
A Proofs of Theoretical Guarantees

A.1 Number of rounds for C4 and ClusterWild!

Lemma 1. C4 and ClusterWild! terminate after O
�
1

✏

log n · log �

�
rounds w.h.p.

Proof. We split our proof in two parts.

For ClusterWild!, we wish to upper bound the probability
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Observe that the above event happens either if no friends of v become activated by round i + t, or
if v itself does not become activated. Hence, q

t

can be upper bounded by the probability that no
friends of v become activated by round i + t.

In the following, let d
i+j

denote the degree of vertex v at roudn i + j; for simplicity we drop the
round indices on n and P . The probability, per round, that no friends of v become activated is equal
to4
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where the last inequality is due to the fact that

(1 � x)

1/x < e�1 for all x  1.

Therefore, the probability of vertex v failing to be clustered after t rounds is at most q
t

 e�t·✏/2.
Hence, we have that for any round i, the probability that any vertex has degree more than �

i

/2 after
t rounds is at most n · e�t·✏/2, due to a simple union bound. If we want that that probability to be
smaller than �, then

n · e�t·✏/2 < � , lnn � t · ✏/2 < ln(�) , t >
2

✏
· ln(n/�)

Hence, with probability 1 � �, after 2

✏

· ln(n/�) rounds either all nodes of degree greater than �/2
are clustered, or the maximum degree is decreased by half. Applying this argument log � times
yields the result, as the maximum degree of the remaining graph becomes 1.

For C4 the proof follows simply from the analogous proof of [12]. Consider any round of the
algorithm, and break it into k steps (each step, for each vertex in A that becomes a cluster center).
Let v be a vertex that has degree at most �/2, and is not active. During step 1 of round 1, the
probability that v is not adjacent to ⇡(1) is at most 1 � ✏

2n

. If v is not selected at step 1, then during
step 2 of round 1, the probability that v is not adjacent to the next cluster center is again at most
1� ✏

2n

. After processing all vertices in A, during the first round, either v was clustered, or its degree
became strictly less than �/2, or the probability that neither of the previous happened is at most
(1 � ✏

2n

)

✏�
n  1 � ✏/2. It is easy to see that after O(

1

✏

log n) rounds vertex v will have either been
clustered or its degree would be smaller than �/2. Union bounding for n vertices and all rounds,
we get that the max degree of the remaining graph gets halved after O(

1

✏

log n) rounds, hence the
total number of rounds needed is at most O(

1

✏

log n log �), with high probability.

4This follows from a simple calculation on the pdf of the hypergeometric distribution.
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A.2 Running times

In this section, we prove the running time theorem for our Algorithms. We first present the following
recent graph-theoretic result.
Theorem A.1 (Krivelevich [13]). Let G be an undirected graph on n vertices, with maximum degree

�. Let us sample each vertex independently with probability p =

1�✏

�

and define as G0
the induced

subgraph on the activated vertices. Then, the largest connected component of the resulting graph

G0
has size at most

4

✏

2 log n with high probability.

To apply Theorem A.1, we first need to convert it into a result for sampling without replacement
(instead of i.i.d. sampling).
Lemma A.2. Let us define two sequences of binary random variables {X

i

}n
i=1

, {Y
i

}n
i=1

. The first

sequence comprises n i.i.d. Bernoulli random variables with probability p, and the second sequence

a random subset of B random variables is set to 1 without replacement, where B is integer that

satisfies

(n + 1) · p � 1  B < (n + 1) · p.

Let us now define ⇢
X

= P (f(X
1

, . . . , X
n

) > C) for some f and some number C, and similarly

define ⇢
Y

and ⇢
Z

. Let us further assume that we have an upper bound on the above probability
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Proof. By expanding ⇢
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using law of total probability we have
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set to 1, and (ii) comes from the fact that since we sample without replacement in Y ,we have thatP
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i

Y
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If we just keep the b = B term in the expansion of ⇢
X

we get
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since all terms in the sum are non-negative numbers. Moreover, since X
i

s are Bernoulli random
variables, then

P
n

i=1

X
i

is Binomially distributed with parameters n and p. We know that the
maximum of the Binomial pmf with parameters n and p occurs at P (

P
i

X
i

= B) where B is the
integer that satisfies (n + 1) · p � 1  B < (n + 1) · p. Furthermore we know that the maximum
value of the Binomial pmf cannot be less than 1

n

, that is

P
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!
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n
. (3)

If we combine (2) and (3) we get ⇢
X

� ⇢
Y

/n , ⇢
Y

 n · �.

Corollary A.3. Let G be an undirected graph on n vertices, with maximum degree �. Let us sample

✏ · n

�

vertices without replacement, and define as G0
the induced subgraph on the activated vertices.

Then, the largest connected component of the resulting graph G0
has size at most

4

✏

2 log n with high

probability.
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We use this in the proof of our theorem that follows.
Theorem 2. The theoretical running time of C4 on P cores is upper bounded by

O
⇣⇣

m+n logn

P

+ P
⌘

log n · log �

⌘
as long as the number of cores P is smaller than min

i

ni
�i

,

where

ni
�i

is the size of the batch in the i-th round of each algorithm. The running time of Cluster-

Wild! on P cores is upper bounded by O
��

m+n

P

+ P
�
log n · log �

�
.

Proof. We start with analyzing C4, as the running time of ClusterWild! follows from a similar, and
simpler analysis. Observe, that we operate on Bulk Synchronous Parallel model: we sample a batch
of vertices, P cores asynchronously process the vertices in the batch, and once the batch is empty
there is a bulk synchronization step. The computational effort spent by C4 can be split in three parts:
i) computing the maximum degree, ii) creating the clusters, per batch, iii) syncronizing at the end of
each batch.

Computing � and synhronizing cost. Computing �

i

at the begining of each batch, can be im-
plemented in time mi

P

+ logP , where each thread picks n
i

/P vertices and computes locally their
degrees, and inserts it to a sorted data structure (e.g., a B-tree that admits parallel operations), and
then we get the largest item in logarithmic time. Moreover, the third part of the computation, i.e.,
synchronization among cores, can be done in O(P ). A little more involved argument is needed for
establishing the running time of the second part, where the algorithms create the clusters.

Clustering cost. For a single vertex v sampled by a thread, the time required by the thread to
process that vertex is the sum of the time needed to 1) wait inside the attemptCluster for preceding
friends (by the order of ⇡), 2) “send” its ⇡(v) to its friends, if v is a cluster center. 3) if v is a cluster
center, then for each u friends it will attempt to update clusterID(u); however, this thread potentially
competes with other threads that are attempting to write in clusterID(u) at the same time.

Using Corollary A.3, we can show that no more than O(log n) threads compete with each other at the
same time, with high probability. Observe, that in our sampling scheme of batches of vertices, we are
taking the first B

i

=

✏

�i
·n elements of a random prefix ⇡. This is equivalent to sampling B

i

vertices
without replacement from the graph G

i

of the current round. A slight modification of Theorem A.1,
gives us that the largest connected component in the sampled subgraph is at most O(log n), with
high probability. This directly implies that a thread cannot be waiting for more than O(log n) other
threads inside attemptCluster(v). Therefore, the time spent by each thread to wait on other
threads in attemptCluster(v) is upper bounded by the number of maximum threads that it can
be friends with (which is at most O(log n), times the time it takes each of these threads to be done
with their execution, which is at most �

i

log n (even assuming the worst case conflict pattern when
updating at most �

i

entries in the clusterID array). Hence, for C4 the processing time of a single
vertex is upperbounded by O(�

i

· log

2 n).

Job allocation. Now, observe that when each thread is done processing vertex, it picks the next
vertex from A (if A is not empty). This process essentially models a classical greedy task assignment
to cores, that leads to a 2 approximation, where the optimum allocation leads to a max weight
among cores that is at least equal to max(�

i

, B
i

�

i

/P ). This implies that the running time on P
asynchronous threads of a single batch, is upperbounded by

O

✓
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✓
�

i

log n,
B

i

�

i

log

2 n

P

◆◆
= O

✓
max

✓
�

i

log n,
n
i

log

2 n

P

◆◆
.

Assuming, that the number of cores, is always less than the batch size (a reasonable assumption, as
more cores, would not lead to further benefits), we obtain that the time for a single batch is

O

✓
E

i

P
+

n
i

log

2 n

P
+ P

◆
.

Observe that a difference in ClusterWild!, is that waiting is avoided, hence, the running time, per
batch of ClusterWild! is

O

✓
E

i

P
+

n
i

P
+ P

◆
.
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Multiplying the above, with the number of rounds given by Lemma 1, we obtain the theorem.

A.3 Approximation Guarantees

One can view the execution of ClusterWild! on G as having KwikCluster run on a “noisy version”
of G. A main issues is that KwikCluster never allows two friends in the original graph to become
cluster centers. Hence, since ClusterWild! ignores these edges among active vertices, one can view
these edges as “adverserially” deleted. The major technical contribution of this work is to quantify
how these “ignored” edges affect the quality of the output solution.

Before we proceed, let us define the bad combinatorial structures are charged for the cost of our
solution.
Definition 2. Let us define as a bad triangle, a set of three vertices in G such that two pairs are

joined with a positive edge and one pair is joined with a negative edge.

The following simple lemma is useful in quantifying the cost of the output clustering for any peeling
algorithm.
Lemma 5. The cost of any greedy algorithm that picks a vertex v (irrespective of the sampling

order), creates C
v

, peels it away and repeats, is equal to the number of bad triangles adjacent to

each cluster center v.

Proof. Consider the first step of the algorithm , for simplicity, and without loss of generality. Let
us define as Tin the number of vertex pairs inside C

v

that are not friends (i.e., they are joined by a
negative edge). Moreover, let Tout denote the number of vertices outside C

v

that are friends with
vertices inside C

v

. Then, the number of disagreements (i..e, number of misplaced pairs of vertices)
generated by cluster C

v

, is equal to Tin + Tout.

Observe that all the Tin edges are negative, and all Tout are positive ones. Let for example (u,w) be
one of the Tin negative edges inside C

v

, hence both u,w belong to C
v

(i.e., are friends with v). Then,
(u, v, w) forms a bad triangle. Similarly, for every edge that is incident to a vertex in C

v

, with one
end point say u0 2 C

v

and one w0 2 V \v, the triangle formed by (v, u0, w0
), is also a bad triangle.

Hence, all edges that are accounted for in the final cost of the algorithm (i..e, total number of dis-
agreements) are equal to the Tin + Tout bad triangles that include these edges and each cluster center
per round.

Let us now consider the set of all cluster centers generated by ClusterWild!; call these vertices CCW.
Then, consider the graph G0 that is generated by deleting all edges between CCW. Observe that this
is a random graph, since the set of edges deleted depends on the specific random sampling that is
performed in ClusterWild!. Let E

del

denote the set of edges deleted in this new graph G0. We will
use the following simple technical proposition to quantify how many more bad triangles G0 has
compared to G.
Proposition A.4. Given any graph G with positive and negative edges, then let us obtain a graph

G
e

where we have removed a single edge, e from G. Then, the G
e

has at most � more bad triangles

compared to G.

Proof. Let (i, j, k) be a bad triangle in G but not in G
e

. Then it must be the case that e 2 t. WLOG
let e = (i, j), and so k 2 N(i) [N(j). Since |N(i) [N(j)|  min(deg

i

, deg
j

)  �, there can be
at most � new bad triangles in G

e

.

Now, assume a random permutation ⇡ for which we run ClusterWild!, and let ˆA = [R

r=1

A
r

denote
the union of all active sets of vertices, for each round r of the algorithm. Moreover, let ˆG, denote
the graph that is missing all edges between the vertices in the sets A

r

. A simple way to bound the
clustering error of ClusterWild!, is splitting it in to two terms: the number of old bad triangles of G
adjacent to active vertices, plus the number of all new triangles induced by ignoring edges. Observe
that this bound can be loose, since not all new bad triangles of ˆG count towards the clustering error.
However, this makes the analysis tractable.
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Lemma 6 then follows.
Lemma 6. Let

ˆG denote the random graph induced by deleting all edges between active vertices per

round, for a given run of ClusterWild!, and let ⌧
new

denote the number of additional bad triangles

that

ˆG has compared to G. Then, the expected cost of ClusterWild! can be upper bounded as

E
�P

t2Tb
1Pt + ⌧

new

 
, where P

t

is the event that triangle t, with end points i, j, k, is bad, and at

least one of its end points becomes active, while t is still part of the original unclustered graph.
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B Implementation Details

A number of implementation tricks were needed to make our parallel algorithms scalable in practice.
We discuss these details and any deviation from the theory in this section.

B.1 Atomic and non-atomic variables in Java/Scala.

In Java/Scala, processors maintain their own local cache of variable values, which could lead to
spinlocks in C4 or greater errors in ClusterWild!. It is necessary to enforce a consistent view across
all processors by the use of synchronization or AtomicReferences, but doing so will incur high
overheads that render the algorithm unscalable.

To mitigate this overhead, we exploit a monoticity property of our algorithms—the clusterID of
any vertex is a non-increasing value. Thus, many of the checks in C4 and ClusterWild! may be
sufficiently performed using only an outdated version of clusterID. Hence, we may maintain both
an inconsistent but cheap clusterID array as well as an expensive but consistent atomic clusterID
array. Most reads can be done using the cheap inconsistent array, but writes must propagate to the
consistent atomic array. Since each clusterID is written a few times but read often, this allows us to
minimize the cost of synchronizing values without any substantial changes to the algorithm itself.

We point out that the same concepts may be applied in a distributed setting to minimize communi-
cation costs.

B.2 Estimating but not computing �.

As written, the BSP variants require a computation of the maximum degree � at each round. Since
this effectively involves a scan of all the edges, it can be an expensive operation to perform at each
iteration. We instead use a proxy ˆ

� which is initialized to � in the first round, and halved every
2

✏

ln(n log �/�) rounds.

With a simple modification to Lemma 1, we can see that w.h.p. any vertex with degree greater than
ˆ

� will either be clustered or have its degree halved after 2

✏

ln(n log �/�) rounds, so ˆ

� upper-bounds
� and our algorithms complete in logarithmic number of rounds.

B.3 Lazy deletion of vertices and edges.

In practice, we do not remove vertices and edges as they are clustered, but simply skip over them
when they are encountered later in the process. We find that this approach decreases the runtimes
and overall complexity of the algorithm. (In particular, edges between spokes may never be touched
in the lazy deletion scheme, but must nevertheless be removed in the proactive deletion approach.)
Lazy deletions also allow us to avoid expensive mutations of internal data structures.

B.4 Binomial sampling instead of fixed-size batches

Lazy deletion does introduce an extra complication, namely it is now more difficult to sample a
fixed-size batch of n

i

✏/� vertices, where n
i

is the number of remaining unclustered vertices. This
is because we do not maintain a separate set of n

i

unclustered vertices, nor explicitly compute the
value of n

i

.

We do, however, maintain a set of unprocessed vertices, that is, a suffix of ⇡ containing n
i

unclus-
tered vertices and m

i

clustered vertices that have not been passed through by the algorithm. We
may therefore resort to an i.i.d. sampling of these vertices, choosing each with probability ✏/�.
Since processing an unprocessed but clustered vertex has no effect, we effectively simulate an i.i.d.
sampling of the n

i

unclustered vertices.

Furthermore, we do not have to actually sample each vertex—because ⇡ is a uniform random per-
mutation, it suffices to draw B ⇠ Bin(n

i

+ m
i

, ✏/�) and extract the next B elements from ⇡ for
processing, reducing the number of random draws from n

i

+ m
i

Bernoullis to a single Binomial.

All of our theorems hold in expectation when using i.i.d. sampling instead of fixed-size batches.
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B.5 Comment on CDK Implementation

A crucial difference between the CDK algorithm and our algorithms lies in the fact that CDK might
reject vertices from the active set, which are then placed back into the set of unclustered vertices for
potential selection at later rounds. Conversely, our algorithms ensure that the active set is always
completely processed, so any vertex that has been selected will no longer be selected in an active set
again. We are therefore able to exploit a single random permutation ⇡ and use the tricks with lazy
deletions and binomial sampling that are not available to CDK, which instead has to perform the
complete i.i.d. sampling. In our opinion, this accounts for the largest difference in runtimes between
CDK and our algorithms.
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C Full experiment results
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(a) UK-2005, ✏ = 0.1
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(b) UK-2005, ✏ = 0.5
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(c) UK-2005, ✏ = 0.9
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(d) IT-2004, ✏ = 0.1
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(e) IT-2004, ✏ = 0.5
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(f) IT-2004, ✏ = 0.9
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(g) Webbase-2001, ✏ = 0.1
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(h) Webbase-2001, ✏ = 0.5
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(i) Webbase-2001, ✏ = 0.9
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(j) ENWiki-2013, ✏ = 0.1
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(k) ENWiki-2013, ✏ = 0.5

1 2 4 8 16 32
10

1

10
2

10
3

10
4

10
5

10
6

Number of threads

M
e
a
n
 r

u
n
ti
m

e
 /
 m

s

Mean Runtime, ENWiki−2013

 

 

Serial

C4 As

C4 BSP ε=0.9

CW As

CW BSP ε=0.9

CDK ε=0.9

(l) ENWiki-2013, ✏ = 0.9
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(m) DBLP-2011, ✏ = 0.1
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(n) DBLP-2011, ✏ = 0.5
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Figure 3: Empirical mean runtimes. For short, ‘CW’ is ClusterWild! and ‘As’ refers to the asynchronous variants. On larger graphs, our
parallel algorithms on 3-4 threads are faster than serial KwikCluster. On the smaller graphs, the BSP variants have expensive synchronization
barriers (relative to the small amount of actual work done) and do not necessary run faster than serial KwikCluster; the asynchronous variants
do outperform serial KwikCluster with 4-5 threads. We were only able to run CDK on the smaller graphs, for which CDK was 2-3 orders of
magnitude slower than serial. Note also that the BSP variants have improved runtimes for larger ✏.
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(b) UK-2005, ✏ = 0.5
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(c) UK-2005, ✏ = 0.9
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(d) IT-2004, ✏ = 0.1
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(e) IT-2004, ✏ = 0.5
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(f) IT-2004, ✏ = 0.9
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(g) Webbase-2001, ✏ = 0.1
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(h) Webbase-2001, ✏ = 0.5
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(i) Webbase-2001, ✏ = 0.9

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p
e
e
d
u
p

Mean Speedup, ENWiki−2013

 

 

Ideal
C4 As

C4 BSP ε=0.1

CW As

CW BSP ε=0.1

(j) ENWiki-2013, ✏ = 0.1
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(k) ENWiki-2013, ✏ = 0.5
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(l) ENWiki-2013, ✏ = 0.9
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(m) DBLP-2011, ✏ = 0.1
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(n) DBLP-2011, ✏ = 0.5
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Figure 4: Empirical mean speedups. The best speedups (14x on large graphs) are achieved by asynchronous ClusterWild! which has the
least coordination, followed by asynchronous C4 (13x on large graphs). The BSP variants achieve up to 10x speedups on large graphs, with
better speedups as ✏ increases. On small graphs we obtain poorer speedups as the cost of any contention is magnified as the actual work done
is comparatively small. There are a couple of kinks at 10 and 16 threads, which we postulate is due to NUMA and hyperthreading effects—the
EC2 r3.8xlarge instances are equipped with 10-core Intel Xeon E5-2670 v2 (Ivy Bridge) processors with 32 vCPUs and hyperthreading.
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(b) UK-2005, ✏ = 0.5
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(c) UK-2005, ✏ = 0.9
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(d) IT-2004, ✏ = 0.1
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(e) IT-2004, ✏ = 0.5
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(f) IT-2004, ✏ = 0.9
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(g) Webbase-2001, ✏ = 0.1
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(h) Webbase-2001, ✏ = 0.5
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(i) Webbase-2001, ✏ = 0.9
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(j) ENWiki-2013, ✏ = 0.1
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(k) ENWiki-2013, ✏ = 0.5
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(l) ENWiki-2013, ✏ = 0.9
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(m) DBLP-2011, ✏ = 0.1
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(n) DBLP-2011, ✏ = 0.5

0 5 10 15 20 25 30 35
1

1.02

1.04

1.06

1.08

1.1

1.12

Number of threads

A
lg

o
 o

b
j v

a
lu

e
 :
 S

e
ri
a
l o

b
j v

a
lu

e

Objective Value Relative to Serial, DBLP−2011

 

 

CW BSP ε=0.9 mean

CW BSP ε=0.9 median

CW As mean
CW As median

CDK ε=0.9 mean

CDK ε=0.9 median

(o) DBLP-2011, ✏ = 0.9

Figure 5: Empirical objective values relative to mean objective value obtained by serial algorithm.
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(b) UK-2005, ✏ = 0.5
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(c) UK-2005, ✏ = 0.9
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(f) IT-2004, ✏ = 0.9

0 5 10 15 20 25 30 35
0

0.002

0.004

0.006

0.008

0.01

0.012

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, Webbase−2001

 

 

C4 BSP ε=0.1 Min

C4 BSP ε=0.1 Mean

C4 BSP ε=0.1 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max
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(h) Webbase-2001, ✏ = 0.5
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(i) Webbase-2001, ✏ = 0.9
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(j) ENWiki-2013, ✏ = 0.1
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(k) ENWiki-2013, ✏ = 0.5
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(m) DBLP-2011, ✏ = 0.1
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(n) DBLP-2011, ✏ = 0.5
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Figure 6: Empirical percentage of blocked vertices. Generally the number of blocked vertices in-
creases with the number of threads and larger ✏ values. C4 BSP has fewer blocked vertices than
asynchronous C4, but at the cost of more synchronization barriers. We point out that across all 100
runs of every graphs, the maximum percentage of blocked vertices is less than 0.25%; for large
sparse graphs, the maximum percentage is less than 0.025%, i.e., 1 in 4000.
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