its eigenvalues are non-negative.

E.1 Matrix identities

z" (Ao B)y = tr(diag(x)Adiag(y)B ") (78)

From section 8.1.1 of the matrix cookbook [1],
/exp {—;xTAx + ch] dx = y/det(2r A1) exp BCTATC] . (79)
Lemma 1. If X = (21| - |zn) and C = (c1] ... |cn), then
/exp [—; tr(XTAX) + tr(CTX)} dX = det(2rA™1)"/2 exp B tr(CTA_lC)} .

Woodbury matrix identity

(A+vcv)t=A"t— A"y ct+vAaTtu)"tvat. (80)
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