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1 Appendix A

We consider the general case of an unknown mean and covariance for each class. Let T denote
the precision (or inverse covariance) matrix. The probabilistic model for the mean and covariance
matrix of each class is given as:

yi|µ,T ∼ N (·|µ,T)

µ|T ∼ N (·|µ0, coT)

T ∼ W(·|δ0,V0) (1)

where N (·|µ,T) denote the observation density which is assumed to be multivariate normal with
mean µ and precision matrix T. The parameters θ = (µ,T) ∈ Ω1 × Ω2 follow a normal-Wishart
joint distribution. The domains here are Ω1 = Rd and Ω2 = Sd++ is the positive definite cone.
This leads to closed-form expressions for Li,h(yi)’s due to conjugacy Tzikas et al. (2008). For
concreteness, let us write the distributions of the model (1):

f(yi|θ) = p(yi|µ,T) =
det(T)1/2

(2π)d/2
exp

(
−1

2
(yi − µ)TT(yi − µ)

)
p(µ|T) = p(θ1|Θ2) =

det(c0T)1/2

(2π)d/2
exp

(
−c0

2
(µ− µ0)TT(µ− µ0)

)
p(T) = p(Θ2) =

det(V0)−δ0

2dδ0Γd(δ0)
det(T)δ0−

d+1
2 exp(−1

2
tr(V−1

0 T))

where Γd(·) is the multivariate Gamma function.

To calculate the class posteriors, the conditional likelihoods of yi given assignment to class h and
the previous class assignments need to be calculated first. We derive closed-form expressions for
these quantities in this section under the probabilistic model (1).

The conditional likelihood of yi given assignment to class h and the history (y(i−1), γ(i−1)) is given
by:

Li,h(yi) =

∫
f(yi|θh)π(θh|y(i−1), γ(i−1))dθh (2)

We thus need to obtain an expression for the posterior distribution π(θh|y(i−1), γ(i−1)). Due to the
conjugacy of the distributions involved in (1), the posterior distribution π(θh|y(i−1), γ(i−1)) always
has the form:

π(θh|y(i−1), γ(i−1)) = N (µh|µ(i−1)
h , c

(i−1)
h Th)W(Th|δ(i−1)

h ,V
(i−1)
h ) (3)

where µ(i−1)
h , c

(i−1)
h , δ

(i−1)
h ,V

(i−1)
h are hyperparameters that can be recursively computed as new

samples come in. This would greatly simplify the computational complexity of the second step of
the SUGS algorithm. Next, we derive the form of this recursive computation of the hyperparameters.
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For simplicity of the derivation, let us consider the initial case y = y1. Then, from Bayes’ rule:
p(θ|y) = p(µ,T|y) = p(µ|T,y)p(T|y)

1.1 Calculation of p(µ|T,y)

Note the factorization:
p(µ|T,y) ∝ p(y|µ,T)p(µ|T)

According to (1), we can write:

y = µ+ Σ1/2ε

µ = µ0 + Σ
1/2
0 ε′

where ε ∼ N(0, I), ε′ ∼ N(0, I), ε is independent of ε′ and Σ = T−1,Σ0 = (c0T)−1. From this,
it follows that the conditional density p(µ|T,y) is also multivariate normal with mean E[µ|T,y]
and covariance Cov(µ|T,y). Note that:

E[y|T] = µ0

Cov(y|T) = E[Cov(y|µ,T)|T] + Cov(E[y|µ,T]|T)

= Σ + Σ0 = (1 + c−1
0 )T−1

Cov(µ,y|T) = Σ0

Using these facts, we obtain:
E[µ|T,y] = E[µ|T] + Cov(µ,y|T)Cov(y|T)−1(y − E[y|T])

= µ0 + c−1
0 T−1((1 + c−1

0 )T−1)−1(y − µ0)

= µ0 + c−1
0 (1 + c−1

0 )−1(y − µ0)

=
1

1 + c0
y +

c0
1 + c0

µ0

Cov(µ|T,y) = Cov(µ|T)− Cov(µ,y|T)Cov(y|T)−1Cov(y, µ|T)

= Σ0 −Σ0(Σ + Σ0)−1ΣT
0

= c−1
0

(
1− c−1

0

1 + c−1
0

)
T−1

=
c−1
0

1 + c−1
0

T−1

Thus, we have:

p(µ|T,y) = N

(
µ

∣∣∣∣∣ 1

1 + c0
y +

c0
1 + c0

µ0, (1 + c0)T

)
where the conditional precision matrix becomes (1 + c0)T. As a result, once the γith component is
chosen in the SUGS selection step, the parameter updates for the γith class become:

µ(i)
γi =

1

1 + c
(i−1)
γi

yi +
c
(i−1)
γi

1 + c
(i−1)
γi

µ(i−1)
γi

c(i)γi = c(i−1)
γi + 1 (4)

1.2 Calculation of p(T|y)

Next, we focus on calculating p(T|y) =
∫
Rd p(T, µ|y)dµ, where

p(T, µ|y) ∝ p(y|T, µ)p(µ|T)p(T)

∝ det(T)(δ0+1/2)− d+1
2 det(T)1/2 exp

(
−1

2
tr(V−1

0 T)

)
× exp

(
−1

2

[
c0(µ− µ0)TT(µ− µ0) + (y − µ)TT(y − µ)

])
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Rewriting the term inside the brackets by completing the square, we obtain:

c0(µ− µ0)TT(µ− µ0) + (y − µ)TT(y − µ)

= c0‖T1/2µ−T1/2µ0‖22 + ‖T1/2y −T1/2µ‖22

= (1 + c0)

{
‖T1/2µ‖22 − 2

〈
T1/2µ,

c0T
1/2µ0 + T1/2y

1 + c0

〉
+
c0‖T1/2µ0‖22 + ‖T1/2y‖22

1 + c0

}

= (1 + c0)

{
‖T1/2µ− c0T

1/2µ0 + T1/2y

1 + c0
‖22 − ‖

c0T
1/2µ0 + T1/2y

1 + c0
‖22 +

c0‖T1/2µ0‖22 + ‖T1/2y‖22
1 + c0

}
Integrating out µ, we obtain:∫

exp

(
−1

2

[
c0(µ− µ0)TT(µ− µ0) + (y − µ)TT(y − µ)

])
dµ

= exp

(
−1 + c0

2

(
c0‖T1/2µ0‖22 + ‖T1/2y‖22

1 + c0
− ‖c0T

1/2µ0 + T1/2y

1 + c0
‖22

))

×
∫

exp(−1

2
‖T1/2µ− c0T

1/2µ0 + T1/2y

1 + c0
‖22)dµ

∝ det(T)−1/2 exp

(
−1

2

c0
1 + c0

(y − µ0)TT(y − µ0)

)
Using this result, we obtain:

p(T|y) ∝ det(T)(δ0+1/2)− d+1
2 exp

(
−1

2
tr
(

T

{
V−1

0 +
c0

1 + c0
(y − µ0)(y − µ0)T

}))
As a result, the conditional density is recognized to be a Wishart distribution

W

(
T

∣∣∣∣∣δ0 +
1

2
,

{
V−1

0 +
c0

1 + c0
(y − µ0)(y − µ0)T

}−1
)
.

Thus, the parameter updates for the γith class become:

δ(i)
γi = δ(i−1)

γi +
1

2

V(i)
γi =

{
(V(i−1)

γi )−1 +
c
(i−1)
γi

1 + c
(i−1)
γi

(yi − µ(i−1)
γi )(yi − µ(i−1)

γi )T

}−1

(5)

For numerical stability and ease of interpretation, we define

Σ
(i)
h :=

(V
(i)
h )−1

2δ
(i)
h

.

This is the inverse of the mean of the Wishart distributionW(·|δ(i)
h ,V

(i)
h ), and can be interpreted as

the covariance matrix of class h at iteration i. From (5), we have:

Σ
(i)
h =

(V
(i)
h )−1

2δ
(i)
h

=
2δ

(i−1)
h

2δ
(i)
h

(V
(i−1)
h )−1

2δ
(i−1)
h

+
1

2δ
(i)
h

c
(i−1)
h

1 + c
(i−1)
h

(yi − µ(i−1)
h )(yi − µ(i−1)

h )T

=
2δ

(i−1)
h

1 + 2δ
(i−1)
h

Σ
(i−1)
h +

1

1 + 2δ
(i−1)
h

c
(i−1)
h

1 + c
(i−1)
h

(yi − µ(i−1)
h )(yi − µ(i−1)

h )T
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Thus, the recursive updates (5) can be equivalently restated as:

δ(i)
γi = δ(i−1)

γi +
1

2

Σ
(i)
h =

2δ
(i−1)
h

1 + 2δ
(i−1)
h

Σ
(i−1)
h +

1

1 + 2δ
(i−1)
h

c
(i−1)
h

1 + c
(i−1)
h

(yi − µ(i−1)
h )(yi − µ(i−1)

h )T (6)

If the starting matrix Σ
(0)
h is positive definite, then all the matrices {Σ(i)

h } will remain positive
definite.

2 Appendix B

Now, let us return to the calculation of (2).

Li,h(yi) =

∫
Sd++

∫
Rd
N (yi|µ,T)N (µ|µ(i−1)

h , c
(i−1)
h T)W(T|δ(i−1)

h ,V
(i−1)
h )dµdT

=

∫
Sd++

W(T|δ(i−1)
h ,V

(i−1)
h )

{∫
Rd
N (yi|µ,T)N (µ|µ(i−1)

h , c
(i−1)
h T)dµ

}
dT

Evaluating the inner integral within the brackets:

∫
Rd
N (yi|µ,T)N (µ|µ(i−1)

h , c
(i−1)
h T)dµ

∝ det(T)1/2 det(c
(i−1)
h T)1/2

×
∫
Rd

exp

(
−1

2

[
c
(i−1)
h (µ− µ(i−1)

h )TT(µ− µ(i−1)
h ) + (yi − µ)TT(yi − µ)

])
dµ

= det(T)1/2 det(c
(i−1)
h T)1/2

× exp

(
−1

2

c
(i−1)
h

1 + c
(i−1)
h

(yi − µ(i−1)
h )TT(yi − µ(i−1)

h )

)

×
∫

exp

(
−

1 + c
(i−1)
h

2
(µ− b)TT(µ− b)

)
dµ

∝
det(T)1/2 det(c

(i−1)
h T)1/2

det((1 + c
(i−1)
h )T)1/2

exp

(
−1

2
tr

(
T

{
c
(i−1)
h

1 + c
(i−1)
h

(yi − µ(i−1)
h )(yi − µ(i−1)

h )T

}))

=

(
c
(i−1)
h

1 + c
(i−1)
h

)d/2
det(T)1/2 exp

(
−1

2
tr

(
T

{
c
(i−1)
h

1 + c
(i−1)
h

(yi − µ(i−1)
h )(yi − µ(i−1)

h )T

}))
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Using this closed-form expression for the inner integral, we further obtain:

Li,h(yi) ∝

(
c
(i−1)
h

1 + c
(i−1)
h

)d/2 ∫
Sd++

det(V
(i−1)
h )−δ

(i−1)
h

2dδ
(i−1)
h Γd(δ

(i−1)
h )

det(T)(δ
(i−1)
h +1/2)− d+1

2

× exp

(
−1

2
tr

(
T

{
(V

(i−1)
h )−1 +

c
(i−1)
h

1 + c
(i−1)
h

(yi − µ(i−1)
h )(yi − µ(i−1)

h )T

}))
dT

(7)

∝

(
c
(i−1)
h

1 + c
(i−1)
h

)d/2
Γd(δ

(i−1)
h + 1

2 )

Γd(δ
(i−1)
h )

×
det(V

(i−1)
h )−δ

(i−1)
h

det

({
(V

(i−1)
h )−1 +

c
(i−1)
h

1+c
(i−1)
h

(yi − µ(i−1)
h )(yi − µ(i−1)

h )T
}−1

)−(δ
(i−1)
h + 1

2 )

=
(
r

(i−1)
h

)d/2 Γd(δ
(i−1)
h + 1

2 )

Γd(δ
(i−1)
h )

det((V
(i−1)
h )−1)−1/2

det
(
Id + r

(i−1)
h (yi − µ(i−1)

h )(yi − µ(i−1)
h )TV

(i−1)
h

)δ(i−1)
h + 1

2

=
(
r

(i−1)
h

)d/2 Γd(δ
(i−1)
h + 1

2 )

Γd(δ
(i−1)
h )

det(V
(i−1)
h )1/2(

1 + r
(i−1)
h (yi − µ(i−1)

h )TV
(i−1)
h (yi − µ(i−1)

h )
)δ(i−1)

h + 1
2

(8)

=

(
r

(i−1)
h

2δ
(i−1)
h

)d/2
Γd(δ

(i−1)
h + 1

2 )

Γd(δ
(i−1)
h )

det((Σ
(i−1)
h )−1)1/2(

1 +
r
(i−1)
h

2δ
(i−1)
h

(yi − µ(i−1)
h )T (Σ

(i−1)
h )−1(yi − µ(i−1)

h )

)δ(i−1)
h + 1

2

(9)

where we used the determinant identity det(I + abTM) = 1 + bTMa in the last step. We also

defined r(i)
h :=

c
(i)
h

1+c
(i)
h

and used V
(i)
h =

(Σ
(i)
h )−1

2δ
(i)
h

.

3 Appendix C

Theorem. The following asymptotic behavior holds:

lim
n→∞

log
∏n−1
j=1 (1 + α

j )

α log n
= 1.

Proof. It is sufficient to establish the limit for limN→∞
∑N
k=m log(1 + α/k)/ logN for fixed m.

Choose m such that |α| < m− 1 and use log(1− x) =
∑∞
k=1 x

k/k for |x| < 1 to get
N∑
k=m

log
(

1 +
α

k

)
=

∞∑
l=1

(−1)l+1α
l

l

N∑
k=m

1

kl
. (10)

Separate (10) into two terms:
∞∑
l=1

(−1)l+1α
l

l

N∑
k=m

1

kl
= α

N∑
k=m

1

k
+

∞∑
l=2

(−1)l+1α
l

l

N∑
k=m

1

kl
. (11)

The first term is expressed in terms of the Euler-Mascheroni constant γe as
N∑
k=m

1

k
= logN − γe −

m−1∑
k=1

1

k
+ o(1).
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Thus, dividing by logN and taking the limit N →∞ we have a limiting value of unity. The second
term of (11) is bounded. To see this, use, for l > 1,

∞∑
k=m

1

kl
≤
∫ ∞
m−1

dx

xl
=

1

l − 1
(m− 1)−(l−1).

Then the second term of (11) is bounded by
∞∑
l=2

αl

l

∞∑
k=m

1

kl
≤
∞∑
l=2

αl

l(l − 1)
(m− 1)−(l−1)

= (m− 1)

∞∑
l=2

1

l(l − 1)

(
α

m− 1

)l
<∞.

The result follows since the second term, being bounded, vanished when dividing by logN and
taking the limit N →∞.

4 Appendix D

Lemma. Let rn and r̄n be random sequences with the update laws

P (rn+1 = rn + 1) = τn

P (rn+1 = rn) = 1− τn
and

P (r̄n+1 = r̄n + 1) = σn

P (r̄n+1 = r̄n) = 1− σn,
and assume σn ≥ τn for all n ≥ 1 and that r̄0 = r0 = 0. Then E[r̄n] ≥ E[rn] for all n ≥ 1.

Proof. We first use induction to show that P (rn > t) ≤ P (r̄n > t) holds for all n.

The base case is trivial because r0 = r̄0. We next prove that given

P (rn > t) ≤ P (r̄n > t) (12)

for a particular n and all t ∈ N, the same inequality holds for n+ 1. We have

P (rn+1 > t) = (1− τn)P (rn > t) + τnP (rn > t− 1)

≤ (1− τn)P (r̄n > t) + τnP (r̄n > t− 1)

≤ (1− σn)P (r̄n > t) + σnP (r̄n > t− 1)

= P (r̄n+1 > t), (13)

where we used the inductive hypothesis (12) and the inequality P (r̄n > t) ≤ P (r̄n > t− 1). Thus,
by induction, the inequality (12) holds for all n. Using (12), we further obtain:

E[rn] =

∫ ∞
0

P (rn > t)dt ≤
∫ ∞

0

P (r̄n > t)dt = E[r̄n]

The proof is complete.

5 Appendix E

Theorem. Let τn be a sequence of real-valued random variables 0 ≤ τn ≤ 1 satisfying τn ≤ rn+1
an

for n ≥ N , where an = ln+1(yn+1)−1n(λ + log n), and where the nonnegative, integer-valued
random variables rn evolve according to:

P (rn+1 = k|rn) =

{
τn, k = rn + 1
1− τn, k = rn

. (14)

Assume the following for n ≥ N :
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1. ln(yn) ≤ ζ (a.s.)

2. D(pT ‖ L̃n,K+) ≤ δ (a.s.)

where D(p ‖ q) is the Kullback-Leibler divergence between distributions p(·) and q(·). Then, as
n→∞,

rn = OP (log1+ζ
√
δ/2 n) (15)

αn = OP (logζ
√
δ/2 n) (16)

Proof. We can study the generalized Polya urn model in the slightly modified form:

P (r̄n+1 = k|r̄n) =

{
r̄n+1
an

, if k = r̄n + 1

1− r̄n+1
an

, if k = r̄n
(17)

Taking the conditional expectation of r̄n+1 with respect to the filtration Fn+1
def
=

σ(r̄1, . . . , r̄n, γ1, . . . , γn+1,y1, . . . ,yn+1), we get E[r̄n+1|Fn+1] = (r̄n + 1)
(

1 + 1
an

)
− 1. Set

xn := r̄n + 1. Rewriting this and using the definition of an, we obtain:

E
[
xn+1

∣∣∣Fn+1

]
≤ xn

(
1 +

ln+1(yn+1)

n log n

)
(18)

Next, we seek an upper bound on the conditional expectation E[lk(yk)|Fk−1]. This quantity can be
bounded using convex duality Seeger (2003):

E[lk(yk)|Fk−1] ≤ 1 +
1

s
D(pT ‖ L̃k,K+) +

1

s
logEL̃k,K+

[es(lk(yk)−1)]

For k ≥ N , lk(yk) ≤ ζ and EL̃k,K+
[lk(yk)] = 1. By Hoeffding’s inequality,

EL̃k,K+
[es(lk(yk)−1)] ≤ es

2ζ2/8. Using this bound, we obtain for k ≥ N , E[lk(yk)|Fk−1] ≤
1 + δ/s+ sζ2/8. Minimizing this as a function of s > 0, we obtain:

E[lk(yk)|Fk−1] ≤ 1 + ζ

√
δ

2
(19)

Next, we upper bound E[xn+1|FN ] recursively. Taking the conditional expectation of both sides of
(18), we obtain:

E
[
xn+1

∣∣∣Fn] ≤ E
[
xn

(
1 +

ln+1(yn+1)

n log n

) ∣∣∣Fn] (20)

We note that the function ln+1(·) is Fn-measurable. This follows since by definition, ln+1(·) =
L0(·)∑kn

h=1
mn(h)
n Ln+1,h(·)

, andmn(h) =
∑n
l=1 I(γl = h) and Ln+1,h(·) are both Fn-measurable (due to

the parameter updates and (9)). Also note that xn = r̄n+1 is randomly determined by a biased coin
flip given Fn, increasing by 1 with probability xn−1

an−1
and staying the same with probability 1− xn−1

an−1
.

Since an−1 is Fn-measurable, it follows that xn and ln+1(yn+1) are conditionally independent
given the history Fn. Using this conditional independence, we obtain from (20):

E
[
xn+1

∣∣∣Fn] ≤ E[xn|Fn]

(
1 +

E[ln+1(yn+1)|Fn]

n log n

)
≤ E[xn|Fn]

(
1 +

1 + ζ
√
δ/2

n log n

)
(21)

where we used the bound (19) in the last inequality. Repeatedly conditioning and using (18) and

(21): E[xn+1|FN ] ≤
∏n
k=N

(
1 +

1+ζ
√

δ
2

k log k

)
E[xN |FN ] ≤ C0N log1+ζ

√
δ/2 n, where we used the

Lemma in Appendix F and C0 = C(1 + ζ
√
δ/2, N), xN ≤ N in the last inequality. Taking the

unconditional expectation and using E[rn + 1] ≤ E[r̄n + 1] (see Appendix D) yields the bound

E [rn + 1] ≤ C0N log1+ζ
√
δ/2 n. Markov’s inequality then yields P

(
rn+1

C0N log1+ζ
√
δ/2 n

> K

)
≤

1
K which implies (15) by taking K → ∞. Since αn = rn+1

λ+logn , the bound in (16) follows from a
similar argument. The proof is complete.
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6 Appendix F

Lemma. The following upper bound holds with constant C(φ,N) = e
φ

N logN / logφN :
n∏

k=N

(
1 +

φ

k log k

)
≤ C(φ,N) logφ n

Proof. Using the elementary inequality log(1 + x) ≤ x for x > −1, we obtain:

log

(
n∏

k=N

(
1 +

φ

k log k

))
=

n∑
k=N

log

(
1 +

φ

k log k

)

≤
n∑

k=N

φ

k log k
≤ φ

(∫ n

N

dx

x log x
+

1

N logN

)

= φ

(∫ logn

logN

dt

t
+

1

N logN

)

= log

(
logφ n

logφN

)
+

φ

N logN

Taking the exponential of both sides yields the desired inequality.
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