
Correlated random features for
fast semi-supervised learning

Brian McWilliams
ETH Zürich, Switzerland

brian.mcwilliams@inf.ethz.ch

David Balduzzi
ETH Zürich, Switzerland

david.balduzzi@inf.ethz.ch

Joachim M. Buhmann
ETH Zürich, Switzerland

jbuhmann@inf.ethz.ch

Abstract

This paper presents Correlated Nyström Views (XNV), a fast semi-supervised al-
gorithm for regression and classification. The algorithm draws on two main ideas.
First, it generates two views consisting of computationally inexpensive random
features. Second, multiview regression, using Canonical Correlation Analysis
(CCA) on unlabeled data, biases the regression towards useful features. It has
been shown that CCA regression can substantially reduce variance with a mini-
mal increase in bias if the views contains accurate estimators. Recent theoretical
and empirical work shows that regression with random features closely approxi-
mates kernel regression, implying that the accuracy requirement holds for random
views. We show that XNV consistently outperforms a state-of-the-art algorithm
for semi-supervised learning: substantially improving predictive performance and
reducing the variability of performance on a wide variety of real-world datasets,
whilst also reducing runtime by orders of magnitude.

1 Introduction

As the volume of data collected in the social and natural sciences increases, the computational cost
of learning from large datasets has become an important consideration. For learning non-linear
relationships, kernel methods achieve excellent performance but naı̈vely require operations cubic in
the number of training points.

Randomization has recently been considered as an alternative to optimization that, surprisingly, can
yield comparable generalization performance at a fraction of the computational cost [1, 2]. Ran-
dom features have been introduced to approximate kernel machines when the number of training
examples is very large, rendering exact kernel computation intractable. Among several different
approaches, the Nyström method for low-rank kernel approximation [1] exhibits good theoretical
properties and empirical performance [3–5].

A second problem arising with large datasets concerns obtaining labels, which often requires a do-
main expert to manually assign a label to each instance which can be very expensive – requiring sig-
nificant investments of both time and money – as the size of the dataset increases. Semi-supervised
learning aims to improve prediction by extracting useful structure from the unlabeled data points
and using this in conjunction with a function learned on a small number of labeled points.

Contribution. This paper proposes a new semi-supervised algorithm for regression and classifi-
cation, Correlated Nyström Views (XNV), that addresses both problems simultaneously. The method

1



consists in essentially two steps. First, we construct two “views” using random features. We in-
vestigate two ways of doing so: one based on the Nyström method and another based on random
Fourier features (so-called kitchen sinks) [2, 6]. It turns out that the Nyström method almost always
outperforms Fourier features by a quite large margin, so we only report these results in the main
text.

The second step, following [7], uses Canonical Correlation Analysis (CCA, [8, 9]) to bias the opti-
mization procedure towards features that are correlated across the views. Intuitively, if both views
contain accurate estimators, then penalizing uncorrelated features reduces variance without increas-
ing the bias by much. Recent theoretical work by Bach [5] shows that Nyström views can be ex-
pected to contain accurate estimators.

We perform an extensive evaluation of XNV on 18 real-world datasets, comparing against a modified
version of the SSSL (simple semi-supervised learning) algorithm introduced in [10]. We find that
XNV outperforms SSSL by around 10-15% on average, depending on the number of labeled points
available, see §3. We also find that the performance of XNV exhibits dramatically less variability
than SSSL, with a typical reduction of 30%.

We chose SSSL since it was shown in [10] to outperform a state of the art algorithm, Laplacian
Regularized Least Squares [11]. However, since SSSL does not scale up to large sets of unlabeled
data, we modify SSSL by introducing a Nyström approximation to improve runtime performance.
This reduces runtime by a factor of ×1000 on N = 10, 000 points, with further improvements as N
increases. Our approximate version of SSSL outperforms kernel ridge regression (KRR) by > 50%
on the 18 datasets on average, in line with the results reported in [10], suggesting that we lose little
by replacing the exact SSSL with our approximate implementation.

Related work. Multiple view learning was first introduced in the co-training method of [12] and
has also recently been extended to unsupervised settings [13,14]. Our algorithm builds on an elegant
proposal for multi-view regression introduced in [7]. Surprisingly, despite guaranteeing improved
prediction performance under a relatively weak assumption on the views, CCA regression has not
been widely used since its proposal – to the best of our knowledge this is first empirical evaluation
of multi-view regression’s performance. A possible reason for this is the difficulty in obtaining
naturally occurring data equipped with multiple views that can be shown to satisfy the multi-view
assumption. We overcome this problem by constructing random views that satisfy the assumption
by design.

2 Method

This section introduces XNV, our semi-supervised learning method. The method builds on two
main ideas. First, given two equally useful but sufficiently different views on a dataset, penalizing
regression using the canonical norm (computed via CCA), can substantially improve performance
[7]. The second is the Nyström method for constructing random features [1], which we use to
construct the views.

2.1 Multi-view regression

Suppose we have data T =
(
(x1, y1), . . . , (xn, yn)

)
for xi ∈ RD and yi ∈ R, sampled according to

joint distribution P (x, y). Further suppose we have two views on the data
z(ν) : RD −→ H(ν) = RM : x 7→ z(ν)(x) =: z(ν) for ν ∈ {1, 2}.

We make the following assumption about linear regressors which can be learned on these views.
Assumption 1 (Multi-view assumption [7]). Define mean-squared error loss function `(g,x, y) =
(g(x) − y)2 and let loss(g) := EP `(g(x), y). Further let L(Z) denote the space of linear maps
from a linear space Z to the reals, and define:

f (ν) := argmin
g∈L(H(ν))

loss(g) for ν ∈ {1, 2} and f := argmin
g∈L(H(1)⊕H(2))

loss(g).

The multi-view assumption is that

loss
(
f (ν)

)
− loss(f) ≤ ε for ν ∈ {1, 2}. (1)

2



In short, the best predictor in each view is within ε of the best overall predictor.

Canonical correlation analysis. Canonical correlation analysis [8, 9] extends principal compo-
nent analysis (PCA) from one to two sets of variables. CCA finds bases for the two sets of variables
such that the correlation between projections onto the bases are maximized.

The first pair of canonical basis vectors,
(
b
(1)
1 ,b

(2)
1

)
is found by solving:

argmax
b(1),b(2)∈RM

corr
(
b(1)>z(1),b(2)>z(2)

)
. (2)

Subsequent pairs are found by maximizing correlations subject to being orthogonal to previously
found pairs. The result of performing CCA is two sets of bases, B(ν) =

[
b
(ν)
1 , . . . ,b

(ν)
M

]
for

ν ∈ {1, 2}, such that the projection of z(ν) onto B(ν) which we denote z̄(ν) satisfies

1. Orthogonality: ET
[
z̄
(ν)>
j z̄

(ν)
k ] = δjk, where δjk is the Kronecker delta, and

2. Correlation: ET
[
z̄
(1)>
j z̄

(2)
k

]
= λj · δjk where w.l.o.g. we assume 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ 0.

λj is referred to as the jth canonical correlation coefficient.

Definition 1 (canonical norm). Given vector z̄(ν) in the canonical basis, define its canonical norm
as

‖z̄(ν)‖CCA :=

√√√√ D∑
j=1

1− λj
λj

(
z̄
(ν)
j

)2
.

Canonical ridge regression. Assume we observe n pairs of views coupled with real valued labels{
z
(1)
i , z

(2)
i , yi

}n
i=1

, canonical ridge regression finds coefficients β̂
(ν)

=
[
β̂
(ν)
1 , . . . , β̂

(ν)
M

]>
such that

β̂
(ν)

:= argmin
β

1

n

n∑
i=1

(
yi − β(ν) >z̄

(ν)
i

)2
+ ‖β(ν)‖2CCA. (3)

The resulting estimator, referred to as the canonical shrinkage estimator, is

β̂
(ν)
j =

λj
n

n∑
i=1

z̄
(ν)
i,j yi. (4)

Penalizing with the canonical norm biases the optimization towards features that are highly cor-
related across the views. Good regressors exist in both views by Assumption 1. Thus, intuitively,
penalizing uncorrelated features significantly reduces variance, without increasing the bias by much.
More formally:
Theorem 1 (canonical ridge regression, [7]). Assume E[y2|x] ≤ 1 and that Assumption 1 holds. Let
f
(ν)

β̂
denote the estimator constructed with the canonical shrinkage estimator, Eq. (4), on training

set T , and let f denote the best linear predictor across both views. For ν ∈ {1, 2} we have

ET [loss(f
(ν)

β̂
)]− loss(f) ≤ 5ε+

∑M
j=1 λ

2
j

n

where the expectation is with respect to training sets T sampled from P (x, y).

The first term, 5ε, bounds the bias of the canonical estimator, whereas the second, 1
n

∑
λ2j bounds

the variance. The
∑
λ2j can be thought of as a measure of the “intrinsic dimensionality” of the

unlabeled data, which controls the rate of convergence. If the canonical correlation coefficients
decay sufficiently rapidly, then the increase in bias is more than made up for by the decrease in
variance.

3



2.2 Constructing random views

We construct two views satisfying Assumption 1 in expectation, see Theorem 3 below. To ensure our
method scales to large sets of unlabeled data, we use random features generated using the Nyström
method [1].

Suppose we have data {xi}Ni=1. When N is very large, constructing and manipulating the N × N
Gram matrix [K]ii′ = 〈φ(xi), φ(xi′)〉 = κ(xi,xi′) is computationally expensive. Where here, φ(x)
defines a mapping from RD to a high dimensional feature space and κ(·, ·) is a positive semi-definite
kernel function.

The idea behind random features is to instead define a lower-dimensional mapping, z(xi) : RD →
RM through a random sampling scheme such that [K]ii′ ≈ z(xi)

>z(xi′) [6, 15]. Thus, using
random features, non-linear functions in x can be learned as linear functions in z(x) leading to
significant computational speed-ups. Here we give a brief overview of the Nyström method, which
uses random subsampling to approximate the Gram matrix.

The Nyström method. Fix an M � N and randomly (uniformly) sample a subsetM = {x̂i}Mi=1

of M points from the data {xi}Ni=1. Let K̂ denote the Gram matrix [K̂]ii′ where i, i′ ∈ M. The
Nyström method [1, 3] constructs a low-rank approximation to the Gram matrix as

K ≈ K̃ :=

N∑
i=1

N∑
i′=1

[κ(xi, x̂1), . . . , κ(xi, x̂M )] K̂† [κ(xi′ , x̂1), . . . , κ(xi′ , x̂M )]
>
, (5)

where K̂† ∈ RM×M is the pseudo-inverse of K̂. Vectors of random features can be constructed as

z(xi) = D̂−1/2V̂> [κ(xi, x̂1), . . . , κ(xi, x̂M )]
>
,

where the columns of V̂ are the eigenvectors of K̂ with D̂ the diagonal matrix whose entries are
the corresponding eigenvalues. Constructing features in this way reduces the time complexity of
learning a non-linear prediction function from O(N3) to O(N) [15].

An alternative perspective on the Nyström approximation, that will be useful below, is as follows.
Consider integral operators

LN [f ](·) :=
1

N

N∑
i=1

κ(xi, ·)f(xi) and LM [f ](·) :=
1

M

M∑
i=1

κ(xi, ·)f(xi), (6)

and introduce Hilbert space Ĥ = span {ϕ̂1, . . . , ϕ̂r} where r is the rank of K̂ and the ϕ̂i are the first
r eigenfunctions of LM . Then the following proposition shows that using the Nyström approxima-
tion is equivalent to performing linear regression in the feature space (“view”) z : X → Ĥ spanned
by the eigenfunctions of linear operator LM in Eq. (6):
Proposition 2 (random Nyström view, [3]). Solving

min
w∈Rr

1

N

N∑
i=1

`(w>z(xi), yi) +
γ

2
‖w‖22 (7)

is equivalent to solving

min
f∈Ĥ

1

N

N∑
i=1

`(f(xi), yi) +
γ

2
‖f‖2Hκ . (8)

2.3 The proposed algorithm: Correlated Nyström Views (XNV)

Algorithm 1 details our approach to semi-supervised learning based on generating two views consist-
ing of Nyström random features and penalizing features which are weakly correlated across views.
The setting is that we have labeled data {xi, yi}ni=1 and a large amount of unlabeled data {xi}Ni=n+1.

Step 1 generates a set of random features. The next two steps implement multi-view regression using
the randomly generated views z(1)(x) and z(2)(x). Eq. (9) yields a solution for which unimportant

4



Algorithm 1 Correlated Nyström Views (XNV).
Input: Labeled data: {xi, yi}ni=1 and unlabeled data: {xi}Ni=n+1

1: Generate features. Sample x̂1, . . . , x̂2M uniformly from the dataset, compute the eigendecom-
positions of the sub-sampled kernel matrices K̂(1) and K̂(2) which are constructed from the
samples 1, . . . ,M and M + 1, . . . , 2M respectively, and featurize the input:

z(ν)(xi)← D̂(ν),−1/2V̂(ν)> [κ(xi, x̂1), . . . , κ(xi, x̂M )]
> for ν ∈ {1, 2}.

2: Unlabeled data. Compute CCA bases B(1), B(2) and canonical correlations λ1, . . . , λM for the
two views and set z̄i ← B(1)z(1)(xi).

3: Labeled data. Solve

β̂ = argmin
β

1

n

n∑
i=1

`
(
β>z̄i, yi

)
+ ‖β‖2CCA + γ‖β‖22 . (9)

Output: β̂

features are heavily downweighted in the CCA basis without introducing an additional tuning pa-
rameter. The further penalty on the `2 norm (in the CCA basis) is introduced as a practical measure
to control the variance of the estimator β̂ which can become large if there are many highly correlated
features (i.e. the ratio 1−λj

λj
≈ 0 for large j). In practice most of the shrinkage is due to the CCA

norm: cross-validation obtains optimal values of γ in the range [0.00001, 0.1].

Computational complexity. XNV is extremely fast. Nyström sampling, step 1, reduces theO(N3)
operations required for kernel learning to O(N). Computing the CCA basis, step 2, using standard
algorithms is in O(NM2). However, we reduce the runtime to O(NM) by applying a recently
proposed randomized CCA algorithm of [16]. Finally, step 3 is a computationally cheap linear
program on n samples and M features.

Performance guarantees. The quality of the kernel approximation in (5) has been the subject of
detailed study in recent years leading to a number of strong empirical and theoretical results [3–5,
15]. Recent work of Bach [5] provides theoretical guarantees on the quality of Nyström estimates in
the fixed design setting that are relevant to our approach.1

Theorem 3 (Nyström generalization bound, [5]). Let ξ ∈ RN be a random vector with finite
variance and zero mean, y = [y1, . . . , yN ]

>, and define smoothed estimate ŷkernel := (K +

NγI)−1K(y + ξ) and smoothed Nyström estimate ŷNyström := (K̃ + NγI)−1K̃(y + ξ), both
computed by minimizing the MSE with ridge penalty γ. Let η ∈ (0, 1). For sufficiently large M
(depending on η, see [5]), we have

EMEξ
[
‖y − ŷNyström‖22

]
≤ (1 + 4η) · Eξ

[
‖y − ŷkernel‖22

]
where EM refers to the expectation over subsampled columns used to construct K̃.

In short, the best smoothed estimators in the Nyström views are close to the optimal smoothed
estimator. Since the kernel estimate is consistent, loss(f) → 0 as n → ∞. Thus, Assumption 1
holds in expectation and the generalization performance of XNV is controlled by Theorem 1.

Random Fourier Features. An alternative approach to constructing random views is to use
Fourier features instead of Nyström features in Step 1. We refer to this approach as Correlated
Kitchen Sinks (XKS) after [2]. It turns out that the performance of XKS is consistently worse than
XNV, in line with the detailed comparison presented in [3]. We therefore do not discuss Fourier
features in the main text, see §SI.3 for details on implementation and experimental results.

1Extending to a random design requires techniques from [17].

5



Table 1: Datasets used for evaluation.

Set Name Task N D Set Name Task N D
1 abalone2 C 2, 089 6 10 elevators4 R 8, 752 18
2 adult2 C 32, 561 14 11 HIVa3 C 21, 339 1, 617
3 ailerons4 R 7, 154 40 12 house4 R 11, 392 16
4 bank84 C 4, 096 8 13 ibn Sina3 C 10, 361 92
5 bank324 C 4, 096 32 14 orange3 C 25, 000 230
6 cal housing4 R 10, 320 8 15 sarcos 15 R 44, 484 21
7 census2 R 18, 186 119 16 sarcos 55 R 44, 484 21
8 CPU2 R 6, 554 21 17 sarcos 75 R 44, 484 21
9 CT2 R 30, 000 385 18 sylva3 C 72, 626 216

2.4 A fast approximation to SSSL

The SSSL (simple semi-supervised learning) algorithm proposed in [10] finds the first s eigenfunc-
tions φi of the integral operator LN in Eq. (6) and then solves

argmin
w∈Rs

n∑
i=1

 s∑
j=1

wjφk(xi)− yi

2

, (10)

where s is set by the user. SSSL outperforms Laplacian Regularized Least Squares [11], a state of
the art semi-supervised learning method, see [10]. It also has good generalization guarantees under
reasonable assumptions on the distribution of eigenvalues of LN . However, since SSSL requires
computing the full N × N Gram matrix, it is extremely computationally intensive for large N .
Moreover, tuning s is difficult since it is discrete.

We therefore propose SSSLM , an approximation to SSSL. First, instead of constructing the full
Gram matrix, we construct a Nyström approximation by sampling M points from the labeled and
unlabeled training set. Second, instead of thresholding eigenfunctions, we use the easier to tune
ridge penalty which penalizes directions proportional to the inverse square of their eigenvalues [18].

As justification, note that Proposition 2 states that the Nyström approximation to kernel regression
actually solves a ridge regression problem in the span of the eigenfunctions of L̂M . AsM increases,
the span of L̂M tends towards that of LN [15]. We will also refer to the Nyström approximation to
SSSL using 2M features as SSSL2M . See experiments below for further discussion of the quality
of the approximation.

3 Experiments

Setup. We evaluate the performance of XNV on 18 real-world datasets, see Table 1. The datasets
cover a variety of regression (denoted by R) and two-class classification (C) problems. The sarcos
dataset involves predicting the joint position of a robot arm; following convention we report results
on the 1st, 5th and 7th joint positions.

The SSSL algorithm was shown to exhibit state-of-the-art performance over fully and semi-
supervised methods in scenarios where few labeled training examples are available [10]. How-
ever, as discussed in §2.2, due to its computational cost we compare the performance of XNV to the
Nyström approximations SSSLM and SSSL2M .

We used a Gaussian kernel for all datasets. We set the kernel width, σ and the `2 regularisation
strength, γ, for each method using 5-fold cross validation with 1000 labeled training examples. We
trained all methods using a squared error loss function, `(f(xi), yi) = (f(xi)−yi)2, withM = 200
random features, and n = 100, 150, 200, . . . , 1000 randomly selected training examples.

2Taken from the UCI repository http://archive.ics.uci.edu/ml/datasets.html
3Taken from http://www.causality.inf.ethz.ch/activelearning.php
4Taken from http://www.dcc.fc.up.pt/˜ltorgo/Regression/DataSets.html
5Taken from http://www.gaussianprocess.org/gpml/data/

6

http://archive.ics.uci.edu/ml/datasets.html
http://www.causality.inf.ethz.ch/activelearning.php
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
http://www.gaussianprocess.org/gpml/data/


Runtime performance. The SSSL algorithm of [10] is not computationally feasible on large
datasets, since it has time complexity O(N3). For illustrative purposes, we report run times6 in
seconds of the SSSL algorithm against SSSLM and XNV on three datasets of different sizes.

runtimes bank8 cal housing sylva
SSSL 72s 2300s -
SSSL2M 0.3s 0.6s 24s
XNV 0.9s 1.3s 26s

For the cal housing dataset, XNV exhibits an almost 1800× speed up over SSSL. For the largest
dataset, sylva, exact SSSL is computationally intractable. Importantly, the computational over-
head of XNV over SSSL2M is small.

Generalization performance. We report on the prediction performance averaged over 100 experi-
ments. For regression tasks we report on the mean squared error (MSE) on the testing set normalized
by the variance of the test output. For classification tasks we report the percentage of the test set that
was misclassified.

The table below shows the improvement in performance of XNV over SSSLM and SSSL2M (taking
whichever performs better out of M or 2M on each dataset), averaged over all 18 datasets. Observe
that XNV is considerably more accurate and more robust than SSSLM .

XNV vs SSSLM/2M n = 100 n = 200 n = 300 n = 400 n = 500
Avg reduction in error 11% 16% 15% 12% 9%
Avg reduction in std err 15% 30% 31% 33% 30%

The reduced variability is to be expected from Theorem 1.

100 200 300 400 500 600 700 800 900 1000
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(a) adult

100 200 300 400 500 600 700 800 900 1000

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(b) cal housing

100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(c) census

100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(d) elevators

100 200 300 400 500 600 700 800 900 1000
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(e) ibn Sina

100 200 300 400 500 600 700 800 900 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(f) sarcos 5

Figure 1: Comparison of mean prediction error and standard deviation on a selection of datasets.

Table 2 presents more detailed comparison of performance for individual datasets when n =
200, 400. The plots in Figure 1 shows a representative comparison of mean prediction errors for
several datasets when n = 100, . . . , 1000. Error bars represent one standard deviation. Observe that
XNV almost always improves prediction accuracy and reduces variance compared with SSSLM and
SSSL2M when the labeled training set contains between 100 and 500 labeled points. A complete
set of results is provided in §SI.1.

Discussion of SSSLM . Our experiments show that going from M to 2M does not improve gener-
alization performance in practice. This suggests that when there are few labeled points, obtaining a

6Computed in Matlab 7.14 on a Core i5 with 4GB memory.

7



more accurate estimate of the eigenfunctions of the kernel does not necessarily improve predictive
performance. Indeed, when more random features are added, stronger regularization is required to
reduce the influence of uninformative features, this also has the effect of downweighting informative
features. This suggests that the low rank approximation SSSLM to SSSL suffices.

Finally, §SI.2 compares the performance of SSSLM and XNV to fully supervised kernel ridge reg-
ression (KRR). We observe dramatic improvements, between 48% and 63%, consistent with the
results observed in [10] for the exact SSSL algorithm.

Random Fourier features. Nyström features significantly outperform Fourier features, in line
with observations in [3]. The table below shows the relative improvement of XNV over XKS:

XNV vs XKS n = 100 n = 200 n = 300 n = 400 n = 500
Avg reduction in error 30% 28% 26% 25% 24%
Avg reduction in std err 36% 44% 34% 37% 36%

Further results and discussion for XKS are included in the supplementary material.

Table 2: Performance (normalized MSE/classification error rate). Standard errors in parentheses.

set SSSLM SSSL2M XNV set SSSLM SSSL2M XNV
n = 200
1 0.054 (0.005) 0.055 (0.006) 0.053 (0.004) 10 0.309 (0.059) 0.358 (0.077) 0.226 (0.020)
2 0.198 (0.014) 0.184 (0.010) 0.175 (0.010) 11 0.146 (0.048) 0.072 (0.024) 0.036 (0.001)
3 0.218 (0.016) 0.231 (0.020) 0.213 (0.016) 12 0.761 (0.075) 0.787 (0.091) 0.792 (0.100)
4 0.558 (0.027) 0.567 (0.029) 0.561 (0.030) 13 0.109 (0.017) 0.109 (0.017) 0.068 (0.010)
5 0.058 (0.004) 0.060 (0.005) 0.055 (0.003) 14 0.019 (0.001) 0.019 (0.001) 0.019 (0.000)
6 0.567 (0.081) 0.634 (0.103) 0.459 (0.045) 15 0.076 (0.008) 0.078 (0.009) 0.071 (0.006)
7 0.020 (0.012) 0.022 (0.014) 0.019 (0.005) 16 0.172 (0.032) 0.192 (0.036) 0.119 (0.014)
8 0.395 (0.395) 0.463 (0.414) 0.263 (0.352) 17 0.041 (0.004) 0.043 (0.005) 0.040 (0.004)
9 0.437 (0.096) 0.367 (0.060) 0.222 (0.015) 18 0.036 (0.007) 0.039 (0.007) 0.028 (0.009)
n = 400
1 0.051 (0.003) 0.052 (0.003) 0.050 (0.002) 10 0.218 (0.022) 0.233 (0.027) 0.192 (0.010)
2 0.177 (0.008) 0.172 (0.006) 0.167 (0.005) 11 0.051 (0.009) 0.122 (0.031) 0.036 (0.001)
3 0.199 (0.011) 0.209 (0.013) 0.193 (0.010) 12 0.691 (0.040) 0.701 (0.051) 0.709 (0.058)
4 0.517 (0.018) 0.527 (0.019) 0.510 (0.016) 13 0.070 (0.009) 0.072 (0.008) 0.054 (0.004)
5 0.050 (0.003) 0.051 (0.003) 0.050 (0.002) 14 0.019 (0.001) 0.019 (0.001) 0.019 (0.000)
6 0.513 (0.055) 0.555 (0.063) 0.432 (0.036) 15 0.059 (0.004) 0.060 (0.005) 0.057 (0.003)
7 0.019 (0.010) 0.021 (0.012) 0.014 (0.003) 16 0.105 (0.014) 0.106 (0.014) 0.090 (0.007)
8 0.209 (0.171) 0.286 (0.248) 0.110 (0.107) 17 0.032 (0.002) 0.033 (0.003) 0.032 (0.002)
9 0.249 (0.024) 0.304 (0.037) 0.201 (0.013) 18 0.029 (0.006) 0.032 (0.005) 0.023 (0.006)

4 Conclusion

We have introduced the XNV algorithm for semi-supervised learning. By combining two randomly
generated views of Nyström features via an efficient implementation of CCA, XNV outperforms the
prior state-of-the-art, SSSL, by 10-15% (depending on the number of labeled points) on average
over 18 datasets. Furthermore, XNV is over 3 orders of magnitude faster than SSSL on medium
sized datasets (N = 10, 000) with further gains as N increases. An interesting research direction
is to investigate using the recently developed deep CCA algorithm, which extracts higher order
correlations between views [19], as a preprocessing step.

In this work we use a uniform sampling scheme for the Nyström method for computational reasons
since it has been shown to perform well empirically relative to more expensive schemes [20]. Since
CCA gives us a criterion by which to measure the important of random features, in the future we
aim to investigate active sampling schemes based on canonical correlations which may yield better
performance by selecting the most informative indices to sample.

Acknowledgements. We thank Haim Avron for help with implementing randomized CCA and
Patrick Pletscher for drawing our attention to the Nyström method.

8



References
[1] Williams C, Seeger M: Using the Nyström method to speed up kernel machines. In NIPS 2001.

[2] Rahimi A, Recht B: Weighted sums of random kitchen sinks: Replacing minimization with random-
ization in learning. In Adv in Neural Information Processing Systems (NIPS) 2008.

[3] Yang T, Li YF, Mahdavi M, Jin R, Zhou ZH: Nyström Method vs Random Fourier Features: A Theo-
retical and Empirical Comparison. In NIPS 2012.

[4] Gittens A, Mahoney MW: Revisiting the Nyström method for improved large-scale machine learning.
In ICML 2013.

[5] Bach F: Sharp analysis of low-rank kernel approximations. In COLT 2013.

[6] Rahimi A, Recht B: Random Features for Large-Scale Kernel Machines. In Adv in Neural Information
Processing Systems 2007.

[7] Kakade S, Foster DP: Multi-view Regression Via Canonical Correlation Analysis. In Computational
Learning Theory (COLT) 2007.

[8] Hotelling H: Relations between two sets of variates. Biometrika 1936, 28:312–377.

[9] Hardoon DR, Szedmak S, Shawe-Taylor J: Canonical Correlation Analysis: An Overview with Appli-
cation to Learning Methods. Neural Comp 2004, 16(12):2639–2664.

[10] Ji M, Yang T, Lin B, Jin R, Han J: A Simple Algorithm for Semi-supervised Learning with Improved
Generalization Error Bound. In ICML 2012.

[11] Belkin M, Niyogi P, Sindhwani V: Manifold regularization: A geometric framework for learning
from labeled and unlabeled examples. JMLR 2006, 7:2399–2434.

[12] Blum A, Mitchell T: Combining labeled and unlabeled data with co-training. In COLT 1998.

[13] Chaudhuri K, Kakade SM, Livescu K, Sridharan K: Multiview clustering via Canonical Correlation
Analysis. In ICML 2009.

[14] McWilliams B, Montana G: Multi-view predictive partitioning in high dimensions. Statistical Analysis
and Data Mining 2012, 5:304–321.

[15] Drineas P, Mahoney MW: On the Nyström Method for Approximating a Gram Matrix for Improved
Kernel-Based Learning. JMLR 2005, 6:2153–2175.

[16] Avron H, Boutsidis C, Toledo S, Zouzias A: Efficient Dimensionality Reduction for Canonical Corre-
lation Analysis. In ICML 2013.

[17] Hsu D, Kakade S, Zhang T: An Analysis of Random Design Linear Regression. In COLT 2012.

[18] Dhillon PS, Foster DP, Kakade SM, Ungar LH: A Risk Comparison of Ordinary Least Squares vs
Ridge Regression. Journal of Machine Learning Research 2013, 14:1505–1511.

[19] Andrew G, Arora R, Bilmes J, Livescu K: Deep Canonical Correlation Analysis. In ICML 2013.

[20] Kumar S, Mohri M, Talwalkar A: Sampling methods for the Nyström method. JMLR 2012, 13:981–
1006.

9



Supplementary Information

SI.1 Complete XNV results

Table 3: Performance (normalized MSE/classification error rate). Standard errors in parentheses.

set SSSLM SSSL2M XNV set SSSLM SSSL2M XNV
n = 100
1 0.058 (0.008) 0.060 (0.009) 0.059 (0.008) 10 0.439 (0.088) 0.545 (0.121) 0.286 (0.040)
2 0.220 (0.015) 0.200 (0.016) 0.184 (0.016) 11 0.064 (0.025) 0.054 (0.015) 0.037 (0.001)
3 0.249 (0.024) 0.263 (0.028) 0.255 (0.029) 12 0.825 (0.114) 0.864 (0.144) 0.895 (0.163)
4 0.651 (0.063) 0.666 (0.070) 0.691 (0.082) 13 0.160 (0.026) 0.167 (0.027) 0.104 (0.024)
5 0.068 (0.008) 0.076 (0.012) 0.061 (0.005) 14 0.020 (0.003) 0.020 (0.003) 0.019 (0.000)
6 0.628 (0.122) 0.718 (0.153) 0.504 (0.074) 15 0.104 (0.015) 0.104 (0.016) 0.095 (0.013)
7 0.029 (0.016) 0.031 (0.019) 0.036 (0.020) 16 0.231 (0.047) 0.261 (0.057) 0.163 (0.026)
8 0.691 (0.603) 0.751 (0.659) 0.568 (0.613) 17 0.058 (0.010) 0.061 (0.011) 0.056 (0.009)
9 0.488 (0.123) 0.367 (0.073) 0.276 (0.047) 18 0.042 (0.009) 0.043 (0.009) 0.036 (0.011)
n = 200
1 0.054 (0.005) 0.055 (0.006) 0.053 (0.004) 10 0.309 (0.059) 0.358 (0.077) 0.226 (0.020)
2 0.198 (0.014) 0.184 (0.010) 0.175 (0.010) 11 0.146 (0.048) 0.072 (0.024) 0.036 (0.001)
3 0.218 (0.016) 0.231 (0.020) 0.213 (0.016) 12 0.761 (0.075) 0.787 (0.091) 0.792 (0.100)
4 0.558 (0.027) 0.567 (0.029) 0.561 (0.030) 13 0.109 (0.017) 0.109 (0.017) 0.068 (0.010)
5 0.058 (0.004) 0.060 (0.005) 0.055 (0.003) 14 0.019 (0.001) 0.019 (0.001) 0.019 (0.000)
6 0.567 (0.081) 0.634 (0.103) 0.459 (0.045) 15 0.076 (0.008) 0.078 (0.009) 0.071 (0.006)
7 0.020 (0.012) 0.022 (0.014) 0.019 (0.005) 16 0.172 (0.032) 0.192 (0.036) 0.119 (0.014)
8 0.395 (0.395) 0.463 (0.414) 0.263 (0.352) 17 0.041 (0.004) 0.043 (0.005) 0.040 (0.004)
9 0.437 (0.096) 0.367 (0.060) 0.222 (0.015) 18 0.036 (0.007) 0.039 (0.007) 0.028 (0.009)
n = 300
1 0.052 (0.004) 0.053 (0.004) 0.051 (0.003) 10 0.250 (0.031) 0.275 (0.040) 0.205 (0.014)
2 0.185 (0.011) 0.177 (0.008) 0.171 (0.007) 11 0.074 (0.020) 0.105 (0.032) 0.036 (0.001)
3 0.206 (0.012) 0.217 (0.015) 0.200 (0.012) 12 0.719 (0.052) 0.736 (0.067) 0.744 (0.083)
4 0.531 (0.020) 0.540 (0.021) 0.526 (0.020) 13 0.083 (0.010) 0.084 (0.009) 0.058 (0.006)
5 0.053 (0.004) 0.055 (0.004) 0.052 (0.003) 14 0.019 (0.002) 0.019 (0.002) 0.019 (0.000)
6 0.535 (0.065) 0.585 (0.079) 0.444 (0.039) 15 0.066 (0.005) 0.067 (0.006) 0.062 (0.004)
7 0.020 (0.010) 0.022 (0.013) 0.016 (0.003) 16 0.126 (0.020) 0.133 (0.022) 0.100 (0.009)
8 0.270 (0.216) 0.370 (0.333) 0.152 (0.199) 17 0.035 (0.003) 0.037 (0.004) 0.035 (0.002)
9 0.304 (0.038) 0.352 (0.055) 0.207 (0.013) 18 0.032 (0.006) 0.035 (0.007) 0.025 (0.006)
n = 400
1 0.051 (0.003) 0.052 (0.003) 0.050 (0.002) 10 0.218 (0.022) 0.233 (0.027) 0.192 (0.010)
2 0.177 (0.008) 0.172 (0.006) 0.167 (0.005) 11 0.051 (0.009) 0.122 (0.031) 0.036 (0.001)
3 0.199 (0.011) 0.209 (0.013) 0.193 (0.010) 12 0.691 (0.040) 0.701 (0.051) 0.709 (0.058)
4 0.517 (0.018) 0.527 (0.019) 0.510 (0.016) 13 0.070 (0.009) 0.072 (0.008) 0.054 (0.004)
5 0.050 (0.003) 0.051 (0.003) 0.050 (0.002) 14 0.019 (0.001) 0.019 (0.001) 0.019 (0.000)
6 0.513 (0.055) 0.555 (0.063) 0.432 (0.036) 15 0.059 (0.004) 0.060 (0.005) 0.057 (0.003)
7 0.019 (0.010) 0.021 (0.012) 0.014 (0.003) 16 0.105 (0.014) 0.106 (0.014) 0.090 (0.007)
8 0.209 (0.171) 0.286 (0.248) 0.110 (0.107) 17 0.032 (0.002) 0.033 (0.003) 0.032 (0.002)
9 0.249 (0.024) 0.304 (0.037) 0.201 (0.013) 18 0.029 (0.006) 0.032 (0.005) 0.023 (0.006)
n = 500
1 0.051 (0.002) 0.051 (0.003) 0.050 (0.002) 10 0.202 (0.017) 0.214 (0.020) 0.185 (0.008)
2 0.172 (0.007) 0.169 (0.005) 0.165 (0.004) 11 0.043 (0.005) 0.092 (0.018) 0.036 (0.001)
3 0.194 (0.008) 0.202 (0.010) 0.188 (0.007) 12 0.675 (0.035) 0.680 (0.044) 0.686 (0.047)
4 0.508 (0.012) 0.517 (0.014) 0.499 (0.011) 13 0.061 (0.006) 0.063 (0.006) 0.051 (0.004)
5 0.048 (0.002) 0.049 (0.002) 0.048 (0.002) 14 0.019 (0.000) 0.019 (0.000) 0.019 (0.000)
6 0.503 (0.052) 0.541 (0.060) 0.427 (0.034) 15 0.055 (0.003) 0.055 (0.004) 0.054 (0.002)
7 0.017 (0.007) 0.018 (0.007) 0.014 (0.002) 16 0.089 (0.010) 0.088 (0.010) 0.083 (0.005)
8 0.167 (0.137) 0.241 (0.235) 0.098 (0.097) 17 0.030 (0.002) 0.030 (0.002) 0.031 (0.001)
9 0.222 (0.017) 0.259 (0.027) 0.196 (0.011) 18 0.027 (0.004) 0.029 (0.005) 0.022 (0.005)

10



100 200 300 400 500 600 700 800 900 1000
0.045

0.05

0.055

0.06

0.065

0.07

0.075

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(a) abalone

100 200 300 400 500 600 700 800 900 1000
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(b) adult

100 200 300 400 500 600 700 800 900 1000

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(c) ailerons

100 200 300 400 500 600 700 800 900 1000
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(d) bank8

100 200 300 400 500 600 700 800 900 1000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(e) bank32

100 200 300 400 500 600 700 800 900 1000

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(f) cal housing

100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(g) census

100 200 300 400 500 600 700 800 900 1000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(h) CPU

100 200 300 400 500 600 700 800 900 1000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(i) CT

100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(j) elevators

100 200 300 400 500 600 700 800 900 1000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(k) HIVa

100 200 300 400 500 600 700 800 900 1000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(l) house

100 200 300 400 500 600 700 800 900 1000
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(m) ibn Sina

100 200 300 400 500 600 700 800 900 1000
0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

0.024

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(n) orange

100 200 300 400 500 600 700 800 900 1000
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(o) sarcos 1

100 200 300 400 500 600 700 800 900 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(p) sarcos 5

100 200 300 400 500 600 700 800 900 1000
0.02

0.03

0.04

0.05

0.06

0.07

0.08

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(q) sarcos 7

100 200 300 400 500 600 700 800 900 1000
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
SSSL

M

SSSL
2M

XNV

(r) sylva

Figure 2: Comparison of mean prediction error and standard deviation on all 18 datasets.

11



SI.2 Comparison with Kernel Ridge Regression

We compare SSSLM and XNV to kernel ridge regression (KRR). The table below reports the per-
centage improvement in mean error of both of these methods against KRR, averaged over the 18
datasets according to the experimental procedure detailed in §3. Parameters σ (kernel width) and γ
(ridge penalty) for KRR were chosen by 5-fold cross validation. We observe that both SSSLM and
XNV far outperform KRR, by 50 − 60%. Importantly, this shows our approximation to SSSL far
outperforms the fully supervised baseline.

SSSLM and XNV vs KRR n = 100 n = 200 n = 300 n = 400 n = 500
Avg reduction in error for SSSLM 48% 52% 56% 58% 60%
Avg reduction in error for XNV 56% 62% 63% 63% 63%

SI.3 Random Fourier features

Random Fourier features are a method for approximating shift invariant kernels [6], i.e. where
κ(xi,xi′) = κ(xi − xi′). Such a kernel function can be represented in terms of its inverse Fourier
transform as κ(xi − xi′) =

∫
RD P (ω)ejω

>(xi−xi′ ). P (ω) is the Fourier transform of κ which
is guaranteed to be a proper probability distribution and so for real-valued features κ(xi,xi′) can
be equivalently interpreted as Eω

[
z(xi)

>z(xi′)
]

where z(xi) = 1√
2

cos(ω>xi + b) . Replacing
the expectation by the sample average leads to a scheme for constructing random features. In par-
ticular, a Gaussian kernel of width σ has a Fourier transform which is also Gaussian. Sampling
ωm ∼ N (0, 2σID) and bm ∼ Unif [−π, π], we can then construct features whose inner product
approximates this kernel as zi = 1√

M

[
cos(ω>1 xi + b1), . . . , cos(ω>Mxi + bM )

]
.

It was recently shown how both random Fourier features the Nyström approximation could be cast
in the same framework [3]. A major difference between the methods lies in the sampling scheme
employed. Random Fourier features are constructed in a data independent fashion which makes
them extremely cheap to compute. Nyström features are constructed in a data dependent way which
leads to improved performance but, in the case of semi-supervised learning, more expensive since
we need to evaluate the approximate kernel for all unlabeled points we wish to use.

Algorithm 2 details Correlated Kitchen Sinks (XKS). This algorithm generates random
views using the random Fourier features procedure in step 1. Steps 2 and 3 proceed exactly as in
Algorithm 1.

Algorithm 2 Correlated Kitchen Sinks (XKS).

Input: Labeled data: {xi, yi}ni=1 and unlabeled data: {xi}Ni=n+1

1: Generate features. Draw ω1, . . . ω2K i.i.d. from P and featurize the input:

z
(1)
i ← [φ(xi;ω1), . . . , φ(xi;ωM )] ,

z
(2)
i ← [φ(xi;ωM+1), . . . , φ(xi;ω2M )] .

2: Unlabeled data. Compute CCA bases B(1), B(2) and canonical correlations λ1, . . . , λM for the
two views and set z̄i ← B(1)z

(1)
i .

3: Labeled data. Solve

β̂ = min
β

1

n

n∑
i=1

`
(
β>z̄i, yi

)
+ ‖β‖2CCA + γ‖β‖22 . (11)

Output: β̂

It can be shown that, with sufficiently many features, views constructed via random Fourier features
contain good approximations to a large class of functions with high probability, see main theorem
of [2]. We do not provide details, since XKS is consistently outperformed by XNV in practice.

12



SI.4 Complete XKS results

For completeness we report on the performance of the XKS algorithm. We use the same experimental
setup as in Section 3. We compare the performance of XKS against a linear machine learned using
M and 2M random Fourier features respectively.

Table 4: Average performance of XKS against RFFM/2M on 18 datasets.

XKS vs RFFM/2M n = 100 n = 200 n = 300 n = 400 n = 500
Avg reduction in error 15% 30% 34% 31% 28%
Avg reduction in std err -1% 35% 47% 43% 44%

Table 4 shows the performance improvement of XKS over RFFM/2M , averaged across the 18
datasets. Table 6 compares the prediction error and standard deviation for each of the datasets
individually. Figure 3 shows the performance across the full range of values of n for all datasets.
The relative performance of XKS against RFFM and RFF2M follows the same trend seen in Section
3, suggesting that CCA-based regression consistently improves on regression across single and joint
views.

Table 5: Number of datasets (out of 18) on which XNV outperforms XKS.

n = 100 n = 200 n = 300 n = 400 n = 500
16 16 15 16 16

Finally, Table 5 compares the performance of correlated Nyström features against correlated kitchen
sinks. XNV typically outperforms XKS on 16 out of 18 datasets; with XKS only ever outperforming
XNV on bank8, house and orange. Since XNV almost always outperforms XKS, we only discuss
Nyström features in the main text.

13



Table 6: Performance of XKS (normalized MSE/classification error rate). Standard errors in paren-
theses.

set RFFM RFF2M XKS set RFFM RFF2M XKS
n = 100
1 0.059 (0.008) 0.060 (0.009) 0.059 (0.009) 10 0.829 (0.490) 0.913 (0.457) 0.478 (0.176)
2 0.349 (0.031) 0.325 (0.032) 0.274 (0.024) 11 0.106 (0.030) 0.060 (0.013) 0.056 (0.018)
3 0.956 (0.421) 0.963 (0.428) 0.626 (0.220) 12 1.085 (0.267) 1.240 (0.374) 0.849 (0.101)
4 0.778 (0.089) 0.793 (0.092) 0.700 (0.077) 13 0.183 (0.027) 0.183 (0.027) 0.154 (0.023)
5 0.096 (0.021) 0.108 (0.028) 0.116 (0.030) 14 0.067 (0.045) 0.047 (0.030) 0.019 (0.000)
6 7.091 (4.146) 11.320 (6.500) 6.801 (19.194) 15 0.112 (0.017) 0.125 (0.025) 0.107 (0.016)
7 0.053 (0.033) 0.048 (0.030) 0.048 (0.028) 16 0.373 (0.079) 0.376 (0.089) 0.205 (0.039)
8 1.813 (2.438) 2.062 (3.915) 1.155 (1.379) 17 0.090 (0.022) 0.095 (0.023) 0.074 (0.012)
9 0.556 (0.092) 0.386 (0.048) 0.528 (0.082) 18 0.059 (0.009) 0.056 (0.009) 0.054 (0.007)
n = 200
1 0.055 (0.005) 0.056 (0.006) 0.056 (0.005) 10 1.026 (0.837) 1.094 (0.766) 0.402 (0.177)
2 0.403 (0.028) 0.338 (0.026) 0.219 (0.012) 11 0.346 (0.044) 0.087 (0.024) 0.044 (0.006)
3 1.316 (0.619) 1.359 (0.675) 0.713 (0.262) 12 0.935 (0.142) 1.059 (0.203) 0.776 (0.071)
4 0.674 (0.041) 0.724 (0.051) 0.561 (0.031) 13 0.159 (0.017) 0.157 (0.017) 0.113 (0.015)
5 0.070 (0.012) 0.073 (0.013) 0.073 (0.013) 14 0.109 (0.053) 0.070 (0.040) 0.019 (0.000)
6 5.731 (3.367) 9.037 (5.248) 2.454 (2.998) 15 0.082 (0.010) 0.090 (0.014) 0.078 (0.008)
7 0.051 (0.041) 0.049 (0.036) 0.027 (0.013) 16 0.239 (0.052) 0.266 (0.067) 0.136 (0.017)
8 0.922 (1.119) 0.938 (0.783) 0.643 (0.974) 17 0.059 (0.010) 0.064 (0.011) 0.051 (0.006)
9 0.999 (0.167) 0.464 (0.057) 0.397 (0.043) 18 0.053 (0.006) 0.053 (0.006) 0.044 (0.006)
n = 300
1 0.053 (0.003) 0.054 (0.004) 0.054 (0.004) 10 1.197 (0.969) 1.354 (1.238) 0.375 (0.201)
2 0.315 (0.021) 0.374 (0.021) 0.200 (0.009) 11 0.146 (0.023) 0.139 (0.034) 0.040 (0.003)
3 1.513 (0.804) 1.646 (0.878) 0.706 (0.248) 12 0.869 (0.103) 0.964 (0.151) 0.739 (0.053)
4 0.636 (0.033) 0.705 (0.040) 0.523 (0.018) 13 0.145 (0.014) 0.145 (0.013) 0.095 (0.009)
5 0.060 (0.006) 0.062 (0.007) 0.060 (0.006) 14 0.048 (0.019) 0.105 (0.046) 0.019 (0.000)
6 4.769 (2.468) 7.871 (4.393) 1.660 (1.549) 15 0.069 (0.006) 0.073 (0.008) 0.067 (0.005)
7 0.050 (0.053) 0.043 (0.026) 0.021 (0.007) 16 0.165 (0.027) 0.181 (0.030) 0.113 (0.010)
8 0.699 (0.437) 0.789 (0.511) 0.416 (0.241) 17 0.046 (0.006) 0.049 (0.007) 0.043 (0.003)
9 0.673 (0.094) 0.611 (0.078) 0.346 (0.031) 18 0.046 (0.007) 0.045 (0.007) 0.039 (0.006)
n = 400
1 0.052 (0.003) 0.053 (0.003) 0.052 (0.003) 10 1.311 (0.927) 1.466 (1.328) 0.364 (0.172)
2 0.264 (0.013) 0.401 (0.020) 0.190 (0.008) 11 0.099 (0.013) 0.313 (0.038) 0.038 (0.002)
3 1.596 (0.760) 1.752 (0.771) 0.695 (0.273) 12 0.815 (0.087) 0.894 (0.118) 0.714 (0.041)
4 0.605 (0.025) 0.675 (0.032) 0.504 (0.014) 13 0.133 (0.011) 0.139 (0.011) 0.087 (0.008)
5 0.056 (0.005) 0.058 (0.005) 0.056 (0.005) 14 0.029 (0.007) 0.111 (0.038) 0.019 (0.000)
6 4.214 (2.123) 6.632 (2.862) 1.394 (1.533) 15 0.063 (0.004) 0.065 (0.006) 0.063 (0.004)
7 0.042 (0.031) 0.041 (0.027) 0.018 (0.004) 16 0.129 (0.017) 0.139 (0.022) 0.102 (0.008)
8 0.605 (0.382) 0.695 (0.553) 0.350 (0.181) 17 0.040 (0.004) 0.041 (0.004) 0.039 (0.003)
9 0.480 (0.049) 0.812 (0.106) 0.318 (0.027) 18 0.040 (0.006) 0.039 (0.006) 0.035 (0.005)
n = 500
1 0.052 (0.003) 0.052 (0.003) 0.052 (0.003) 10 1.514 (1.130) 1.650 (1.195) 0.355 (0.142)
2 0.237 (0.010) 0.362 (0.018) 0.183 (0.006) 11 0.080 (0.009) 0.188 (0.027) 0.037 (0.002)
3 1.747 (0.815) 1.923 (0.976) 0.703 (0.323) 12 0.782 (0.069) 0.847 (0.097) 0.698 (0.031)
4 0.583 (0.023) 0.653 (0.028) 0.494 (0.010) 13 0.124 (0.011) 0.133 (0.010) 0.082 (0.007)
5 0.053 (0.004) 0.055 (0.005) 0.053 (0.003) 14 0.023 (0.003) 0.079 (0.022) 0.019 (0.000)
6 3.515 (1.416) 5.977 (2.419) 1.231 (1.848) 15 0.058 (0.004) 0.059 (0.005) 0.060 (0.003)
7 0.037 (0.025) 0.041 (0.035) 0.016 (0.004) 16 0.108 (0.013) 0.114 (0.015) 0.095 (0.007)
8 0.533 (0.408) 0.536 (0.505) 0.307 (0.132) 17 0.036 (0.003) 0.036 (0.004) 0.037 (0.002)
9 0.403 (0.037) 0.726 (0.077) 0.303 (0.023) 18 0.036 (0.006) 0.035 (0.006) 0.032 (0.005)

14



100 200 300 400 500 600 700 800 900 1000
0.045

0.05

0.055

0.06

0.065

0.07

0.075

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(a) abalone

100 200 300 400 500 600 700 800 900 1000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(b) adult

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(c) ailerons

100 200 300 400 500 600 700 800 900 1000
0.04

0.06

0.08

0.1

0.12

0.14

0.16

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(d) bank8

100 200 300 400 500 600 700 800 900 1000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(e) bank32

100 200 300 400 500 600 700 800 900 1000
−15

−10

−5

0

5

10

15

20

25

30

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(f) cal housing

100 200 300 400 500 600 700 800 900 1000
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(g) census

100 200 300 400 500 600 700 800 900 1000
−2

−1

0

1

2

3

4

5

6

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(h) CPU

100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(i) CT

100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(j) elevators

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(k) HIVa

100 200 300 400 500 600 700 800 900 1000

0.8

1

1.2

1.4

1.6

1.8

2

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(l) house

100 200 300 400 500 600 700 800 900 1000
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(m) ibn Sina

100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(n) orange

100 200 300 400 500 600 700 800 900 1000
0.04

0.06

0.08

0.1

0.12

0.14

0.16

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(o) sarcos 1

100 200 300 400 500 600 700 800 900 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(p) sarcos 5

100 200 300 400 500 600 700 800 900 1000
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

p
re

d
ic

ti
o

n
 e

rr
o

r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(q) sarcos 7

100 200 300 400 500 600 700 800 900 1000
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

p
re

d
ic

ti
o
n
 e

rr
o
r

number of labeled training points

 

 
RFF

M

RFF
2M

XKS

(r) sylva

Figure 3: Comparison of mean prediction error and standard deviation on all 18 datasets.

15


	Introduction
	Method
	Multi-view regression
	Constructing random views
	The proposed algorithm: Correlated Nyström Views (XNV)
	A fast approximation to SSSL

	Experiments
	Conclusion
	Complete XNV results
	Comparison with Kernel Ridge Regression
	Random Fourier features
	Complete XKS results

