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Abstract

The F-measure is an important and commonly used performance metric for bi-
nary prediction tasks. By combining precision and recall into a single score, it
avoids disadvantages of simple metrics like the error rate, especially in cases of
imbalanced class distributions. The problem of optimizing the F-measure, that
is, of developing learning algorithms that perform optimally in the sense of this
measure, has recently been tackled by several authors. In this paper, we study
the problem of F-measure maximization in the setting of online learning. We
propose an efficient online algorithm and provide a formal analysis of its conver-
gence properties. Moreover, first experimental results are presented, showing that
our method performs well in practice.

1 Introduction

Being rooted in information retrieval [16], the so-called F-measure is nowadays routinely used as a
performance metric in various prediction tasks. Given predictions ŷ = (ŷ1, . . . , ŷt) ∈ {0, 1}t of t
binary labels y = (y1, . . . , yt), the F-measure is defined as

F (y, ŷ) =
2
∑t
i=1 yiŷi∑t

i=1 yi +
∑t
i=1 ŷi

=
2 · precision(y, ŷ) · recall(y, ŷ)

precision(y, ŷ) + recall(y, ŷ)
∈ [0, 1] , (1)

where precision(y, ŷ) =
∑t
i=1 yiŷi/

∑t
i=1 ŷi, recall(y, ŷ) =

∑t
i=1 yiŷi/

∑t
i=1 yi, and where

0/0 = 1 by definition. Compared to measures like the error rate in binary classification, maximizing
the F-measure enforces a better balance between performance on the minority and majority class;
therefore, it is more suitable in the case of imbalanced data. Optimizing for such an imbalanced
measure is very important in many real-world applications where positive labels are significantly
less frequent than negative ones. It can also be generalized to a weighted harmonic average of pre-
cision and recall. Yet, for the sake of simplicity, we stick to the unweighted mean, which is often
referred to as the F1-score or the F1-measure.

Given the importance and usefulness of the F-measure [19, 20, 18, 10, 11], it is natural to look for
learning algorithms that perform optimally in the sense of this measure. However, optimizing the
F-measure is a quite challenging problem, especially because the measure is not decomposable over
the binary predictions. This problem has received increasing attention in recent years and has been
tackled by several authors [18, 9, 10, 11]. However, most of this work has been done in the standard
setting of batch learning.
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In this paper, we study the problem of F-measure optimization in the setting of online learning
[4, 2], which is becoming increasingly popular in machine learning. In fact, there are many applica-
tions in which training data is arriving progressively over time, and models need to be updated and
maintained incrementally. In our setting, this means that in each round t the learner first outputs a
prediction ŷt and then observes the true label yt. Formally, the protocol in round t is as follows:

1. first an instance xt ∈ X is observed by the learner,
2. then the predicted label ŷt for xt is computed on the basis of the first t instances (x1, . . . ,xt),

the t−1 labels (y1, . . . , yt−1) observed so far, and the corresponding predictions (ŷ1, . . . , ŷt−1),
3. finally, the label yt is revealed to the learner.

The goal of the learner is then to maximize

F(t) = F ((y1, . . . , yt), (ŷ1, . . . , ŷt)) (2)

over time. Optimizing the F-measure in an online fashion is challenging mainly because of the
non-decomposability of the measure, and the fact that the ŷt cannot be changed after round t.

As a potential application of online F-measure optimization consider the recommendation of news
from RSS feeds or tweets [1]. Besides, it is worth mentioning that online methods are also relevant
in the context of big data and large-scale learning, where the volume of data, despite being finite,
prevents from processing each data point more than once [21, 7]. Treating the data as a stream, online
algorithms can then be used as single-pass algorithms. Note, however, that single-pass algorithms
are evaluated only at the end of the training process, unlike online algorithms that are supposed to
learn and predict simultaneously.

We propose an online algorithm for F-measure optimization, which is not only very efficient but also
easy to implement. Unlike other methods, our algorithm does not require extra validation data for
tuning a threshold (that separates between positive and negative predictions), and therefore allows
the entire data to be used for training. We provide a formal analysis of the convergence properties
of our algorithm and prove its statistical consistency under different assumptions on the learning
process. Moreover, first experimental results are presented, showing that our method performs well
in practice.

2 Formal Setting

In this paper, we consider a stochastic setting in which (x1, y1), . . . , (xt, yt) are assumed to be i.i.d.
samples from some unknown distribution ρ(·) on X × Y , where Y = {0, 1} is the label space and
X is some instance space. We denote the marginal distribution of the feature vector X by µ(·).1
Then, the posterior probability of the positive class, i.e., the conditional probability that Y = 1

given X = x, is η(x) = P(Y = 1 |X = x) = ρ(x,1)
ρ(x,0)+ρ(x,1) . The prior distribution of class 1 can

be written as π1 = P(Y = 1) =
∫
x∈X η(x) dµ(x).

Let B = {f : X −→ {0, 1}} be the set of all binary classifiers over the set X . The F-measure of a
binary classifier f ∈ B is calculated as

F (f) =
2
∫
X η(x)f(x) dµ(x)∫

X η(x) dµ(x) +
∫
X f(x) dµ(x)

=
2E [η(X)f(X)]

E [η(X)] + E [f(X)]
.

According to [19], the expected value of (1) converges to F (f) with t → ∞ when f is used to
calculate ŷ, i.e., ŷt = f(xt). Thus, limt→∞E

[
F
(
(y1, . . . , yt), (f(x1), . . . , f(xt))

)]
= F (f).

Now, let G = {g : X −→ [0, 1]} denote the set of all probabilistic binary classifiers over the set
X , and let T ⊆ B denote the set of binary classifiers that are obtained by thresholding a classifier
g ∈ G—that is, classifiers of the form

gτ (x) = Jg(x) ≥ τK (3)

for some threshold τ ∈ [0, 1], where J·K is the indicator function that evaluates to 1 if its argument
is true and 0 otherwise.

1X is assumed to exhibit the required measurability properties.
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According to [19], the optimal F-score computed as maxf∈B F (f) can be achieved by a thresholded
classifier. More precisely, let us define the thresholded F-measure as

F (τ) = F (ητ ) =
2
∫
X η(x) Jη(x) ≥ τK dµ(x)∫

X η(x) dµ(x) +
∫
X Jη(x) ≥ τK dµ(x)

=
2E [η(X) Jη(X) ≥ τK]

E [η(X)] + E [Jη(X) ≥ τK]
(4)

Then the optimal threshold τ∗ can be obtained as

τ∗ = argmax
0≤τ≤1

F (τ) . (5)

Clearly, for the classifier in the form of (3) with g(x) = η(x) and τ = τ∗, we have F (gτ ) = F (τ∗).
Then, as shown by [19] (see their Theorem 4), the performance of any binary classifier f ∈ B
cannot exceed F (τ∗), i.e., F (f) ≤ F (τ∗) for all f ∈ B. Therefore, estimating posteriors first and
adjusting a threshold afterward appears to be a reasonable strategy. In practice, this seems to be the
most popular way of maximizing the F-measure in a batch mode; we call it the 2-stage F-measure
maximization approach, or 2S for short. More specifically, the 2S approach consists of two steps:
first, a classifier is trained for estimating the posteriors, and second, a threshold is tuned on the
posterior estimates. For the time being, we are not interested in the training of this classifier but
focus on the second step, that is, the labeling of instances via thresholding posterior probabilities.
For doing this, suppose a finite set DN = {(xi, yi)}Ni=1 of labeled instances are given as training
information. Moreover, suppose estimates p̂i = g(xi) of the posterior probabilities pi = η(xi)
are provided by a classifier g ∈ G. Next, one might define the F-score obtained by applying the
threshold classifier gτ on the data DN as follows:

F (τ ; g,DN ) =

∑N
i=1 yi Jτ ≤ g(xi)K∑N

i=1 yi +
∑N
i=1 Jτ ≤ g(xi)K

(6)

In order to find an optimal threshold τN ∈ argmax0≤τ≤1 F (τ ; g,DN ), it suffices to search the

finite set {p̂1, . . . , p̂N}, which requires timeO(N logN). In [19], it is shown that F (τ ; g,DN )
P−→

F (gτ ) as N → ∞ for any τ ∈ (0, 1), and [11] provides an even stronger result: If a classifier gDN

is induced from DN by an L1-consistent learner,2 and a threshold τN is obtained by maximizing (6)
on an independent set D′N , then F (gτNDN

)
P−→ F (τ∗) as N −→ ∞ (under mild assumptions on the

data distribution).

3 Maximizing the F-Measure on a Population Level

In this section we assume that the data distribution is known. According to the analysis in the
previous section, optimizing the F-measure boils down to finding the optimal threshold τ∗. At this
point, an observation is in order.
Remark 1. In general, the function F (τ) is neither convex nor concave. For example, when X is
finite, then the denominator and enumerator of (4) are step functions, whence so is F (τ). Therefore,
gradient methods cannot be applied for finding τ∗.

Nevertheless, τ∗ can be found based on a recent result of [20], who show that finding the root of

h(τ) =

∫
x∈X

max (0, η(x)− τ) dµ(x)− τπ1 (7)

is a necessary and sufficient condition for optimality. Note that h(τ) is continuos and strictly de-
creasing, with h(0) = π1 and h(1) = −π1. Therefore, h(τ) = 0 has a unique solution which
is τ∗. Moreover, [20] also prove an interesting relationship between the optimal threshold and the
F-measure induced by that threshold: F (τ∗) = 2τ∗.

The marginal distribution of the feature vectors, µ(·), induces a distribution ζ(·) on the posteriors:
ζ(p) =

∫
x∈X Jη(x) = pK dµ(x)for all p ∈ [0, 1]. By definition, Jη(x) = pK is the Radon-Nikodym

derivative of dµ
dζ , and ζ(p) the density of observing an instance x for which the probability of the

2A learning algorithm, viewed as a map from samples DN to classifiers gDN , is called L1-consistent w.r.t.

the data distribution ρ if limN→∞PDN∼ρ

(∫
x∈X |gDN (x)− η(x)| dµ(x) > ε

)
= 0 for all ε > 0.
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positive label is p. We shall write concisely dν(p) = ζ(p) dp. Since ν(·) is an induced probability
measure, the measurable transformation allows us to rewrite the notions introduced above in terms
of ν(·) instead of µ(·)—see, for example, Section 1.4 in [17]. For example, the prior probability∫
X η(x) dµ can be written equivalently as

∫ 1

0
p dν(p). Likewise, (7) can be rewritten as follows:

h(τ) =

∫ 1

0

max (0, p− τ) dν(p)− τ
∫ 1

0

pdν(p) =

∫ 1

τ

p− τ dν(p)− τ
∫ 1

0

p dν(p)

=

∫ 1

τ

p dν(p)− τ
[∫ 1

τ

1 dν(p) +

∫ 1

0

p dν(p)

]
(8)

Equation (8) will play a central role in our analysis. Note that precise knowledge of ν(·) suffices to
find the maxima of F (τ). This is illustrated by two examples presented in Appendix E, in which we
assume specific distributions for ν(·), namely uniform and Beta distributions.

4 Algorithmic Solution

In this section, we provide an algorithmic solution to the online F-measure maximization problem.
For this, we shall need in each round t some classifier gt ∈ G that provides us with some estimate
p̂t = gt(xt) of the probability η(xt). We would like to stress again that the focus of our analysis is
on optimal thresholding instead of classifier learning. Thus, we assume the sequence of classifiers
g1, g2, . . . to be produced by an external online learner, for example, logistic regression trained by
stochastic gradient descent.

As an aside, we note that F-measure maximization is not directly comparable with the task that
is most often considered and analyzed in online learning, namely regret minimization [4]. This is
mainly because the F-measure is a non-decomposable performance metric. In fact, the cumulative
regret is a summation of a per-round regret rt, which only depends on the prediction ŷt and the true
outcome yt [11]. In the case of the F-measure, the score F(t), and therefore the optimal prediction
ŷt, depends on the entire history, that is, all observations and decisions made by the learner till time
t. This is discussed in more detail in Section 6.

The most naive way of forecasting labels is to implement online learning as repeated batch learning,
that is, to apply a batch learner (such as 2S) to Dt = {(xi, yi)}ti=1 in each time step t. Obviously,
however, this strategy is prohibitively expensive, as it requires storage of all data points seen so
far (at least in mini-batches), as well as optimization of the threshold τt and re-computation of the
classifier gt on an ever growing number of examples.

In the following, we propose a more principled technique to maximize the online F-measure. Our
approach is based on the observation that h(τ∗) = 0 and h(τ)(τ − τ∗) < 0 for any τ ∈ [0, 1] such
that τ 6= τ∗ [20]. Moreover, it is a monotone decreasing continuous function. Therefore, finding
the optimal threshold τ∗ can be viewed as a root finding problem. In practice, however, h(τ) is not
known and can only be estimated. Let us define h

(
τ, y, ŷ

)
= yŷ−τ (y + ŷ) . For now, assume η(x)

to be known and write concisely ĥ(τ) = h(τ, y, Jη(x) ≥ τK). We can compute the expectation of
ĥ(τ) with respect to the data distribution for a fixed threshold τ as follows:

E
[
ĥ(τ)

]
= E [h(τ, y, Jη(x) ≥ τK)] = E [y Jη(x) ≥ τK− τ (y + Jη(x) ≥ τK)]

=

∫ 1

0

p Jp ≥ τK dν(p)− τ
(∫ 1

0

p+ Jp ≥ τK dν(p)

)
=

∫ 1

τ

p dν(p)− τ
[∫ 1

0

p dν(p) +

∫ 1

τ

1 dν(p)

]
= h(τ) (9)

Thus, an unbiased estimate of h(τ) can be obtained by evaluating ĥ(τ) for an instance x. This
suggests designing a stochastic approximation algorithm that is able to find the root of h(·) similarly
to the Robbins-Monro algorithm [12]. Exploiting the relationship between the optimal F-measure
and the optimal threshold, F (τ∗) = 2τ∗, we define the threshold in time step t as

τt =
1

2
F(t) =

at
bt

where at =

t∑
i=1

yiŷi, bt =

t∑
i=1

yi +

t∑
i=1

ŷi . (10)
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With this threshold, the first differences between thresholds, i.e. τt+1−τt, can be written as follows.
Proposition 2. If thresholds τt are defined according to (10) and ŷt+1 as Jη(xt+1) > τtK, then

(τt+1 − τt)bt+1 = h(τt, yt+1, ŷt+1) . (11)

The proof of Prop. 2 is deferred to Appendix A. According to (11), the method we obtain “almost”
coincides with the update rule of the Robbins-Monro algorithm. There are, however, some notable
differences. In particular, the sequence of coefficients, namely the values 1/bt+1, does not consist
of predefined real values converging to zero (as fast as 1/t). Instead, it consists of random quantities
that depend on the history, namely the observed labels y1, . . . , yt and the predicted labels ŷ1, . . . , ŷt.
Moreover, these “coefficients” are not independent of h(τt, yt+1, ŷt+1) either. In spite of these
additional difficulties, we shall present a convergence analysis of our algorithm in the next section.

Algorithm 1 OFO
1: Select g0 from B, and set τ0 = 0
2: for t = 1→∞ do
3: Observe the instance xt
4: p̂t ← gt−1(xt) . estimate posterior
5: ŷt ← Jp̂t ≥ τt−1K . current prediction
6: Observe label yt
7: Calculate F(t) = 2at

bt
and τt = at

bt
8: gt ← A(gt−1,xt, yt) . update the classifier
9: return τT

The pseudo-code of our online F-measure op-
timization algorithm, called Online F-measure
Optimizer (OFO), is shown in Algorithm 1.
The forecast rule can be written in the form of
ŷt = Jpt ≥ τt−1K for xt where the threshold is
defined in (10) and pt = η(xt). In practice, we
use p̂t = gt−1(xt) as an estimate of the true
posterior pt. In line 8 of the code, an online
learner A : G × X × Y −→ G is assumed,
which produces classifiers gt by incrementally
updating the current classifier with the newly
observed example, i.e., gt = A(gt−1,xt, yt).
In our experimental study, we shall test and compare various state-of-the-art online learners as pos-
sible choices for A.

5 Consistency

In this section, we provide an analysis of the online F-measure optimizer proposed in the previous
section. More specifically, we show the statistical consistency of the OFO algorithm: The sequence
of online thresholds and F-scores produced by this algorithm converge, respectively, to the optimal
threshold τ∗ and the optimal thresholded F-score F (τ∗) in probability. As a first step, we prove this
result under the assumption of knowledge about the true posterior probabilities; then, in a second
step, we consider the case of estimated posteriors.
Theorem 3. Assume the posterior probabilities pt = η(xt) of the positive class to be known in each
step of the online learning process. Then, the sequences of thresholds τt and online F-scores F(t)

produced by OFO both converge in probability to their optimal values τ∗ and F (τ∗), respectively:
For any ε > 0, we have limt→∞P

(
|τt − τ∗| > ε

)
= 0 and limt→∞P

(
|F(t) − F (τ∗)| > ε

)
= 0.

Here is a sketch of the proof of this theorem, the details of which can be found in the supplementary
material (Appendix B):
• We focus on {τt}∞t=1, which is a stochastic process the filtration of which is defined as
Ft = {y1, . . . , yt, ŷ1, . . . , ŷt}. For this filtration, one can show that ĥ(τt) is Ft-measurable
and E

[
ĥ(τt)|Ft

]
= h(τt) based on (9).

• As a first step, we can decompose the update rule given in (11) as follows: E
[

1
bt+1

ĥ(τt)
∣∣∣Ft] =

1
bt+2h(τt) +O

(
1
b2t

)
conditioned on the filtration Ft (see Lemma 7).

• Next, we show that the sequence 1/bt behaves similarly to 1/t, in the sense that
∑∞
t=1 E

[
1/b2t

]
<

∞ (see Lemma 8). Moreover, one can show that
∑∞
t=1 E [1/bt] ≥

∑∞
t=1

1
2t =∞.

• Although h(τ) is not differentiable on [0, 1] in general (it can be piecewise linear, for example),
one can show that its finite difference is between −1 − π1 and −π1 (see Proposition 9 in the
appendix). As a consequence of this result, our process defined in (11) does not get stuck even
close to τ∗.
• The main part of the proof is devoted to analyzing the properties of the sequence of βt =
E
[
(τt − τ∗)2

]
for which we show that limt→∞ βt = 0, which is sufficient for the statement
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of the theorem. Our proof follows the convergence analysis of [12]. Nevertheless, our analysis
essentially differs from theirs, since in our case, the coefficients cannot be chosen freely. In-
stead, as explained before, they depend on the labels observed and predicted so far. In addition,
the noisy estimation of h(·) depends on the labels, too, but the decomposition step allows us to
handle this undesired effect.

Remark 4. In principle, the Robbins-Monro algorithm can be applied for finding the root of h(·)
as well. This yields an update rule similar to (11), with 1/bt+1 replaced by C/t for a constant
C > 0. In this case, however, the convergence of the online F-measure is difficult to analyze (if at
all), because the empirical process cannot be written in a nice form. Moreover, as it has been found
in the analysis, the coefficient C should be set ≈ 1/π1 (see Proposition 9 and the choice of {kt} at
the end of the proof of Theorem 3). Yet, since π1 is not known beforehand, it needs to be estimated
from the samples, which implies that the coefficients are not independent of the noisy evaluations
of h(·)—just like in the case of the OFO algorithm. Interestingly, OFO seems to properly adjust
the values 1/bt+1 in an adaptive manner (bt is a sum of two terms, the first of which is tπ1 in
expectation), which is a very nice property of the algorithm. Empirically, based on synthetic data,
we found the performance of the original Robbins-Monro algorithm to be on par with OFO.

As already announced, we are now going to relax the assumption of known posterior probabilities
pt = η(xt). Instead, estimates p̂t = gt(xt) ≈ pt of these probabilities are obtained by classifiers gt
that are provided by the external online learner in Algorithm 1. More concretely, assume an online
learner A : G × X × Y −→ G, where G is the set of probabilistic classifiers. Given a current model
gt and a new example (xt, yt), this learner produces an updated classifier gt+1 = A(gt,xt, yt).
Showing a consistency result for this scenario requires some assumptions on the online learner.
With this formal definition of online learner, a statistical consistency result similar to Theorem 3
can be shown. The proof of the following theorem is again deferred to supplementary material
(Appendix C).
Theorem 5. Assume that the classifiers (gt)

∞
t=1 in the OFO framework are provided by an online

learner for which the following holds: There is a λ > 0 such that E
[∫

x∈X |η(x)− gt(x)|dµ(x)
]

=

O(t−λ) . Then, F(t)
P→ F (τ∗) and τt

P→ τ∗.

This theorem’s requirement on the online learner is stronger than what is assumed by [11] and
recalled in Footnote 2. First, the learner is trained online and not in a batch mode. Second, we also
require that the L1 error of the learner goes to 0 with a convergence rate of order t−λ.

It might be interesting to note that a universal rate of convergence cannot be established without
assuming regularity properties of the data distribution, such as smoothness via absolute continuity.
Results of that kind are beyond the scope of this study. Instead, we refer the reader to [5, 6] for
details on L1 consistency and its connection to the rate of convergence.

6 Discussion

Regret optimization and stochastic approximation: Stochastic approximation algorithms can be ap-
plied for finding the optimum of (4) or, equivalently, to find the unique root of (8) based on noisy
evaluations—the latter formulation is better suited for the classic version of the Robbins-Monro root
finding algorithm [12]. These algorithms are iterative methods whose analysis focuses on the dif-
ference of F (τt) from F (τ∗), where τt denotes the estimate of τ∗ in iteration t, whereas our online
setting is concerned with the distance of F ((y1, . . . , yt), (ŷ1, . . . , ŷt)) from F (τ∗), where ŷi is the
prediction for yi in round i. This difference is crucial because F (τt) only depends on τt and in
addition, if τt is close to τ∗ then F (τt) is also close to F (τ∗) (see [19] for concentration proper-
ties), whereas in the online F-measure optimization setup, F ((y1, . . . , yt), (ŷ1, . . . , ŷt)) can be very
different from F (τ∗) even if the current estimate τt is close to τ∗ in case the number of previous
incorrect predictions is large.

In online learning and online optimization it is common to work with the notion of (cumulative)
regret. In our case, this notion could be interpreted either as

∑t
i=1 |F ((y1, . . . , yi), (ŷ1, . . . , ŷi)) −

F (τ∗)| or as
∑t
i=1 |yi − ŷi|. After division by t, the former becomes the average accuracy of the

F-measure over time and the latter the accuracy of our predictions. The former is hard to interpret
because |F ((y1, . . . , yi), (ŷ1, . . . , ŷi)) − F (τ∗)| itself is an aggregate measure of our performance
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Table 1: Main statistics of the benchmark datasets and one pass F-scores obtained by OFO and 2S
methods on various datasets. The bold numbers indicate when the difference is significant between
the performance of OFO and 2S methods. The significance level is set to one sigma that is estimated
based on the repetitions.

Learner: LogReg Pegasos Perceptron

Dataset #instances #pos #neg #features OFO 2S OFO 2S OFO 2S
gisette 7000 3500 3500 5000 0.954 0.955 0.950 0.935 0.935 0.920
news20.bin 19996 9997 9999 1355191 0.879 0.876 0.879 0.883 0.908 0.930
Replab 45671 10797 34874 353754 0.924 0.923 0.926 0.928 0.914 0.914
WebspamUni 350000 212189 137811 254 0.912 0.918 0.914 0.910 0.927 0.912
epsilon 500000 249778 250222 2000 0.878 0.872 0.884 0.886 0.862 0.872
covtype 581012 297711 283301 54 0.761 0.762 0.754 0.760 0.732 0.719
url 2396130 792145 1603985 3231961 0.962 0.963 0.951 0.950 0.971 0.972
SUSY 5000000 2287827 2712173 18 0.762 0.762 0.754 0.745 0.710 0.720
kdda 8918054 7614730 1303324 20216830 0.927 0.926 0.921 0.926 0.913 0.927
kddb 20012498 17244034 2768464 29890095 0.934 0.934 0.930 0.929 0.923 0.928

over the first t rounds, which thus makes no sense to aggregate again. The latter, on the other hand,
differs qualitatively from our ultimate goal; in fact, |F ((y1, . . . , yt), (ŷ1, . . . , ŷt)) − F (τ∗)| is the
alternate measure that we are aiming to optimize for instead of the accuracy.

Online optimization of non-decomposable measures: Online optimization of the F-measure can be
seen as a special case of optimizing non-decomposable loss functions as recently considered by [9].
Their framework essentially differs from ours in several points. First, regarding the data generation
process, the adversarial setup with oblivious adversary is assumed, unlike our current study where
a stochastic setup is assumed. From this point of view, their assumption is more general since
the oblivious adversary captures the stochastic setup. Second, the set of classifiers is restricted to
differentiable parametric functions, which may not include the F-measure maximizer. Therefore,
their proof of vanishing regret does in general not imply convergence to the optimal F-score. Seen
from this point of view, their result is weaker than our proof of consistency (i.e., convergence to
the optimal F-measure in probability if the posterior estimates originate from a consistent learner).
Finally, there are some other non-decomposable performance measures which are intensively used
in many practical applications. Their optimization had already been investigated in the online or
one-pass setup. The most notable such measure might be the area under the ROC curve (AUC)
which had been investigated in an online learning framework by [21, 7].

7 Experiments

In this section, the performance of the OFO algorithm is evaluated in a one-pass learning scenario
on benchmark datasets, and compared with the performance of the 2-stage F-measure maximization
appraoch (2S) described in Section 2. We also assess the rate of convergence of the OFO algorithm
in a pure online learning setup.3

The online learner A in OFO was implemented in different ways, using Logistic Regression
(LOGREG), the classical Perceptron algorithm (PERCEPTRON) [13] and an online linear SVM called
PEGASOS [14]. In the case of LOGREG, we applied the algorithm introduced in [15] which handles
L1 and L2 regularization. The hyperparameters of the methods and the validation procedures are
described below and in more detail in Appendix D. If necessary, the raw outputs of the learners were
turned into valid probability estimates, i.e., they were rescaled to [0, 1] using logistic transform.

We used in the experiments nine datasets taken from the LibSVM repository of binary classification
tasks.4 Many of these datasets are commonly used as benchmarks in information retrieval where the
F-score is routinely applied for model selection. In addition, we also used the textual data released
in the Replab challenge of identifying relevant tweets [1]. We generated the features used by the
winner team [8]. The main statistics of the datasets are summarized in Table 1.

3Additional results of experiments conducted on synthetic data are presented in Appendix F.
4
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
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Figure 1: Online F-scores obtained by OFO algorithm on various dataset. The dashed lines represent
the one-pass performance of the OFO algorithm from Table 1 which we considered as baseline.

One-pass learning. In one-pass learning, the learner is allowed to read the training data only
once, whence online learners are commonly used in this setting. We run OFO along with the three
classifiers trained on 80% of the data. The learner obtained by OFO is of the form gτtt , where t
is the number of training samples. The rest 20% of the data was used to evaluate gτtt in terms of
the F-measure. We run every method on 10 randomly shuffled versions of the data and averaged
results. The means of the F-scores computed on the test data are shown in Table 1. As a baseline,
we applied the 2S approach. More concretely, we trained the same set of learners on 60% of the
data and validated the threshold on 20% by optimizing (6). Since both approaches are consistent,
the performance of OFO should be on par with the performance of 2S. This is confirmed by the
results, in which significant differences are observed in only 7 of 30 cases. These differences in
performance might be explained by the finiteness of the data. The advantage of our approach over
2S is that there is no need of validation and the data needs to be read only once, therefore it can
be applied in a pure one-pass learning scenario. The hyperparameters of the learning methods are
chosen based on the performance of 2S. We tuned the hyperparameters in a wide range of values
which we report in Appendix D.

Online learning. The OFO algorithm has also been evaluated in the online learning scenario in
terms of the online F-measure (2). The goal of this experiment is to assess the convergence rate of
OFO. Since the optimal F-measure is not known for the datasets, we considered the test F-scores
reported in Table 1. The results are plotted in Figure 1 for four benchmark datasets (the plots for
the remaining datasets can be found in Appendix G). As can be seen, the online F-score converges
to the test F-score obtained in one-pass evalaution in almost every case. There are some exceptions
in the case of PEGASOS and PERCEPTRON. This might be explained by the fact that SVM-based
methods as well as the PERCEPTRON tend to produce poor probability estimates in general (which
is a main motivation for calibration methods turning output scores into valid probabilities [3]).

8 Conclusion and Future Work

This paper studied the problem of online F-measure optimization. Compared to many conven-
tional online learning tasks, this is a specifically challenging problem, mainly because of the non-
decomposable nature of the F-measure. We presented a simple algorithm that converges to the
optimal F-score when the posterior estimates are provided by a sequence of classifiers whose L1

error converges to zero as fast as t−λ for some λ > 0. As a key feature of our algorithm, we note
that it is a purely online approach; moreover, unlike approaches such as 2S, there is no need for a
hold-out validation set in batch mode. Our promising results from extensive experiments validate
the empirical efficacy of our algorithm.

For future work, we plan to extend our online optimization algorithm to a broader family of complex
performance measures which can be expressed as ratios of linear combinations of true positive, false
positive, false negative and true negative rates [10]; the F-measure also belongs to this family. More-
over, going beyond consistency, we plan to analyze the rate of convergence of our OFO algorithm.
This might be doable thanks to several nice properties of the function h(τ). Finally, an intriguing
question is what can be said about the case when some bias is introduced because the classifier gt
does not converge to η.
Acknowledgments. Krzysztof Dembczyński is supported by the Polish National Science Centre
under grant no. 2013/09/D/ST6/03917. The research leading to these results has received funding
from the European Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 306638.
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Supplementary material for “Online F-Measure
Optimization”

A Proposition 2

For reading convenience we restate Proposition 2.
Proposition 6. If thresholds τt are defined according to (10) and ŷt+1 as Jη(xt+1) > τtK, then

(τt+1 − τt)bt+1 = h(τt, yt+1, ŷt+1) .

Proof. The proof is a simple analysis of the three cases yt+1 = ŷt+1 = 1, yt+1 6= ŷt+1 and
yt+1 = ŷt+1 = 0:

• If yt+1 = ŷt+1 = 1, then we have at+1 = at + 1 and bt+1 = bt + 2, and so

τt+1 − τt =
at + 1

bt + 2
− at
bt

=
bt − 2at

(bt + 2)bt
=
bt − 2at
bt+1bt

and

h(τt, yt+1, ŷt+1) = ytŷt − τt(yt + ŷt) = 1− 2τt =
bt − 2at
bt

= (τt+1 − τt)bt+1.

• If yt+1 6= ŷt+1 = 1, then we have at+1 = at and bt+1 = bt + 1, and so

τt+1 − τt =
at

bt + 1
− at
bt

= − at
(bt + 1)bt

= − at
bt+1bt

and

h(τt, yt+1, ŷt+1) = −τt = −at
bt

= (τt+1 − τt)bt+1.

• If yt+1 = ŷt+1 = 0, then we have at+1 = at and bt+1 = bt, and so

τt+1 − τt =
at
bt
− at
bt

= 0,

and
h(τt, yt+1, ŷt+1) = 0 = (τt+1 − τt)bt+1,

B Consistency with knowledge about the true posterior probabilities

For the proof of Theorem 3 we will need the following two lemmas. As a first step, one might
decompose the update rule of the threshold τt given in (11). Based on Lemma 7, the difference
sequence of the thresholds conditioned on the filtration can be rewritten such that the terms after the
decomposition only depend on the data distribution, but not on the filtration.
Lemma 7.

E

[
1

bt+1
ĥ(τt)

∣∣∣∣Ft] =
1

bt + 2
h(τt) +O

(
1

b2t

)
where the O(.) notation hides only universal constants.

Proof. Simple calculation yields that

E

[
1

bt+1
ĥ(τt)|Ft

]
= E

[
1

bt + 2
ĥ(τt)

∣∣∣∣Ft]−E

[(
1

bt + 2
− 1

bt+1

)
ĥ(τt)

∣∣∣∣Ft]
=

1

bt + 2
h(τt)−E

[(
1

bt + 2
− 1

bt+1

)
ĥ(τt)

∣∣∣∣Ft]
=

1

bt + 2
h(τt) +O

(
1

b2t

)
(12)
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where (12) follows from the fact that

1

bt + 2
− 1

bt+1
=


− 2
b2t+2bt

, if yt+1 = ŷt+1 = 0

0, if yt+1 = ŷt+1 = 1

− 1
b2t+bt−2

, if yt+1 6= ŷt+1

and ĥ(τ) ≥ −1. This completes the proof.

In the update rule of the thresholds given in (11), the 1/bt+1 values controls the step size, and in
fact, these values play a similar role like the coefficient in the stochastic approximation algorithm
of [12] (the coefficients are denoted by at in the original paper). Therefore, the sequence of 1/bt+1

should behave similar to 1/t, that is
∑∞
t=1 1/bt =∞ and

∑∞
t=1 1/b2t <∞ . Since bt ≤ 2t, we have

that
∑∞
t=1 1/bt ≥

∑∞
t=1 1/2t =∞. The infinite sum of the square of 1/bt+1 is analysed in the next

lemma.

Lemma 8.

E

[
1

b2t

]
= O

(
1

t2

)
where the O(.) notation hides only universal constants. Consequently, it holds that

∞∑
t=1

E

[
1

b2t

]
<∞

Proof. By applying the Chernoff bound for ct =
∑t
t′=1 yt′ with tπ1/3 as error term, we have

P

(
ct ≤

2

3
tπ1

)
≤ exp

(
−2tπ2

1

9

)
︸ ︷︷ ︸

γt

. (13)

Therefore, based on (13), we can upper bound E[1/(c2t + 1)] as

E

[
1

(c2t + 1)

]
≤ γt + (1− γt)

9

4t2π2
1

≤ γt +
9

4t2π2
1

(14)

Next, note that 1 ≤ 1/b2t since τ0 = 0 which results in that ŷ1 = 1. Moreover, 1/b2t ≤ 1/(c2t + 1)
since bt ≥ (ct + 1) which proofs the first claim.

In order to proof the second claim, we might rewrite

∞∑
t=1

E

[
1

b2t

]
≤
∞∑
t=1

E

[
1

c2t + 1

]

≤
∞∑
t=1

γt +
9

π2
14

∞∑
t=1

1

t2
<∞ (15)

where we obtained (15) by applying (14). Based on the definition γt, it readily follows that (15) is
finite which completes the proof.

Before we turn to the proof of the Theorem 3, we show that function h(·) is not “too flat” anywhere.
In general, function h(·) might be not differentiable everywhere (for example, it can be piecewise
linear, or it might be discontinuous for some τ ∈ [0, 1]). Nevertheless, its finite difference is strictly
negative based on the next proposition.

Proposition 9. For any τ, τ ′ ∈ [0, 1] such that τ 6= τ ′, it holds

−1− π1 ≤
h(τ)− h(τ ′)

τ − τ ′
≤ −π1 .

11



Proof. Based on (8), we can write h(τ) in the form of

h(τ) =

∫ 1

0

max(0, p− τ) dν(p)− τπ1 .

Next, define g(τ, τ ′) as

g(τ, τ ′) =
1

τ − τ ′

∫ 1

0

max(0, p− τ)−max(0, p− τ ′) dν(p)

=

∫ 1

0

max(0, p− τ)−max(0, p− τ ′)
τ − τ ′

dν(p) .

Simple calculation yields that

h(τ)− h(τ ′)

τ − τ ′
= g(τ, τ ′)− π1

Now there are two cases:

1. When τ < τ ′, we have

max(0, p− τ)−max(0, p− τ ′) =


τ ′ − τ if p > τ ′ > τ

p− τ if τ ′ > p > τ

0 otherwise

thus

max(0, p− τ)−max(0, p− τ ′)
τ − τ ′

=


τ ′−τ
τ−τ ′ = −1 if p > τ ′ > τ

−1 ≤ p−τ
τ−τ ′ ≤ 0 if τ ′ > p > τ

0 otherwise

And so −1 ≤ g(τ, τ ′) ≤ 0, which yields that −1− π1 ≤ h(τ)−h(τ ′)
τ−τ ′ ≤ −π1 in this case.

2. When τ > τ ′, we have

max(0, p− τ)−max(0, p− τ ′) =


τ ′ − τ if p > τ > τ ′

τ ′ − p if τ > p > τ ′

0 otherwise

thus

max(0, p− τ)−max(0, p− τ ′)
τ − τ ′

=


τ ′−τ
τ−τ ′ = −1 if p > τ > τ ′

−1 ≤ τ ′−p
τ−τ ′ ≤ 0 if τ > p > τ ′

0 otherwise

And similarly to the previous case, we have −1 ≤ g(τ, τ ′) ≤ 0, which yields that −1 −
π1 ≤ h(τ)−h(τ ′)

τ−τ ′ ≤ −π1 in this case as well.

This completes the proof.

The proof of Theorem 3 follows the proof of [12] given for the stochastic approximation method for
root finding. However, our proof differs essentially from theirs, because of the lack of independence
between 1/bt+1 and ĥ(τt).

Proof. of Theorem 3
Our goal is to show that limt→∞ βt = 0 where

βt = E
[
(τt − τ∗)2

]
12



which yields the convergence of the thresholds in probability, formally, τt
P−→ τ∗, and consequently

F(t)
P−→ F (τ∗), since F (τ∗) = 2τ∗ and, in addition, F(t) = 2τt based on the definition of F(t) and

τt given in (2) and (10), respectively.

We can decompose βt as follows:

βt+1 = E
[
(τt+1 − τ∗)2

]
= E

[
E
[
(τt+1 − τ∗)2

∣∣Ft]]
= E

[
E

[
(τt − τ∗ +

1

bt+1
ĥ(τt))

2

∣∣∣∣Ft]] (16)

= E
[
E
[
(τt − τ∗)2

∣∣Ft]]+ 2E

[
E

[
(τt − τ∗)

1

bt+1
ĥ(τt)

∣∣∣∣Ft]]+ E

E
( ĥ(τt)

bt+1

)2
∣∣∣∣∣∣Ft


= βt + 2E

[
τt − τ∗

bt + 2
h(τt) +O

(
1

b2t

)]
+ E

E
( ĥ(τt)

bt+1

)2
∣∣∣∣∣∣Ft
 (17)

= βt − 2E

[
τ∗ − τt
bt + 2

h(τt)

]
+O

(
E

[
1

b2t

])
+ E

E
( ĥ(τt)

bt+1

)2
∣∣∣∣∣∣Ft


= βt − 2E

[
τ∗ − τt
bt + 2

h(τt)

]
+O

(
E

[
1

b2t

])
(18)

where (16) follows from the update rule defined in (11), and (17) is obtained by applying Lemma
7. Finally, (18) follows from the fact that ĥ(τt) is bounded and 1/(bt + 2) ≤ 1/bt+1 ≤ 1/bt. Note
that O hides only universal constants, therefore E(O(.)) = O(E(.)). So the error term βt+1 can be
written as

βt+1 = βt − 2δt +O
(
E

[
1

b2t

])
(19)

where

δt = E

[
τ∗ − τt
bt + 2

h(τt)

]
.

Summing up (19), we have

βt+1 = β1 − 2

t∑
t′=1

δt′ +

t∑
t′=1

O
(
E

[
1

b2t′

])
Hence h(τ)(τ∗ − τ) > 0, it holds that δt > 0, thus we have

t∑
t′=1

δt′ ≤
1

2

[
β1 +

t∑
t′=1

O
(
E

[
1

b2t′

])]

≤ 1

2

[
β1 +

∞∑
t′=1

O
(
E

[
1

b2t′

])]
(20)

Based on Lemma 8,
∑∞
t=1O

(
E
[

1
b2t

])
is finite. Therefore,

∑∞
t′=1 δt′ is also finite, and so there

exists a β ≥ 0, such that

lim
t→∞

βt = β1 − 2

∞∑
t′=1

δt′ +

∞∑
t′=1

O
(
E

[
1

b2t′

])
= β .

since all sums are finite above, and b ≥ 0 based on (20).

As a next step, we show that β = 0. For doing this, first note that 1
2(t+1) ≤

1
bt+2 for any t > 0, thus

it holds
∞∑
t=1

1

2(t+ 1)
E [(τ∗ − τt)h(τt)] ≤

∞∑
t=1

δt <∞

13



Now suppose that there exists a sequence {kt} of non-negative real numbers such that

ktβt ≤ E [(τ∗ − τt)h(τt)] (21)

and
∞∑
t=1

kt
2(t+ 1)

=∞ . (22)

From (21), we have
∞∑
t=1

kt
2(t+ 1)

βt ≤
∞∑
t=1

1

2(t+ 1)
E [(τ∗ − τt)h(τt)]

≤
∞∑
t=1

δt <∞.

From (22), it follows that for any ε > 0 there must exist infinitely many values such that βt < ε.
Since we know that limt→∞ βt = b exists, thus β = 0 necessarily (if {kn} does exist).

The only thing remained to be shown is the existence of {kn} which satisfies (21) and (22). Based
on Proposition 9, we have

−π1 ≤ sup
τ 6=τ∗

[
h(τ)− h(τ∗)

τ − τ∗

]
= sup
τ 6=τ∗

[
h(τ)

τ − τ∗

]
.

So we can lower bound E [(τ∗ − τt)h(τt)] as

E [(τ∗ − τt)h(τt)] = E

[
(τ∗ − τt)2

h(τt)

τ∗ − τt

]
≥ π1E

[
(τ∗ − τt)2

]
≥ π1βt

Therefore the constant sequence kt = π1 satisfies (21) and (22). This completes the proof.

C Consistency with estimated posterior probabilities

Assuming that the posterior estimate is provided as pt+1 = gt(xt+1) in time step t, the update rule
of the thresholds can be written in the form of

τt+1 − τt =
1

bt+1
h(τt, yt+1, Jgt(xt+1) ≥ τtK) . (23)

Let us write concisely h̃(τ, g) = h(τ, y, Jg(x) ≥ τK. As a first step, we can upper bound the differ-
ence between h̃(τ, g) and ĥ(τt) in terms of the L1 error of g with respect to the data distribution as
follows.
Lemma 10. ∣∣∣E [h̃(τt, gt)− ĥ(τt)|Ft

]∣∣∣ ≤ ∫
x∈X
|η(x)− gt(x)|dµ(x) = ‖η − gt‖1

where h̃(τ, g) = h(τ, y, Jg(x) ≥ τK) = h(τ, y, gτ (x)).

Proof. First, compute

h̃(τ, g)− ĥ(τ) = y Jg(x) ≥ τK− τ (y + Jg(x) ≥ τK)− y Jη(x) ≥ τK + τ (y + Jη(x) ≥ τK)
= y Jg(x) ≥ τK− τ Jg(x) ≥ τK− y Jη(x) ≥ τK + τ Jη(x) ≥ τK
= y (Jg(x) ≥ τK− Jη(x) ≥ τK)− τ (Jg(x) ≥ τK− Jη(x) ≥ τK)
= (y − τ) (Jg(x) ≥ τK− Jη(x) ≥ τK)

14



Now, note that

Jg(x) ≥ τK− Jη(x) ≥ τK =

{
1 if g(x) > τ > η(x)

−1 if η(x) > τ > g(x)

therefore, we have ∣∣∣h̃(τ, g)− ĥ(τ)
∣∣∣ = |(y − τ) (Jg(x) ≥ τK− Jη(x) ≥ τK)|

≤ |η(x)− g(x)| .

Consequently, we can upper bound the absolute value of

E
[
h̃(τt, gt)− ĥ(τt)|Ft,xt+1

]
= (η(xt+1)− τt) (Jg(x) ≥ τK− Jη(x) ≥ τK)

as follows: ∣∣∣E [h̃(τt, gt)− ĥ(τt)|Ft,xt+1

]∣∣∣ ≤ |η(xt+1)− gt(xt+1)| .

Therefore we can upper bound the following E
[
h̃(τt, gt)− ĥ(τt)|Ft

]
as∣∣∣E [h̃(τt, gt)− ĥ(τt)

∣∣∣Ft]∣∣∣ = E
[∣∣∣E [h̃(τt, gt)− ĥ(τt)

∣∣∣Ft,xt+1

]∣∣∣∣∣∣Ft]
≤ E [|η(x)− gt(x)||Ft]

=

∫
x∈X
|η(x)− gt(x)|dµ(x)

= ‖η − gt‖1

We need to following results for decomposing the update rule given 10 similarly to Lemma 7.

Lemma 11.

E

[
1

bt+1
(h̃(τt, gt)− ĥ(τt))

∣∣∣∣Ft] =
1

bt + 2
‖η − gt‖1 +O

(
1

b2t

)
where the O(.) notation hides only universal constants.

Proof. Simple calculation yields that

E

[
1

bt+1
(h̃(τt, gt)− ĥ(τt))|Ft

]
= E

[
1

bt + 2
(h̃(τt, gt)− ĥ(τt))

∣∣∣∣Ft]
−E

[(
1

bt + 2
− 1

bt+1

)
(h̃(τt, gt)− ĥ(τt))

∣∣∣∣Ft]
≤ 1

bt + 2
‖η − gt‖1

−E

[(
1

bt + 2
− 1

bt+1

)
(h̃(τt, gt)− ĥ(τt))

∣∣∣∣Ft] (24)

=
1

bt + 2
‖η − gt‖1 +O

(
1

b2t

)
(25)

where (24) follows from Lemma 10 and (25) can be computed as (12) in the proof of Lemma 7.
This completes the proof.

The proof of Theorem 5 goes in a similar way like the proof of Theorem 3. The basic difference is
that there is a new term in the decomposition of βt+1 which stems from the error of the classifiers
which provides the posterior estimates. But this term can be upper bounded based on Lemma 10,
and based on the fact that the L1 error of the learner is vanishing as fast as t−λ where 1 > λ > 0.
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Proof. of Theorem 5
Similarly to the proof of Theorem 3, let us decompose βt+1 which now depend on h̃(·). We have

βt+1 = E
[
(τt+1 − τ∗)2

]
= E

[
E
[
(τt+1 − τ∗)2

∣∣Ft]]
= E

[
E

[
(τt − τ∗ +

1

bt+1
h̃(τt))

2

∣∣∣∣Ft]] (26)

= E
[
E
[
(τt − τ∗)2

∣∣Ft]]
+ 2E

[
E

[
(τt − τ∗)

1

bt+1
h̃(τt)

∣∣∣∣Ft]]+ E

E
( h̃(τt)

bt+1

)2
∣∣∣∣∣∣Ft


= βt + 2E

[
E

[
τt − τ∗

bt+1
ĥ(τt)

∣∣∣∣Ft]]

+ 2E

[
E

[
τt − τ∗

bt+1
(h̃(τt)− ĥ(τt))

∣∣∣∣Ft]]+ E

E
( h̃(τt)

bt+1

)2
∣∣∣∣∣∣Ft


= βt + 2E

[
τt − τ∗

bt + 2
h(τt)

]
+ 2E

[
E

[
τt − τ∗

bt+1
(h̃(τt)− ĥ(τt))

∣∣∣∣Ft]]+O
(
E

[
1

b2t

])
(27)

= βt − 2E

[
τ∗ − τt
bt + 2

h(τt)

]
+ E

[
τt − τ∗

bt + 2
‖η − gt‖1 +O

(
1

b2t

)]
+O

(
E

[
1

b2t

])
(28)

= βt − 2E

[
τ∗ − τt
bt + 2

h(τt)

]
+ E

[
τt − τ∗

bt + 2
‖η − gt‖1

]
+O

(
E

[
1

b2t

])
where (26) follows from the update rule defined in (23), and (27) follows from the fact that h̃(τt) is
bounded and 1/(bt + 2) ≤ 1/bt+1 ≤ 1/bt. Finally, Lemma 11 is applied in (28).

As a next step, we show that

∞∑
t=1

E

[
τt − τ∗

bt + 2
‖η − gt‖1

]
≤
∞∑
t=1

E

[
‖η − gt‖1
bt + 2

]

≤
∞∑
t=1

√
E

[
1

(bt + 2)2

]√
E [‖η − gt‖21] (29)

≤
∞∑
t=1

O
(

1

t

)√
E [‖η − gt‖21] (30)

≤
∞∑
t=1

O
(

1

t

)√
E [2‖η − gt‖1] (31)

=

∞∑
t=1

O
(

1

t1+λ/2

)
<∞ . (32)

where the Cauchy-Schwarz inequality is applied in (29), and (30) follows from Lemma 8 and, (31)
follows from the fact that ‖η − gt‖1 ≤ 2. Finally, (32) follows from the assumption regarding the
online learner, namely, there exists an λ > 0, such that

E

[∫
x∈X
|η(x)− gt(x)|dµ(x)

]
= O

(
t−λ
)

Therefore, in this case, βt+1 can be decomposed in a similar way like in (19). Plugging this result
into (20), the rest of the proof is analogous to the proof of Theorem 3.
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D Hyperparameters of the online learners

The regularized version of the Logistic Regression was trained as it is introduced in [15]. This
model has three hyperparameters the initial learning rate η, and the regularization coefficients for
L1 and L2 penalties that are denoted by λ1 and λ2 respectively. The PEGASOS learning method
has a single hyper-parameter λ, which controls the step size of the parameter update. Finally, the
only hyperparameter of PERCEPTRON algorithm is the learning rate which we denote by γ. The
hyperparameters and their values on which they were optimized are summarized in Table 2.

Table 2: The hyperparameters of the learning methods and their ranges used in hyperparmater opti-
mization.

Learner hyperparameter Validation range

LR
η {0.1, 0.01, 0.001, 0.0001}
λ1 {0.1, 0.01, 0.001, 0.0001}
λ2 {0.1, 0.01, 0.001, 0.0001}

PEGASOS λ {0.5, 0.4, 0.3, 0.2, 0.1, , 0.05, 0.03, 0.01, 0.005, 0.001, 0.0001}
PERCEPTRON γ {10.0, 5.0, 3.0, 1.0, 0.5, 0.3, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001}

E Optimal threshold τ ∗ with Beta and uniform distributions as ν(·)

Example 12. Assume that ν(·) is uniform on [0, 1]. Then, according to (8), h(τ) is given as follows:

h(τ) = 1/2− τ2/2− τ(1− τ)− τ/2
= τ2 − 3τ + 1

Setting h(τ) = 0 and noting that the solution has to be in [0, 1], the optimal threshold is τ∗ =

(3−
√

5)/2, whence F (τ∗) = 3−
√

5 ≈ 0.76.

Example 13. Assume that ν(·) is the Beta density function with parameters α and β: ν(p) =
pα−1(1 − p)β−1/B(α, β), where B(α, β) = Γ(α + β)/(Γ(α) + Γ(β)) and Γ(·) is the Gamma
function. The cumulative distribution function of the Beta distribution is denoted by F (x ;α, β) and
defined as F (x ;α, β) = B(x ;α, β)/B(α, β), where B(x ;α, β) =

∫ x
0
tα−1(1 − t)β−1 dt. Thus,

h(τ) can be written as follows:

h(τ) =
1

B(α, β)

∫ 1

τ

pα(1− p)β−1 dp− τ(1− F (τ ;α, β))− τ α

α+ β

=
B(α+ 1, β)

B(α, β)
(1− F (τ ;α+ 1, β))− τ(1− F (τ ;α, β))− τ α

α+ β

=
τ(1− τ)B(α+ 1, β)

B(α, β)
− τ α

α+ β

Noting that τ∗ = 0 can be excluded, a simple calculation yields τ∗ = 1− α
α+β

B(α,β)
B(α+1,β) .

F Synthetic Data

We sampled instance vectors from a two-dimensional Gaussian with mean (1, 1) and the identity
as covariance matrix. The class conditional probability for an instance x = (x1, x2) is computed
by a logistic function as follows: η(x) = P(Y = 1|X = x) = 1

1+exp(−x1+x2+3)) . Figure 2 (a)
and (b) show a sample dataset consisting of 30000 instances and the contour plot of their posteriors
probabilities, respectively.

We run the OFO algorithm with logistic regression without regularization as online learner on 30000
random examplesDN in order to satisfy the required consistency condition. The initial learning rate
was set to 0.01 and no regularization was applied here. Since the precise posteriors are known, the
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Figure 2: Experiments with synthetic data. (a) The data points sampled from a two-dimensional
normal distribution. The blue line indicates the Bayes optimal decision surface for which P(Y =
1 |X = x) = 1/2. The red points represent the positive instances. (b) The contour plot of the
posterior probabilities P(Y = 1 |X = x). (c) The solid and dashed black lines show the F-measure
and the validated threshold, respectively, in batch mode (note that F (τ∗) = 2τ∗). The red lines
show the online F-score and the threshold found by OFO with logistic regression. Similarly, the
solid lines represent the F-score and the dashed one the threshold.

validated threshold and F-measure were computed as a baseline. These are obtained by optimizing
F (τ ; η(·),DN ) as described in Section 2. The dashed black lines in Figure 2 (c) show the validated
threshold (below) and the F-measure (above) found (note that F (τ∗) = 2τ∗). The online F-measure
and thresholds found by OFO are plotted with solid and dashed red lines, respectively. As the results
show, the online algorithm converges to the validation-based approach in terms of both F-measure
and threshold, which in accordance with our theoretical results. All results are obtained by averaging
over 100 repetitions.
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G Online F-scores obtained by OFO algorithm on benchmark datasets
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Figure 3: Online F-scores obtained by OFO algorithm with various online learners on benchmark
datasets
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