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S.1 Notation

Variable | Description

v | number of voxels

i | index for subject, i € {1,...,m}

t | index for TR, t € {1,...,d}

q | index for feature, ¢ € {1,...,k}

X;+ | random variable for ¢-th observation from subject ¢, taking values in R”

x;+ | t-th observation from subject 7, x;; € R

X, | observations from subject ¢, X; € Rvxd

x; | random variable for observation of ¢-th observations from all subjects,
taking values in R™"

. ol =[xl .. .xyl), zp € R™
“ | concatenated observation of ¢-th observations from all subjects
x| X'= X:T... x;T], X e Rmvxd

concatenated observations from all subjects

s; | random variable for shared response of ¢-th observations, taking value in R*

s¢ | estimated shared response of ¢-th observations, s; € R

S | estimated shared response , S € RF*4

1; | mean observation from subject i, pu; € R

pt = [ud ) p € R™

concatenated mean observation from all subjects
W, | loading matrix for subject 7, W; € Rvxk

WT =[Ww{.. WL, w e Rmxk
concatenated loading matrix for all subjects

Y | covariance for shared response s;, >4 € RFxk

p21, | isotropic covariance for conditional distribution of x;;
U = diag(p?1,...,p2 1), ¥ € Rmvxmv
joint covariance for condition distribution of x;




S.2 Identity between two approaches when k = v

miny, s >, | Xi — WiS||% miny, s >, [WX; — S|

s.t. WIW,; = I, M s.t. WIW, = I, @
We show the identity between (I)) and () when k& = v, square orthogonal matrices W;.
W X; — S|
=ur(WX; = S)" (WX, - 9))
=tw(WIX; — 8)TWIW,(WI'X, - 5))
=tr((X; — Wi9)T(X; — W;9)) 3)

= X; — WiS||%

When W; is a narrow matrix with orthonormal columns, (3) is false, because W; W # 1.

S.3 Difference between two approaches

We show this by analyzing (I) and (). X; can be decomposed as X}V + XV, where X}V =
WiWiTXi is the part of X; in the span of W; and XiWJ- = WiJ-WiJ-TXi is the part of X; in the
orthogonal complement of span of W;. By expanding (I)) and (@), we get:

WX = Sl = w7 X)) - 2r(x P W) + (57 5) )

1X; — WiS|% = (XY T XY 4 (XYL XV o (XVTWLS) +u(STS)  (5)

For (3)), since tr(XiWTXiW) + tr(XiWLTXZ-Wl) = (X} X;), it’s trying to find W; maximizing
tr(XV" W;S), maximizing the correlation between transformed observation W' X; and the shared
response S. However, for (@), there’s a conflict between the first and second terms. The first term
is minimizing the variance of projected data, while the second term is maximizing the variance of
projected data X}V with shared response. Due to this conflict, (2) is prone to find an uninformative
basis W; which doesn’t capture the variance in observations. This is verified in Fig.1 of the main
paper, which shows plots of the value of the training objective and the test accuracy of a stimulus
classification experiment versus iteration count (raider dataset, see Sec.4).

S.3.1 SRM is adaptively aggregating data with different estimated noise level

We note that (T) implicitly assumes subjects having identical noise level. This is reflected by the
update equation for S taking a uniform average of the transformed data. In SRM, if instead we set
the estimated value of p? to be k2\* for0 < A < 1,i = 1:m, and let 2 — oo, then the shared
response becomes a weighted average of the transformed data in which subjects with less noise are
weighted more:
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S.4 Connections between SRM and related methods

S.4.1 SRM and CCA solutions as different parameterization of two subjects pCCA
likelihood

Bach and Jordan [1] proposed probabilistic CCA (pCCA) using similar approach as Tipping and
Bishop used in probabilistic PCA (pPCA) [2]. They propose a probabilistic model of pPCA and
prove that maximum likelihood estimation leads to the canonical correlation directions in two sub-
jects case. Probabilistic CCA is proposed as follows:

z~N(0,1),zcR" k<wv
X1z ~ N(Wiz + py, ¥1)
Xo|z ~ N(Waz + 2, ¥s),



where z1 and x5 take values in R". with maximum likelihood estimates:

Wy = 0,0, M,

W = $220s My

By - - T

B = 5~ WY

fln = 1y

H2 = U2
where U; = i;%f/i, VAPV is a SVD of i;ﬁilgij. P can be factorized as M Ms. U is the
transformation matrix for dataset ¢ in CCA solutions. The corresponding log-likelihood value is

2
_2vd,

d ~
E’W\’@ﬁ == og2mwe — 3 log |3 |

Next, following similar approach as in [1]] we can show that a different mode of maximum likelihood
estimates of pCCA leads to close relation with SRM. We derive this mode by taking derivative of the
log-likelihood but using different parameterization as the pCCA. The maximum likelihood estimates
are:

Wl = Ulﬂl
Wy =UsM,
- = — —T
\Ifl = 211 — W1W1
— = — —T
\:[12 = 222 — W2W2
Ay =
Fig = U2

where U P Ug is a SVD of X5. P can be factorized as M M. U, is the orthogonal transforma-
tion matrix for dataset ¢ in SRM solutions. The corresponding log-likelihood value is

2vd d =
[”W,@,ﬁ =—— log 2me — 3 log |X,|

which is equal to the log-likelihood derived in pCCA. This shows that SRM and CCA solutions in
two subjects case are different parameterization of the same pCCA likelihood.

S.4.2 Connections between SRM and ridge regression

SRM is related to ridge regression. We make this connection by showing that single subject SRM is
connected with ridge regression with an orthogonality constraint on the loading matrix. Assume s
is sampled from N (0,+*I) with 2 known, and that 3,, = I. When M = 1, MAP estimation of
Wi and 54, t = 1:T', estimates a mode of the log posterior distribution ) _, log p(s¢|x:):

max ), (log p(xit|se) +logp(s;)) = min 3>, ([lwie — Wisel[F + 772 1s:]3).-
This is ridge regression for s; given W;, and least squares regression for W; (with an orthogonality

constraint), given s;, t = 1: 7. In the multi-subject case, MAP estimation of W, and s;, will be
similar but with a block-wise orthonormal structure in W:

max }, 37, (log p(xie]se) +logp(se)) = min Y5, ([loe — W7 +73[|s413)-
S.4.3 Connections between SRM and Hyperalignment

We show that Hyperalignment[3] is equivalent to (2)) when & = v. Following is the formulation of
Hyperalignment, note that X; € R?*? here is the transpose of the notation used in [3].

ming, >, ; | X Ri — X] R;||%

S.t. RITRZ = RleT - Iv7
From the equality Y°,_ | X R; — X] R;|% = 3_, | X[ Ri — G||% [, where G = 1/m Y, X[ R;,
by letting W; = R; and S = G, we get identical formulation as (2) when k = v.

(6)



S.4.4 Connections between SRM and regularized Hyperalignment

Lastly, we show the difference between SRM and regularized HA (rtHA) in [5]. rHA makes a
connection between HA and CCA [6] using a ridge CCA formulation [7]. We show rHA on the left
and a matching formulation in SRM notation on the right:

min 3, | X7 R — XTRj||% _min ¥, WX, - S|
st. RE(1-a)X; X +al)R; =1 st. WH(1—a)X; X +al)W; = L.

rHA introduces a parameter « bridging the HA constraint RY R, = I and the CCA constraint
RIXTX;R; = I. rHA becomes standard HA when o — 1 and CCA when o — 0. In contrast to
the regularization on the loading matrices IW; imposed by rHA, SRM introduces regularization on
the shared randomness s;.

S.4.5 Connections between SRM and standard ICA

standard ICA [8]] is a factor model that tries to find linear representation of data so that the com-
ponents are statistically independent, or as independent as possible. Using our notation, given data
X?

x=Ws,

where s is the independent components. There are two main differences between ICA and SRM.
First, ICA isn’t designed for multiple datasets. Although there are multiple datasets extension of
ICA, such as GICA, IVA, the difference is discussed in the main paper. Second, ICA doesn’t have the
notion of “shared response”. It’s maximizing statistical independence, but this doesn’t necessarily
lead to shared components. This is examined in experiment 3 of the main paper.



S.5 Experiment 3
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Figure 1: Experiment 3. Fig. Experiment procedure. Fig. On original data. Fig. On removed
shared across all response. Fig.[I.4} On residual after removed shared across all response. Fig. [[.3} After
removed shared across all response and train on shared within group response.




In Fig.[I.2] we show the classification accuracy directly on original data. The above chance results
indicates that the groups are distinguishable in DMN ROI.

Fig. shows that the Fig. (b) is uninformative for SRM with low &, but informative for SRM
with large k1, PCA and ICA. The shared by all subjects response is expected to be uninformative for
distinguishing between groups. However, when we use large k1, SRM starts to incorporate shared
within group only response as shared by all subjects response, because we force it to identify a large
subspace. This is demonstrated by the above chance performance with k; = 100. As for PCA
and ICA, they identify components that lead to maximum variance and statistical independence
respectively. It’s doesn’t guarantee that the shared response will be identified by these two methods.
So PCA and ICA cant be relied upon to identify a shared response. The above chance accuracy
suggests that it’s indeed not identifying shared by all subjects response.

Fig.[T]4 shows that Fig.[I.1](c) is uninformative for PCA and ICA, because the informative part of
original data has been removed with Fig. (b). For SRM, we observe consistent above chance
performance in distinguishing groups. The performance is similar to on original data.

In Fig. [1}5, without removing shared response (k; = 0), we observe that all three methods are
effective in distinguishing between two groups. However, this doesn’t lead to better performance
than on original data. This suggests removing individual response is insufficient for improvement.
However, with proper selection of k; and ko, we observe statistically significant improvement with
k1 = 10 and ko = 100. This shows that by removing both shared by all subjects response and
individual response, the denoised data demonstrates better distinguishability for the groups.
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