
LL-LVM supplementary material

Notation The vectorized version of a matrix is vec(M). We denote an identity matrix of size m with Im. Other
notations are the same as used in the main text.

A Matrix normal distribution

The matrix normal distribution generalises the standard multivariate normal distribution to matrix-valued variables.
A matrix A ∈ Rn×p is said to follow a matrix normal distribution MNn,p(M,U,V) with parameters U and V if
its density is given by

p(A |M,U,V) =
exp

(
− 1

2 Tr
[
V−1(A−M)TU−1(A−M)

])
(2π)np/2|V|n/2|U|p/2

. (1)

If A ∼MN (M,U,V), then vec(A) ∼ N (vec(M),V⊗U), a relationship we will use to simplify many expressions.

B Matrix normal expressions of priors and likelihood

Recall that Gij = ηij .

Prior on low dimensional latent variables

log p(x|G, α) = −α
2

n∑
i=1

||xi||2 −
1

2

n∑
i=1

n∑
j=1

ηij ||xi − xj ||2 − logZx (2)

= −1

2
log |2πΠ| − 1

2
x>Π−1x, (3)

where

Π−1 := αIndx + Ω−1,

Ω−1 := 2L⊗ Idx ,

L := diag(G1)−G.

L is known as a graph Laplacian. It follows that p(x|G, α) = N (0,Π). The prior covariance Π can be rewritten as

Π−1 = αIn ⊗ Idx + 2L⊗ Idx (4)

= (αIn + 2L)⊗ Idx , (5)

Π = (αIn + 2L)−1 ⊗ Idx . (6)

By the relationship of a matrix normal and multivariate normal distributions described in section A, the equivalent
prior for the matrix X = [x1x2 · · ·xn] ∈ Rdx×n, constructed by reshaping x, is given by

p(X|G, α) =MN (X|0, Idx , (αIn + 2L)−1). (7)

Prior on locally linear maps

Recall that C = [C1, . . . ,Cn] ∈ Rdy×ndx where each Ci ∈ Rdy×dx . We formulate the log prior on C as

log p(C|G) = − ε
2
||

n∑
i=1

Ci||2F −
1

2

n∑
i=1

n∑
j=1

ηij ||Ci −Cj ||2F − logZc,

= − ε
2

Tr
(
CJJ>C>

)
− 1

2
Tr
(
Ω−1C>C

)
− logZc, where J := 1n ⊗ Idx ,

= −1

2
Tr
[
(εJJ> + Ω−1)C>C

]
− logZc. (8)
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In the first line, the first term imposes a constraint that the mean of Ci should not be too large. The second term
encourages the the locally linear maps of neighbouring points i and j to be similar in the sense of the Frobenius
norm. Notice that the last line is in the form of a the log of a matrix normal density with mean 0 where Zc is given
by

logZc =
ndxdy

2
log |2π| − dy

2
log |εJJ> + Ω−1| (9)

The expression is equivalent to

p(C|G) =MN (C|0, Idy , (εJJ> + Ω−1)−1). (10)

In our implementation, we fix ε to a small value, since the magnitude of Ci and xi can be controlled by the
hyper-parameter α, which is optimized in the M-step.

Likelihood

We penalise linear approximation error of the tangent spaces. Assume that the noise precision matrix is a scaled
identify matrix ei.g., V−1 = γIdy .

log p(y|x,C,V,G) = − ε
2
||

n∑
i=1

yi||2 − logZy (11)

− 1

2

n∑
i=1

n∑
j=1

ηij((yj − yi)−Ci(xj − xi))
>V−1((yj − yi)−Ci(xj − xi)),

= −1

2
(y>Σy

−1y − 2y>e + f)− logZy, (12)

where

y = [y1
>, · · · ,yn>]> ∈ Rndy (13)

Σ−1
y = (ε1n1n

>)⊗ Idy + 2L⊗V−1, (14)

e = [e1
>, · · · , en>]> ∈ Rndy , (15)

ei = −
n∑
j=1

ηjiV
−1(Cj + Ci)(xj − xi), (16)

f =

n∑
i=1

n∑
j=1

ηij(xj − xi)
>Ci

>V−1Ci(xj − xi). (17)

By completing the quadratic form in y, we want to write down the likelihood as a multivariate Gaussian 1 :

p(y|x,C,V,G) = N (µy,Σy), (18)

µy = Σye. (19)

1The equivalent expression in term of matrix normal distribution for Y = [y1,y2, · · · ,yn] ∈ Rdy×n

p(Y|x,C, γ,G) =MN (Y|My, Idy , (ε1n1n
> + 2γL)−1),

My = E(ε1n1n
> + 2γL)−1,

where E = [e1, · · · , en] ∈ Rdy×n. The covariance in Eq. (13) decomposes

Σ−1
y = (ε1n1n

>)⊗ Idy + 2L⊗V−1,

= (ε1n1n
> + 2γL)⊗ Idy ,

Σy = (ε1n1n
> + 2γL)−1 ⊗ Idy .
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By equating Eq. (11) with Eq. (18), we get the normalisation term Zy

−1

2
(y>Σy

−1y − 2y>e + f)− logZy = −1

2
(y − µy)>Σ−1

y (y − µy)− 1

2
log |2πΣy|, (20)

logZy =
1

2
(µy

>Σ−1
y µy − f) +

1

2
log |2πΣy|, (21)

Zy = exp( 1
2 (µy

>Σ−1
y µy − f))|2πΣy|

1
2 , (22)

= exp( 1
2 (e>Σye− f))|2πΣy|

1
2 . (23)

Therefore, the normalised log-likelihood can be written as

log p(y|x,C,V,G) = −1

2
(y>Σy

−1y − 2y>e + e>Σye)− 1

2
log |2πΣy|. (24)

Convenient form for EM

For the EM derivation in the next section, it is convenient to write the exponent term in terms of linear and
quadratic functions in x and C, respectively. The linear terms appear in y>e, which we write as a linear function
in x or C

y>e = x>b, (25)

= Tr(C>V−1H), (26)

where

H = [H1, · · · ,Hn] ∈ Rdy×ndx , where Hi =

n∑
j=1

ηij(yj − yi)(xj − xi)
>, (27)

b = [b1
>, · · · ,bn>]> ∈ Rndx , where bi =

n∑
j=1

ηij(Cj
>V−1(yi − yj)−Ci

>V−1(yj − yi)). (28)

The quadratic terms appear in e>Σye, which we write as a quadratic function of x or a quadratic function of C

e>Σye = x>AE
>ΣyAEx, (29)

= Tr[QL̃Q>C>C], (30)

where the i, jth (dy × dx) chunk of AE ∈ Rndy×ndx is given by

AE(i, j) = −ηijV−1(Cj + Ci) + δij

[∑
k

ηikV
−1(Ck + Ci)

]
. (31)

The matrix L̃ = (ε1n1n
>+ 2γL)−1 and Q = [q1 q2 · · · qn] ∈ Rndx×n and the ith column of this matrix is denoted

by qi ∈ Rndx . The jth chunk (of length dx) of the ith column is given by

qi(j) = ηijV
−1(xi − xj) + δij

[∑
k

ηikV
−1(xi − xk)

]
. (32)

C Variational inference

In LL-LVM, the goal is to infer the latent variables (x,C) as well as to learn the hyper-parameters θ = {α, γ}. We
infer them by maximising the lower bound of the marginal likelihood of the observations y.

log p(y|θ,G) = log

∫ ∫
p(y,C,x|G,θ) dx dC,

≥
∫ ∫ ∫

q(C,x) log
p(y,C,x|G,θ)

q(C,x)
dxdC,

= F(q(C,x),θ).
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For computational tractability, we assume that the posterior over (C,x) factorizes as

q(C,x) = q(x)q(C). (33)

where q(x) and q(C) are multivariate normal distributions.
We maximize the lower bound w.r.t. q(C,x) and θ by the variational expectation maximization algorithm, which

consists of (1) the variational expectation step for determining q(C,x) by

q(x) ∝ exp

[∫
q(C) log p(y,C,x|G,θ)dC

]
, (34)

q(C) ∝ exp

[∫
q(x) log p(y,C,x|G,θ)dx

]
, (35)

followed by (2) the maximization step for estimating θ, θ̂ = arg maxθ F(q(C,x),θ).

C.1 VE step

C.1.1 Computing q(x)

In variational E-step, we compute q(x) by integrating out C from the total log joint distribution:

log q(x) = Eq(C) [log p(y,C,x|G,θ)] + const, (36)

= Eq(C) [log p(y|C,x,G,θ) + log p(x|G,θ) + log p(C|G,θ)] + const. (37)

To determine q(x), we firstly re-write p(y|C,x,G,θ) as a quadratic function in x :

log p(y|C,x,G,θ) = −1

2
(x>AE

>ΣyAEx− 2x>b) + const, (38)

where

A := AE
>ΣyAE , (39)

A =


A11 A12 · · · A1n

...
. . .

...

An1 · · · · · · Ann

 ∈ Rndx×ndx , (40)

Aij =

n∑
p=1

n∑
q=1

L̃(p, q)AE(p, i)>AE(q, j) (41)

where L̃ := (ε1n1>n + 2γL)−1. With the likelihood expressed as a quadratic function of x, the log posterior over x
is given by

log q(x) = −1

2
Eq(C)

[
x>Ax− 2x>b + x>Π−1x

]
+ const, (42)

= −1

2

[
x>(〈A〉q(C) + Π−1)x− 2x>〈b〉q(C)

]
+ const, (43)

The posterior over x is given by

q(x) = N (x|µx,Σx), (44)

where

Σ−1
x = 〈A〉q(C) + Π−1, (45)

µx = Σx〈b〉q(C). (46)

Notice that the parameters of q(x) depend on the sufficient statistics 〈A〉q(C) and 〈b〉q(C) whose explicit forms are
given in section C.1.2.
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C.1.2 Sufficient statistics A and b for q(x)

Given the posterior over c, the sufficient statistics 〈A〉q(C) and 〈b〉q(C) necessary to characterise q(x) are computed
as following:

〈Aij〉q(c) =

n∑
p=1

n∑
q=1

L̃(p, q)〈AE(p, i)>AE(q, j)〉q(c), (47)

= γ2
n∑
p=1

n∑
q=1

L̃(p, q)〈(−ηpi(Cp + Ci) + δpi
∑
k

ηpk(Ck + Cp))
>(−ηqj(Cq + Cj) + δqj

∑
k′

ηqk′(Ck′ + Cq))〉q(c)

= γ2
n∑
p=1

n∑
q=1

L̃(p, q)( ηpiηqj〈Cp
>Cq + Cp

>Cj + Ci
>Cq + Ci

>Cj〉q(c)

− ηpiδqj
∑
k′

ηqk′〈Cp
>Ck′ + Cp

>Cq + Ci
>Ck′ + Ci

>Cq〉q(c)

− ηqjδpi
∑
k

ηpk〈Ck
>Cq + Ck

>Cj + Cp
>Cq + Cp

>Cj〉q(c)

+ δpiδqj
∑
k

∑
k′

ηpkηqk′〈Ck
>Ck′ + Ck

>Cq + Cp
>Ck′ + Cp

>Cq〉q(c) )

Thanks to the delta function, the last three terms above are non-zero only when p = i and q = j. Therefore, we
can replace p with i, and q with j, which simplifies the above as

γ2
n∑
p=1

n∑
q=1

L̃(p, q) ηpiηqj〈Cp
>Cq + Cp

>Cj + Ci
>Cq + Ci

>Cj〉q(c)

− γ2
n∑
p=1

n∑
k′

L̃(p, j)ηpiηjk′〈Cp
>Ck′ + Cp

>Cj + Ci
>Ck′ + Ci

>Cj〉q(c)

− γ2
n∑
q=1

∑
k

L̃(i, q)ηqjηik〈Ck
>Cq + Ck

>Cj + Ci
>Cq + Ci

>Cj〉q(c)

+ γ2L̃(i, j)
∑
k

∑
k′

ηikηjk′〈Ck
>Ck′ + Ck

>Cj + Ci
>Ck′ + Ci

>Cj〉q(c)

We can make the equation above even simpler by replacing k′ with q (second line), k with p (third line), and both
k and k′ with p and q (fourth line), which gives us

〈Aij〉q(c) = γ2
n∑
p=1

n∑
q=1

[L̃(p, q)− L̃(p, j)− L̃(i, q) + L̃(i, j)] ηpiηqj〈Cp
>Cq + Cp

>Cj + Ci
>Cq + Ci

>Cj〉q(c). (48)

For bi, we have

〈bi〉q(c) = γ

n∑
j=1

ηij(〈Cj〉q(c)
>(yi − yj)− 〈Ci〉q(c)

>(yj − yi)), (49)

where (50)

〈Ci〉q(c) = i-th chunk of µC, where each chunk is (dy × dx) (51)

〈Ci
>Cj〉q(c) = (i,j)-th(dx × dx) chunk of dyΣC + 〈Ci〉q(c)

>〈Cj〉q(c), (52)

C.1.3 Computing q(C)

Next, we compute q(C) by integrating out x from the total log joint distribution:

log q(C) = Eq(x) [log p(y,C,X|G,θ)] + const, (53)

= Eq(x) [log p(y|C,x,G,θ) + log p(x|G,θ)] + log p(C|G,θ) + const. (54)
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We re-write p(y|C,x,G,θ) as a quadratic function in C:

log p(y|C,x,G,θ) = −1

2
Tr(QL̃Q>C>C− 2C>V−1H) + const, (55)

where

Γ := QL̃Q>,

Γ =


Γ11 Γ12 · · · Γ1n

...
. . .

...

Γn1 · · · · · · Γnn



Γij =

n∑
k=1

n∑
k′=1

L̃(k, k′)qk(i)qk′(j)
>. (56)

The log posterior over C is given by

log q(C) = −1

2
Tr
[
〈Γ〉q(x)C

>C− 2C>V−1〈H〉q(x) + (εJJ> + Ω−1)C>C
]

+ const,

The posterior over C is given by

Σ−1
c = (〈Γ〉q(x) + εJJ> + Ω−1)⊗ I, (57)

= Σ−1
C ⊗ I, where Σ−1

C := 〈Γ〉q(x) + εJJ> + Ω−1 (58)

µC = V−1〈H〉q(x)ΣC
>. (59)

Therefore, the approximate posterior over C is given by

q(C) =MN (µC, I,ΣC). (60)

The parameters of q(C) depend on the sufficient statistics 〈Γ〉q(x) and 〈H〉q(x) which are given in section C.1.4.

C.1.4 Sufficient statistics Γ and H

Given the posterior over x, the sufficient statistics 〈Γ〉q(x) and 〈H〉q(x) necessary to characterise q(C) are computed
as follows. Similar to 〈A〉, we can simplify 〈Γij〉q(x) as

〈Γij〉q(x) = γ2
n∑
k=1

n∑
k′=1

[L̃(k, k′)− L̃(k, j)− L̃(i, k′) + L̃(i, j)] ηkiηk′j〈xkxk′> − xkxj
> − xixk′

> + xixj
>〉q(x). (61)

For 〈Hi〉q(x), we have

〈Hi〉q(x) =

n∑
j=1

ηij〈(yj − yi)(xj − xi)
>〉q(x), (62)

=

n∑
j=1

ηij(yj〈xj〉q(x)
> − yj〈xi〉q(x)

> − yi〈xj〉q(x)
> + yi〈xi〉q(x)

>), (63)

where 〈xixj>〉q(x) = Σ
(ij)
x + 〈xi〉q(x)〈xj〉q(x)

> and Σ
(ij)
x = cov(xi,xj).

C.2 VM step

We set the parameters θ = (α, γ) by maximising the free energy w.r.t. θ:

θ̂ = arg max
θ

Eq(x)q(C)[log p(y,C,x|G,θ)− log q(x,C)],

= arg max
θ

Eq(x)q(C)[log p(y|C,x,G,θ) + log p(C|G,θ) + log p(x|G,θ)− log q(x)− log q(C)]. (64)

Once we update all the parameters, we achieve the following lower bound:

L(q(x,C), θ̂) = Eq(x)q(C)[log p(y|C,x,G, θ̂)]−DKL(q(C)||p(C|G))−DKL(q(x)||p(x|G, θ̂)). (65)
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Update for γ

Recall that the precision matrix in the likelihood term is V−1 = γIdy . For updating γ, it is sufficient to consider
the log conditional likelihood integrating out x,C:

Eq(x)q(C)[log p(y|C,x,G,θ)] = Eq(x)q(C)

[
−1

2
Tr(ΓC>C− 2C>V−1H)− 1

2
y>Σ−1

y y − 1

2
log |2πΣy|

]
, (66)

which is

− 1

2
Eq(C)Tr(〈Γ〉q(x)C

>C− 2C>V−1〈H〉q(x))−
1

2
y>Σ−1

y y − 1

2
log |2πΣy|,

= −1

2
Eq(C)[c

>(〈Γ〉q(x) ⊗ Idy )c− 2c>vec(V−1〈H〉q(x))]−
1

2
y>Σ−1

y y − 1

2
log |2πΣy|,

= −dy
2

Tr(〈Γ〉q(x)ΣC)− 1

2
Tr(〈Γ〉q(x)µC

>µC) + γTr(µC
>〈H〉q(x))−

1

2
y>Σ−1

y y − 1

2
log |2πΣy|.

The log determinant term is further simplified as

−1

2
log |2πΣy| = −

ndy
2

log(2π) +
dy
2

log |ε1n1n
> + 2γL|. (67)

We denote the objective function for updating γ by l(γ), which consists of all the terms that depend on γ above

l(γ) = −1

2
Tr(〈Γ〉q(x)(dyΣC + µC

>µC)) + γTr(µC
>〈H〉q(x))−

1

2
y>((ε1n1n

> + 2γL)⊗ Idy)y +
dy
2

log |ε1n1n
> + 2γL|,

= l1(γ) + l2(γ) + l3(γ) + l4(γ),

where each term is given below. From the definition of Γ = QL̃Q>, we rewrite the first term above as

l1(γ) = −1

2
Tr(〈QL̃Q>〉q(x)(dyΣC + µC

>µC)).

We separate γ from Q and plug in the definition of L̃, which gives us

l1(γ) = −1

2
γ2Tr(〈Q̂L̃Q̂>〉q(x)(dyΣC + µC

>µC)),

where the jth chunk (of length dx) of ith column of Q̂ ∈ Rndx×n is given by q̂i(j) = ηij(xi−xj)+δij [
∑
k ηik(xi−xk)].

We can explicitly write down L̃ in terms of γ using orthogonality of singular vectors between ε1n1n
> and 2γL,

where we denote the singular decomposition of L = ULDLVL
>

L̃ = (ε1n1n
> + 2γL)−1,

:= VL


0 0 · · · 0

0
. . .

...

0 · · · · · · 1
εn

UL
> +

1

2γ
VL


1

DL(1,1) 0 · · · 0

0 1
DL(2,2)

. . .
...

0 · · · · · · 0

UL
>,

= L̃ε +
1

2γ
L̃L

Hence, l1(γ) is given by

l1(γ) = −1

2
γ2Tr(〈Q̂L̃εQ̂

>〉q(x)(dyΣC + µC
>µC))− γ

4
Tr(〈Q̂L̃LQ̂>〉q(x)(dyΣC + µC

>µC)).

Let 〈Γε〉 := 〈Q̂L̃εQ̂
>〉q(x). Similar to Eq. 61, we have

〈Γε,ij〉 = γ2
n∑
k=1

n∑
k′=1

[L̃ε(k, k
′)− L̃ε(k, j)− L̃ε(i, k

′) + L̃ε(i, j)] ηkiηk′j〈xkxk′> − xkxj
> − xixk′

> + xixj
>〉q(x).

Because L is symmetric, UL = VL in the SVD and UL contains the eigenvectors of L. So L̃ε(p, q) = UL(p, n)UL(n, q) 1
εn

where we refer to the nth (last) eigenvector of L. However, the last eigenvector of L corresponding to the eigen-
value 0 has the same element in each coordinate i.e., UL(:, n) = a1n for some constant a ∈ R. This implies that
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L̃ε(p, q) = aa 1
εn . The elements of L̃ε have the same value, implying [L̃ε(k, k

′) − L̃ε(k, j) − L̃ε(i, k
′) + L̃ε(i, j)] =

1
εn [aa− aa− aa+ aa] = 0 and 〈Γε,ij〉 = 0 for all i, j blocks. We have

l1(γ) = −γ
4

Tr(〈Q̂L̃LQ̂>〉q(x)(dyΣC + µC
>µC)).

The second term l2(γ) is given by

l2(γ) = γTr(µC
>〈H〉q(x)),

and the third term l3(γ) is rewritten as

l3(γ) = −γTr(LY>Y).

Finally, the last term is simplified as

dy
2

log |ε1n1n
> + 2γL| = dy

2

(
n−1∑
i=1

log DL(i, i) + log(nε) + (n− 1) log(2γ)

)
.

Hence,

l4(γ) =
dy
2

(n− 1) log(2γ).

The update for γ is thus given by

γ = arg max
γ

l(γ) = arg max
γ

l1(γ) + l2(γ) + l3(γ) + l4(γ)

= − dy(n− 1)/2

− 1
4Tr(〈Q̂L̃LQ̂>〉q(x)(dyΣC + µC

>µC)) + Tr(µC
>〈H〉q(x))− Tr(LY>Y)

.

Update for α

We update α by maximizing Eq. (64) which is equivalent to maximizing the following expression.

−DKL(q(x)||p(x|G, θ̂)) = Eq(x)q(C)[log p(x|G,θ)− log q(x)] (68)

= −
∫
dx N (x|µx,Σx) log

N (x|µx,Σx)

N (x|0,Π)
,

=
1

2
log |ΣxΠ−1| − 1

2
Tr
[
Π−1Σx − Indx

]
− 1

2
µx
>Π−1µx, (69)

=
1

2
log |Σx|+

1

2
log |αI + Ω−1| − α

2
Tr [Σx]− 1

2
Tr
[
Ω−1Σx

]
+
ndx

2
− α

2
µx
>µx −

1

2
µx
>Ω−1µx

(70)

:= fα(α) (71)

The stationarity condition of α is given by

∂

∂α
Eq(x)q(C)[log p(x|G,θ)− log q(x)] =

1

2
Tr((αI + Ω−1)−1)− 1

2
Tr [Σx]− 1

2
µx
>µx = 0, (72)

which is not closed-form and requires finding the root of the equation.
For updating α, we will find α = arg maxα fα(α):

α = arg max
α

log |αI + Ω−1| − αTr [Σx]− αµx
>µx. (73)

Assume Ω−1 = EΩVΩE
>
Ω by eigen-decomposition and VΩ = diag (v11, . . . . , vndx,ndx). The main difficult in

optimizing α comes from the first term.

log |αI + Ω−1| (a)
= log |αEΩE

>
Ω + EΩVΩE

>
Ω | (74)

= log |EΩ(αI + VΩ)E>Ω | (75)

(b)
= log |αI + VΩ| =

ndx∑
i=1

log(α+ vii) (76)

(c)
= dx

n∑
j=1

log(α+ 2ωi) (77)
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where at (a) we use the fact that EΩ is orthogonal. At (b), the determinant of a product is the product of
the determinants, and that the determinant of an orthogonal matrix is 1. Assume that L = ELVLE

>
L by eigen-

decomposition and VL = diag ({ωi}ni=1). Recall that Ω−1 = 2L⊗ Idx . By Theorem 1, vii = 2ωi and 2ωi appears dx
times for each i = 1, . . . , n. This explains the dx factor in (c).

In the implementation, we use fminbnd in Matlab to optimize the negative of Eq. (73) to get an update for α.
The eigen-decomposition of L (not Ω−1 which is bigger) is needed only once in the beginning. We only need the
eigenvalues of L, not the eigenvectors.

KL divergence of C

−DKL(q(C)||p(C|G))

=Eq(x)q(C)[log p(C|G,θ)− log q(c)]

=−
∫
dc N (c|µc,Σc) log

N (c|µc,Σc)

N (0, ((εJJ> + Ω−1)⊗ I)−1)
,

=
1

2
log |Σc((εJJ> + Ω−1)⊗ I)| − 1

2
Tr
[
Σc((εJJ> + Ω−1)⊗ I)− I

]
− 1

2
µc
>((εJJ> + Ω−1)⊗ I)µc,

=
1

2
log |(ΣC(εJJ> + Ω−1))⊗ I| − 1

2
Tr
[
(ΣC(εJJ> + Ω−1))⊗ I− I

]
− 1

2
Tr((εJJ> + Ω−1)µC

>µC),

=
dy
2

log |ΣC(εJJ> + Ω−1)| − dy
2

Tr[ΣC(εJJ> + Ω−1)] +
1

2
ndxdy −

1

2
Tr((εJJ> + Ω−1)µC

>µC).

D Connection to GP-LVM

To see how our model is related to GP-LVM, we integrate out C from the likelihood:

p(y|x,G,θ) =

∫
p(y|c,x,θ)p(c|G)dc,

∝
∫

exp

[
−1

2
(c>(Γ⊗ I) c− 2c>vec(V−1H))− 1

2
y>Σ−1

y y − 1

2
c>((εJJ> + Ω−1)⊗ I) c

]
dc,

∝
∫

exp

[
−1

2
(c>((Γ + εJJ> + Ω−1)⊗ I) c− 2c>vec(V−1H))

]
dc− 1

2
y>Σ−1

y y,

∝ exp

[
1

2
vec(V−1H)>((Γ + εJJ> + Ω−1)⊗ I)−T vec(V−1H)− 1

2
y>Σ−1

y y

]
,

where the last line comes from the fact :
∫

exp
[
− 1

2c>Mc + c>m
]
dc ∝ exp

[
1
2m>M−Tm

]
.

The term vec(V−1H) is linear in y where

Hi =

n∑
j=1

ηij(yj − yi)(xj − xi)
>,

=

n∑
j=1

yjηij(xj − xi)
> − yi

n∑
j=1

ηij(xj − xi)
>,

= Ỹui + yivi,

where the vectors ui and vi are defined by

Ỹ = [y1 · · · yn],

ui =


ηi1(x1 − xi)

>

...

ηin(xn − xi)
>

 , vi = −
n∑
j=1

ηij(xj − xi)
>.

Using these notations, we can write H as

H = [H1, · · · ,Hn],

= ỸW,
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where

W = Uu + Vv,

Uu = [u1, · · · ,un],

Vv =


v1 0 · · · 0

0 v2 · · · 0

... 0
... 0

0 · · · 0 vn

 .

So, we can explicitly write down vec(V−1H) as

vec(V−1H) = vec(V−1ỸW),

= (W> ⊗V−1)vec(Ỹ),

= (W> ⊗V−1)y.

Using all these, we can rewrite the likelihood as

p(y|x,G,θ) ∝ exp

[
−1

2
y> K−1

LL y

]
,

where the precision matrix is given by

K−1
LL = Σ−1

y − (W> ⊗V−1)>Λ(W> ⊗V−1),

Λ = ((Γ + εJJ> + Ω−1)⊗ I)−T .

E Useful results

In this section, we summarize theorems and matrix identities useful for deriving update equations of LL-LVM. The
notation in this section is independent of the rest.

Theorem 1. Let A ∈ Rn×n have eigenvalues λi, and let B ∈ Rm×m have eigenvalues µj. Then the mn eigenvlaues
of A⊗B are

λ1µ1, . . . , λ1µm, λ2µ1, . . . , λ2µm, . . . , λnµm.

Theorem 2. A graph Laplacian L ∈ Rn×n is positive semi-definite. That is, its eigenvalues are non-negative.

E.1 Matrix identities

x>(A ◦B)y = tr(diag(x)Adiag(y)B>) (78)

From section 8.1.1 of the matrix cookbook [1],∫
exp

[
−1

2
x>Ax+ c>x

]
dx =

√
det(2πA−1) exp

[
1

2
c>A−>c

]
. (79)

Lemma 1. If X = (x1| · · · |xn) and C = (c1| . . . |cn), then∫
exp

[
−1

2
tr(X>AX) + tr(C>X)

]
dX = det(2πA−1)n/2 exp

[
1

2
tr(C>A−1C)

]
.

Woodbury matrix identity

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1. (80)
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