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6 Supplement

Proposition 2. With probability 1 − δ the expected cost of executing a stochastic policy with parameters
ξ ∼ π(·|ν) is bounded according to:

J (ν) ≤ inf
α>0

{
Ĵα(ν) +

α

2L

L−1∑
i=0

b2i e
D2(π(·|ν)||π(·|νi)) +

1

αLM
log

1

δ

}
, (14)

where Ĵα(ν) denotes a robust estimator defined by

Ĵα(ν) ,
1

αL

L−1∑
i=0

1

M

M∑
j=1

ψ (α`i(zj , ν)) ,

computed after L iterations, with M samples z1, . . . , zM ∼ p(·|νi) obtained at every iteration i = 0, . . . , L−
1, and where

ψ(x) = log

(
1 + x+

1

2
x2
)
,

while Dβ(p||q) denotes the Renyii divergence between p and q defined by

Dβ(p||q) =
1

β − 1
log

∫
pβ(x)

qβ−1(x)
dx.

The constants bi are such that J(τ) ≤ bi at each iteration i = 0, . . . , L− 1.

Proof. Let z = (τ, ξ) and define `i(z, ν) = J(τ) π(ξ|ν)
π(ξ|νi)

. The expected value can be equivalently expressed as

J (ν) ≡ 1

L

L−1∑
i=0

Ez∼p(·|νi)`i(z, ν)

where νi are the computed hyperparamters at each iteration i = 0, . . . , L−1. The bound is obtained by relating
the mean to its robust estimate acoording to

P
(
LM(J (ν)− Ĵα(ν)) ≥ t

)
= P

(
eαLM(J (ν)−Ĵα(ν)) ≥ eαt

)
,

≤ E
[
eαLM(J (ν)−Ĵα(ν))

]
e−αt, (15)

= e−αt+αLMJ (ν)E
[
e
∑L−1
i=0

∑M
j=1 −ψ(α`i(zj ,ν))

]
= e−αt+αLMJE

[
L−1∏
i=0

M∏
j=1

e−ψ(α`i(zj ,ν))

]

= e−αt+αLMJ
L−1∏
i=0

M∏
j=1

E z∼p(·|νi)

[
1− α`i(z, ν) +

α2

2
`i(z, ν)

2

]
(16)

= e−αt+αLMJ (ν)
L−1∏
i=0

M∏
j=1

(
1− αJ (ν) + α2

2
E z∼p(·|νi)[`i(z, ν)

2]

)

≤ e−αt+αLMJ (ν)
L−1∏
i=0

M∏
j=1

e−αJ (ν)+α2

2
Ez∼p(·|νi)[`i(z,ν)

2] (17)

≤ e−αt+M
α2

2

∑L−1
i=0 Ez∼p(·|νi)[`i(z,ν)

2],

using Markov’s inequality to obtain (15), the identities ψ(x) ≥ − log(1 − x + 1
2
x2) in (16) and 1 + x ≤ ex

in (17). The key step to handle the possibly unbounded ratio and obtain a practical bound was the use of the
robust transformation ψ(·) as proposed by Catoni [25]. These results are then combined with

E [`i(z, ν)
2] ≤ b2iEπ(·|νi)

[
π(ξ|ν)2

π(ξ|νi)2

]
= b2i e

D2(π||πi),

where the relationship between the likelihood ratio variance and the Renyii divergence was established in [24].

10


