Mathematical Arguments

Critical time definition: proofs of Theorem [1|and Proposition

Proof of Theoremll] Let S = {T € Ry|o,(T) = o(n)}. S is an interval containing 0 since
0,(0) =0and, if T € S, then VT" < T, 0,,(T") < 0,(T) and T" € S. Thus S is of the form
[0,T°[ or [0, 7€), and let T° = sup S (where T° € R U {+00}).

For all time sequences (73, )nen such that limsup,, ,, 7, < 7¢ 3T < T¢and n’ > O s.t.,
VYn > n’,T,, < T. Hence, by definition of T, ¢,,(T},) < 0,,(T) = o(n).

Conversely, if 0,,(T},) = o(n), then liminf,, , ;o 75, € S, and liminf,,_, ; o T, < T°.

Now let T’ verify the two constraints of Theorem [1, The first constraint implies that VT < T,
T € Sand T < T¢, which leads to T¢' < T*. Moreover, VI' < T°, T € S by definition of 7°¢, and
T<T using the second constraint. As a result, T<" = T and the critical time is unique. O

Proof of Proposition[I] Let (T,)nen be such that liminf, .7, > T° Then 3T > T° and
n' > 0stVn >n',T, >T. However, T ¢ S and liminf, . 0,(T)/n > 0, which directly
implies that lim inf,,, 1 oo 0, (T),)/n > liminf,, o 0,(T)/n > 0.

Conversely, if (T},)nen is such that lim inf,, o 0,,(T%)/n > 0, then limsup,, ,, . T, ¢ S and
limsup,, ,, . Tn >T°. O

Upper bound on the influence: proofs of Proposition 2]and CorollaryT]

Let 7; € R4 U {400} be the infection time of node 4, and 7;; € R} U {400} the transmission time
from node 7 to node j. Let A C V be a set of influencers, i.e. nodes that are infected at time 0:
Vi € A, 7; = 0. Due to the infection dynamic of CTIC, a node i ¢ A is infected when at least one
of its neighbors is infected, and the respective ingoing edge transmitted the contagion. We thus have
the following equation relating infection times 7; and 7;; (see for example [1]]): Vi ¢ A,

T; = minT; + 7j;. 1

Let X;(t) = 1,4} be the infection state of node i at time . Eq.implies the following equation:
Vt>0andi ¢ A,
Xi(t) =1 (0 = Lprimyicy) - 2
jev
We now develop the proofs for Proposition [2| and Corollary |1} which rely on upper bounding the

Laplace transform of 4 (7).

Lemma 1. Define p(s) = p

(w) Then, for any A such that |A| = ng < n, denoting by

Ga(s) = f0+°° oa(t)e5tdt the Laplace transform of the expected number of nodes reached by the
cascade starting from A at time T':

s64(s) <ng+v(s)(n—ngp), 3)

where y(s) is the smallest solution in [0, 1] of the following equation:

oo \
()1 exp (=plon (o) - H ) o @

This result requires two intermediate lemmas: Lemma 2] that proves for i € V and ¢ > 0 a positive
correlation between the events "node j did not infect node i before time t’ and Lemma] that bounds
the probability that a given node gets infected before ¢.

Lemma 2. Vi ¢ Aandt >0, {1 — 1 .. <4 }jev are positively correlated.



Proof. Denoting by Q; the collection of directed paths in G from the influencers A to node i, we
get the following expression for variables (7;);cy [1:

T = miQni Z Tl ®))

Therefore, for all i ¢ A and t > 0, the functions f;;(7k1)k,yee = {1 — Lir,1r;, <t} }jev are
increasing with the partial order on (74;) 1 1)ce. We will then make use of the FKG inequality [2] :

Lemma 3. (FKG inequality) Let L be a finite distributive lattice, and 1 a nonnegative function on
L, such that, for any (x,y) € L?,

w vV y)u(z Ay) < plr)u(y) (6)

Then, for any non-decreasing function f and g on L

(Z f(x)g(w)> (Z u(w)) > (Z f(x)u($)> (Z g(ﬂf)u(%)) (7

Due to the independence of (7x;) 1,1)ee» the condition in Lemma is met by their joint distribution,

which is a product measure on the product space RE. Lemmais then obtained by applying Lemma
to any couple of functions (fi;, fir) (i j)ee,(i,k)ce- More specifically, in our problem setting, L is
the set of all (741) (i, nee, () = [ (x1)ce P(Thi = tw) is the joint probability distribution of the

T, when x = (tkl)(k,l)ES-
O

We then show the following lemma that reveals an implicit inequation satisfied by the X;.

Lemma 4. For all (i,j) € V?, let p;; be an integrable function such that f0+°° pi;(t)dt < 1. For
any A such that |A| = nyg < n and for any i ¢ A, the probability E[X;(t)] that node i will be
reached by the contagion originating from A verifies:

BLX(0)] < 1-exp (- S (e« B ®
J
where (f = g)(t) = [ f(s)g(t — s)ds stands for the convolution of f with g and H;;(t) =
In(1-f; T pii s)ds) ( )
f th(S)ds

Proof. Eq. and the positive correlation of {1 — T 47 <4} Fieq1,....N} (Lemma imply that
E[Xl(t)] =1- E[H(l - ]1{7'_7‘+Tj71<t})] <1- HE[]' - ]]'{Tj+7ji<t}:| ©))
J J
which leads to

EXi(t)] <1-T1; (1 = E[l{r,4r,<n])
=1-J[; Q- [[Xy(t i) |75l]) 5 (10)

= 1= L, (1= Jo ™ BLX ()lpsa(t — s)ds)

since Vi, j € V, 7; and 7;; are independent and pj; is the probability density of 7;;. Note that, in our
setting, we consider that influencer nodes are infected at time 0, and thus are not infectious before
t = 0. We then linearize the product in Eq.[I0}

E[X,(0)] <1—exp(3;mn(1- mE[X'(s)]pji(t—s)ds))
<1-exp (2%’#[ Spiilt—s)ds) (D
=1 —exp (= X2, (R < ELG (D))



since we have on the one hand, for any 2 € [0,1] and a < 1, In(1 — az) > In(1 — a)x (in Eq.[(]]
oo i(8)]pji(t—s)ds
we chose a = f0+°o pji(s)ds and x = Jo ?Eﬁ;ﬂ?ﬁg L ), and on the other hand #;;(t) =
0 ;i(s)ds
n(l— [ " pji(s)ds .. n(1—[F° p,i(s)ds) . .
%—i”)(wZJﬁ(t) by definition of H. Note that W is approximately 1 when
0 jils)as o ;i(s)ds

7% pji(s)ds is close to 0. O

Proof of Lemmal[l] From here, Proposition T] follow from Lemma[]in the exact same way than, in
[3]], the proof of Proposition 1 is deduced from Lemma 8. However, we give here the fully detailed
proof for sake of completeness.

Let f;(s) = 0+°° E[X;(t)]se™*!dt, then, using Jensen’s inequality, Vi ¢ A and s > 0,
Ao < 1o (- X £Hi6506), (12)
J

where £LH;;(s) = 0+Oo H;i(t)e*'dt is the Laplace transform of H,;. Note also that Vi €
A7 fl(s) =1L
For every i € [1...n], we define Z; = (f;(s)); and the vector Z = (Z;);e[1...n). Using lemma@

and convexity of exponential function, we have for any v € R"™ such that Vi € A,u; = 0 an
V’L ¢ A, (7 Z O,

u'Z < |uly (1 -yt i exp(—(ﬁ?—lTZ)i)) <|uh (1 —exp(— ZT@ﬁ?“)) (13)

where |u|; = ), |u;| is the L;-norm of w.

Now taking u = (1,¢4Z;); and noting that Vi, u; < Z;, we have

z' 72— ZTLHZ p(s)(Z27 Z—no) p(s)n
\le—r?oo < 1—exp(— IZan> < 1—exp(_ VP o) _ |Z1n00> (14)
where p(s) = p(%) Defining y = |ZZ|1Z —2 and z = |Z|1 —ng = s6a(s) — no, the
inequation above rewrites
s)n
y§1exp(p(s)y”(z)0) (15)

But by Cauchy-Schwarz inequality applied to u, (n—n)(Z " Z —ng) > (|Z|1 —ng)?, which means
that z < y(n — np). We now consider the equation

a:l+exp<p(s)xp(s)n0)>0 (16)

z(n —ng

Because the function f : 2 — 2 — 1 +exp ( — p(s)z + p(s)”o)) is continuous, verifies f(1) > 0

a(

and lim,,_,o+ f(z) = —1, equation[16]admits a solution 7(s) in ]0, 1[.
We then prove by contradiction that z < v(s)(n — ng). Let us assume z > ~(s)(n — no) Then

y < 1—exp(—p(s)y—%).Butthefunctionh:x—>x—1+exp( p(s)x m)is
convex and verifies 2(0) < 0 and h(y(s)) = 0. Therefore, for any y > 1,0 = f(y1) < 'Y 5) fly)+
(1— 2L ))f( 0), and therefore f(y) > 0. Thus, y < v(s). Butz < y(n—mng) < v(s)(n— ) which
yields the contradiction. O

Using Lemmal[T] we may now prove Proposition 2}

ProofofProposition Vs >0,T >0andt > 0, e 5t > e*ST]l{KT}, hence, using Lemma
s64(s) =2, Ele™*7] > ng + (04(T) — no)e*T which leads to the desired inequality. O



Proof of Corollary[]] Using Eq.[16 and the fact that 1 — e™® < =z, we get ¥(s) < p(s)y(s) +

p(s)no

9 (n—rgy Which rewrites ~v(s) < —pl)n i the case p(s) < 1. Therefore,

(1=p(s))(n—no)

oa(T) <ng+ v/no(n —ng) in ( p(S)S)eST> . a7

mi
{s>0lp(s)<1} \ || 1 — p(

Upper bounds on the critical time: proofs of Corollary 2]and Corollary 3]

Proof of Corollary[2] Since e*' is decreasing w.r.t. s, LH;;(s) is decreasing. Thus, the Perron-
Frobenius theorem implies that p(s) is decreasing. When p(0) > 1, p~1(1 — ¢) exists and is
uniquely defined, and using Corollaryand oa(T) < ng+ (n—ne)y(p~t (1 —e€))er  1=9T <

no + /”0(”6_”0)6/)71(1—6)T‘ O

20 '(HT,,
Inn

Proof of Corollary[3] If limsup,,_, , < 1, then 3o« > Oand n’ > 0 s.t.Vn > n/,
-1
pt ()T, < (1_0‘% Furthermore, 1imn_>+ooL_“%") = 1, thus In” > n' st.Vn >

7T
n', p7i1l - &) < 11%0‘42;)*1(1). Using Corollary 2| with ¢ = L, oa(T) < 1+
VInn(n = 1)er” w2 < 14 Innn!=/* = o(n). O

Inn
Application to particular contagion model: proofs of Corollary[d, Proposition 3, Proposition 5|
and Corollary 3]

Proof of Corollary[d} Taking p(s) = Pas Corollaryrewrites

A
A+s

s+ A1 = pa

o4(T) < ng + /no(n — ny) min ( A)65T> : (18)

The function f(s) = 4/ me” admits a unique minimum in $,;5, = 55 + A(pa — 1). The
minimum for s > 0 is therefore met for s = $ip, if AT(1 — po) < % and s = 0 otherwise. The
results follow immediately. O

Proof of Proposition[3] In order to prove Proposition [3] it is sufficient to show that Lemma [4] still
holds for the SIR model, with p;;(¢t) = Bexp(—(0 + B)t) for (4,5) € £. Fori € V, let 6, be the
random removal time of node 7. Infection times 7; are then given by the following expression, where
Q; is the collection of directed paths in G from the influencers A to node i:

Ti:;gigni Z Tl r,<0,) (19)
(J:l)eq

Therefore Vi ¢ Aandt > 0, the functions fi;(7,0) = {1-1(7 4+, <} 1{+,,<p,} } jev are increasing
with respect to the partial order on R x RY defined for any X' = (7{,...7},601..0}) € R® x RV
and X2 = (72,...72,0%...02) € R® x RY by:

L >72 forany (i,j) € €

1 > 2 Tij = i y (2,]
X2 X = { G;SH? foranyi € V (20)
Variables (7;;)(; jjee and (0;);cy being independent, we can still apply FKG inequality (Lemma
and deduce the positive correlation, for any ¢ ¢ A and ¢ > 0, of the random variables {1 —

L7, 47, <ty s, <0,3 }jev. We then introduce, for any (i, j) € &:

—_— Tji iiji<6j
TJZ_{ —+00 iijiZQj ’ (2])



It is straightforward that each 7}; is a random variable over Ry U {400} with probability distribution
pij, and that 7;; is independent of 7;. We also have, for any i ¢ A, ¢ > 0 and (¢,5) € &:

(1 =1 imicymicont = {1 = Lirumcn (22)

Lemma [4] for the SIR case (and therefore Proposition [3] and its subsequent corollaries) are then
proved from following the same steps than in the independent transmission events case, except

replacing (7;i) i yee bY (75i)(i.j)ee [

Proof of PropositionP] p(s) = %55—3(1 — e (BFI)Tn) p(A) < ﬁ%, which implies

p YT, < %. Let f(z) = ©® _ fis increasing and Va > 0, f(z) = a =

l—e—2>

x> y/a(1 — e~ V4). Hence, if limsup,, _, , BT < 1, then 3o > 0s.t. BT, <

Inn

\/ Inn (1767\/2P(An) )

2p(An)

_ Inn
(I1—a) 2;?;‘") (1—e V 2¢0An)) and the concavity of 1 —e~* implies that 87;, < %(1—

_ (1—a)lnn _ —
e~ V2o, Finally, f(B8T;,) < (12[)?)‘1]“)” and 22 111(;)% <1 — a. Applying Corollaryproves

the desired result. O

Proof of Corollary[3] Taking p(s) = pae*70, Corollary rewrites

(T) < + ( ) ; ﬂ sT (23)
oA <ng+ vng(n —ng l’snzlgl 1 —pae*SToe .

and 5 = 7 (In po — In(1 — 34)) gives

o o\
oa(T) < no + \/no(n — no) T0—1< pTo> . (24)

2T

1T
The final result follows by upper bounding (1 — g—%) > "o by /e due to the monotonic increase of

z — (x —1)In(1 — 1) on [1, +o0[ and its limit when z — +oc. O

x
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