6 Supplement

Proposition 2. With probability 1 — 0 the expected cost of executing a stochastic policy with parameters
& ~ 7(-|v) is bounded according to:
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where ja (v) denotes a robust estimator defined by
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computed after L iterations, with M samples z1, . .., zm ~ p(-|vi) obtained at every iterationi =0, ..., L —

1, and where

Y(z) = log (1 + x4+ %xZ) ,

while Dg(p||q) denotes the Renyii divergence between p and q defined by
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The constants b; are such that J(1) < b; at each iterationi =0, ..., L — 1.
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where v; are the computed hyperparamters at each iteration ¢ = 0, ..., L —1. The bound is obtained by relating

the mean to its robust estimate acoording to
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using Markov’s inequality to obtain (T3), the identities ¢(z) > —log(1 — z + 22°) in (TG and 1 + = < €”
in (17). The key step to handle the possibly unbounded ratio and obtain a practical bound was the use of the
robust transformation v (-) as proposed by Catoni [25]]. These results are then combined with
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where the relationship between the likelihood ratio variance and the Renyii divergence was established in [24].
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