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Abstract

We study how well one can recover sparse principal components of a data ma-
trix using a sketch formed from a few of its elements. We show that for a wide
class of optimization problems, if the sketch is close (in the spectral norm) to the
original data matrix, then one can recover a near optimal solution to the optimiza-
tion problem by using the sketch. In particular, we use this approach to obtain
sparse principal components and show that for m data points in n dimensions,
O(ε−2k̃max{m,n}) elements gives an ε-additive approximation to the sparse
PCA problem (k̃ is the stable rank of the data matrix). We demonstrate our algo-
rithms extensively on image, text, biological and financial data. The results show
that not only are we able to recover the sparse PCAs from the incomplete data, but
by using our sparse sketch, the running time drops by a factor of five or more.

1 Introduction

Principal components analysis constructs a low dimensional subspace of the data such that projection
of the data onto this subspace preserves as much information as possible (or equivalently maximizes
the variance of the projected data). The earliest reference to principal components analysis (PCA)
is in [15]. Since then, PCA has evolved into a classic tool for data analysis. A challenge for the
interpretation of the principal components (or factors) is that they can be linear combinations of all
the original variables. When the original variables have direct physical significance (e.g. genes in
biological applications or assets in financial applications) it is desirable to have factors which have
loadings on only a small number of the original variables. These interpretable factors are sparse
principal components (SPCA).

The question we address is not how to better perform sparse PCA; rather, it is whether one can per-
form sparse PCA on incomplete data and be assured some degree of success. (i.e., can we do sparse
PCA when we have a small sample of data points and those data points have missing features?).
Incomplete data is a situation that one is confronted with all too often in machine learning. For
example, with user-recommendation data, one does not have all the ratings of any given user. Or in
a privacy preserving setting, a client may not want to give us all entries in the data matrix. In such a
setting, our goal is to show that if the samples that we do get are chosen carefully, the sparse PCA
features of the data can be recovered within some provable error bounds. A significant part of this
work is to demonstrate our algorithms on a variety of data sets.

More formally, The data matrix is A ∈ Rm×n (m data points in n dimensions). Data matrices
often have low effective rank. Let Ak be the best rank-k approximation to A; in practice, it is often
possible to choose a small value of k for which ‖A−Ak‖2 is small. The best rank-k approximation
Ak is obtained by projecting A onto the subspace spanned by its top-k principal components Vk,
which is the n × k matrix containing the top-k right singular vectors of A. These top-k principal
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components are the solution to the variance maximization problem:

Vk = arg max
V∈Rn×k,VTV=I

trace(VTATAV).

We denote the maximum variance attainable by OPTk, which is the sum of squares of the top-
k singular values of A. To get sparse principal components, we add a sparsity constraint to the
optimization problem: every column of V should have at most r non-zero entries (the sparsity
parameter r is an input),

Sk = arg max
V∈Rn×k,VTV=I,‖V(i)‖0≤r

trace(VTATAV). (1)

The sparse PCA problem is itself a very hard problem that is not only NP-hard, but also inap-
proximable [12] There are many heuristics for obtaining sparse factors [2, 18, 20, 5, 4, 14, 16]
including some approximation algorithms with provable guarantees [1]. The existing research typ-
ically addresses the task of getting just the top principal component (k = 1) (some exceptions are
[11, 3, 19, 9]). While the sparse PCA problem is hard and interesting, it is not the focus of this work.

We address the question: What if we do not know A, but only have a sparse sampling of some of
the entries in A (incomplete data)? The sparse sampling is used to construct a sketch of A, denoted
Ã. There is not much else to do but solve the sparse PCA problem with the sketch Ã instead of the
full data A to get S̃k,

S̃k = arg max
V∈Rn×k,VTV=I,‖V(i)‖0≤r

trace(VT ÃT ÃV). (2)

We study how S̃k performs as an approximation to Sk with respective to the objective that we
are trying to optimize, namely trace(STATAS) — the quality of approximation is measured with
respect to the true A. We show that the quality of approximation is controlled by how well ÃT Ã
approximates ATA as measured by the spectral norm of the deviation ATA − ÃT Ã. This is a
general result that does not rely on how one constructs the sketch Ã.

Theorem 1 (Sparse PCA from a Sketch) Let Sk be a solution to the sparse PCA problem that
solves (1), and S̃k a solution to the sparse PCA problem for the sketch Ã which solves (2). Then,

trace(S̃k
TATAS̃k) ≥ trace(Sk

TATASk)− 2k‖ATA− ÃT Ã‖2.

Theorem 1 says that if we can closely approximate A with Ã, then we can compute, from Ã, sparse
components which capture almost as much variance as the optimal sparse components computed
from the full data A.

In our setting, the sketch Ã is computed from a sparse sampling of the data elements in A (incom-
plete data). To determine which elements to sample, and how to form the sketch, we leverage some
recent results in elementwise matrix completion ([8]). In a nutshell, if one samples larger data ele-
ments with higher probability than smaller data elements, then, for the resulting sketch Ã, the error
‖ATA− ÃT Ã‖2 will be small. The details of the sampling scheme and how the error depends on
the number of samples is given in Section 2.1. Combining the bound on ‖A− Ã‖2 from Theorem 4
in Section 2.1 with Theorem 1, we get our main result:

Theorem 2 (Sampling Complexity for Sparse PCA) Sample s data-elements from A ∈ Rm×n to
form the sparse sketch Ã using Algorithm 1. Let Sk be a solution to the sparse PCA problem that
solves (1), and let S̃k, which solves (2), be a solution to the sparse PCA problem for the sketch Ã
formed from the s sampled data elements. Suppose the number of samples s satisfies

s ≥ 2k2ε−2(ρ2 + εγ/(3k)) log((m+ n)/δ)

(ρ2 and γ are dimensionless quantities that depend only on A). Then, with probability at least 1− δ

trace(S̃k
TATAS̃k) ≥ trace(Sk

TATASk)− 2ε(2 + ε/k)‖A‖22.
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The dependence of ρ2 and γ on A are given in Section 2.1. Roughly speaking, we can ignore
the term with γ since it is multiplied by ε/k, and ρ2 = O(k̃max{m,n}), where k̃ is the stable
(numerical) rank of A. To paraphrase Theorem 2, when the stable rank is a small constant, with
O(k2 max{m,n}) samples, one can recover almost as good sparse principal components as with
all data (the price being a small fraction of the optimal variance, since OPTk ≥ ‖A‖22). As far as
we know, the only prior work related to the problem we consider here is [10] which proposed a
specific method to construct sparse PCA from incomplete data. However, we develop a general tool
that can be used with any existing sparse PCA heuristic. Moreover, we derive much simpler bounds
(Theorems 1 and 2) using matrix concentration inequalities, as opposed to ε-net arguments in [10].
We also give an application of Theorem 1 to running sparse PCA after “denoising” the data using a
greedy thresholding algorithm that sets the small elements to zero (see Theorem 3). Such denoising
is appropriate when the observed matrix has been element-wise perturbed by small noise, and the
uncontaminated data matrix is sparse and contains large elements. We show that if an appropriate
fraction of the (noisy) data is set to zero, one can still recover sparse principal components. This
gives a principled approach to regularizing sparse PCA in the presence of small noise when the data
is sparse.

Not only do our algorithms preserve the quality of the sparse principal components, but iterative
algorithms for sparse PCA, whose running time is proportional to the number of non-zero entries in
the input matrix, benefit from the sparsity of Ã. Our experiments show about five-fold speed gains
while producing near-comparable sparse components using less than 10% of the data.

Discussion. In summary, we show that one can recover sparse PCA from incomplete data while
gaining computationally at the same time. Our result holds for the optimal sparse components from
A versus from Ã. One cannot efficiently find these optimal components (since the problem is NP-
hard to even approximate), so one runs a heuristic, in which case the approximation error of the
heuristic would have to be taken into account. Our experiments show that using the incomplete data
with the heuristics is just as good as those same heuristics with the complete data.

In practice, one may not be able to sample the data, but rather the samples are given to you. Our
result establishes that if the samples are chosen with larger values being more likely, then one can
recover sparse PCA. In practice one has no choice but to run the sparse PCA on these sampled
elements and hope. Our theoretical results suggest that the outcome will be reasonable. This is
because, while we do not have specific control over what samples we get, the samples are likely to
represent the larger elements. For example, with user-recommendation data, users are more likely
to rate items they either really like (large positive value) or really dislike (large negative value).

Notation. We use bold uppercase (e.g., X) for matrices and bold lowercase (e.g., x) for col-
umn vectors. The i-th row of X is X(i), and the i-th column of X is X(i). Let [n] denote
the set {1, 2, ..., n}. E(X) is the expectation of a random variable X; for a matrix, E(X) de-
notes the element-wise expectation. For a matrix X ∈ Rm×n, the Frobenius norm ‖X‖F is
‖X‖2F =

∑m,n
i,j=1 X

2
ij , and the spectral (operator) norm ‖X‖2 is ‖X‖2 = max‖y‖2=1‖Xy‖2. We

also have the `1 and `0 norms: ‖X‖`1 =
∑m,n
i,j=1 |Xij | and ‖X‖0 (the number of non-zero entries

in X). The k-th largest singular value of X is σk(X). and log x is the natural logarithm of x.

2 Sparse PCA from a Sketch

In this section, we will prove Theorem 1 and give a simple application to zeroing small fluctuations
as a way to regularize to noise. In the next section we will use a more sophisticated way to select
the elements of the matrix allowing us to tolerate a sparser matrix (more incomplete data) but still
recovering sparse PCA to reasonable accuracy.

Theorem 1 will be a corollary of a more general result, for a class of optimization problems involving
a Lipschitz-like objective function over an arbitrary (not necessarily convex) domain. Let f(V,X)
be a function that is defined for a matrix variable V and a matrix parameter X. The optimization
variable V is in some feasible set S which is arbitrary. The parameter X is also arbitrary. We assume
that f is locally Lipschitz in X with, that is

|f(V,X)− f(V, X̃)| ≤ γ(X)‖X− X̃‖2 ∀V ∈ S.
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(Note we allow the “Lipschitz constant” to depend on the fixed matrix X but not the variables V, X̃;
this is more general than a globally Lipshitz objective) The next lemma is the key tool we need
to prove Theorem 1 and it may be on independent interest in other optimization settings. We are
interested in maximizing f(V,X) w.r.t. V to obtain V∗. But, we only have an approximation X̃

for X, and so we maximize f(V, X̃) to obtain Ṽ∗, which will be a suboptimal solution with respect
to X. We wish to bound f(V∗,X)− f(Ṽ∗,X) which quantifies how suboptimal Ṽ∗ is w.r.t. X.

Lemma 1 (Surrogate optimization bound) Let f(V,X) be γ-locally Lipschitz w.r.t. X over the
domain V ∈ S. Define V∗ = arg maxV∈S f(V,X); Ṽ∗ = arg maxV∈S f(V, X̃). Then,

f(V∗,X)− f(Ṽ∗,X) ≤ 2γ(X)‖X− X̃‖2.

In the lemma, the function f and the domain S are arbitrary. In our setting, X ∈ Rn×n, the domain
S = {V ∈ Rn×k;VTV = Ik; ‖V(j)‖0 ≤ r}, and f(V,X) = trace(VTXV). We first show that
f is Lipschitz w.r.t. X with γ = k (a constant independent of X). Let the representation of V by its
columns be V = [v1, . . . ,vk]. Then,

|trace(VTXV)− trace(VT X̃V)| = |trace((X− X̃)VVT )| ≤
k∑
i=1

σi(X− X̃) ≤ k‖X− X̃‖2

where, σi(A) is the i-th largest singular value of A (we used Von-neumann’s trace inequality
and the fact that VVT is a k-dimensional projection). Now, by Lemma 1, trace(V∗TXV∗) −
trace(Ṽ∗TXṼ∗) ≤ 2k‖X− X̃‖2. Theorem 1 follows by setting X = ATA and X̃ = ÃT Ã 1.

Greedy thresholding. We give the simplest scenario of incomplete data where Theorem 1 gives
some reassurance that one can compute good sparse principal components. Suppose the smallest
data elements have been set to zero. This can happen, for example, if only the largest elements are
measured, or in a noisy setting if the small elements are treated as noise and set to zero. So

Ãij =

{
Aij |Aij | ≥ δ;
0 |Aij | < δ.

Recall k̃ = ‖A‖2F /‖A‖22 (stable rank of A), and define ‖Aδ‖2F =
∑
|Aij |<δA

2
ij . Let A = Ã+ ∆.

By construction, ‖∆‖2F = ‖Aδ‖2F . Then,

‖ATA− Ã
T
Ã‖2 = ‖AT∆ + ∆TA−∆T∆‖2 ≤ 2‖A‖2‖∆‖2 + ‖∆‖22. (3)

Suppose the zeroing of elements only loses a fraction of the energy in A, i.e. δ is selected so
that ‖Aδ‖2F ≤ ε2‖A‖2F /k̃; that is an ε/k̃ fraction of the total variance in A has been lost in the

unmeasured (or zero) data. Then ‖∆‖2 ≤ ‖∆‖F ≤ ε‖A‖F /
√
k̃ = ε‖A‖2.

Theorem 3 Suppose that Ã is created from A by zeroing all elements that are less than δ, and δ
is such that the truncated norm satisfies ‖Aδ‖22 ≤ ε2‖A‖2F /k̃. Then the sparse PCA solution Ṽ∗

satisfies
trace(Ṽ∗TAAṼ∗) ≥ trace(V∗TAATV∗)− 2kε‖A‖22(2 + ε).

Theorem 3 shows that it is possible to recover sparse PCA after setting small elements to zero. This
is appropriate when most of the elements in A are small noise and a few of the elements in A
contain large data elements. For example if the data consists of sparse O(

√
nm) large elements (of

magnitude, say, 1) and many nm−O(
√
nm) small elements whose magnitude is o(1/

√
nm) (high

signal-to-noise setting), then ‖Aδ‖22/‖A‖22 → 0 and with just a sparse sampling of the O(
√
nm)

large elements (very incomplete data), we recover near optimal sparse PCA.

Greedily keeping only the large elements of the matrix requires a particular structure in A to work,
and it is based on a crude Frobenius-norm bound for the spectral error. In Section 2.1, we use recent
results in element-wise matrix sparsification to choose the elements in a randomized way, with a bias
toward large elements. With high probability, one can directly bound the spectral error and hence
get better performance.

1Theorem 1 can also be proved as follows: trace(VTXV) − trace(ṼTXṼ) = trace(VTXV) −
trace(VT X̃V) + trace(VT X̃V) − trace(ṼTXṼ) ≤ k‖X − X̃‖2 + trace(VT X̃V) − trace(ṼTXṼ) ≤
k‖X− X̃‖2 + trace(ṼT X̃Ṽ)− trace(ṼTXṼ) ≤ 2k‖X− X̃‖2.
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Algorithm 1 Hybrid (`1, `2)-Element Sampling
Input: A ∈ Rm×n; # samples s; probabilities {pij}.

1: Set Ã = 0m×n.
2: for t = 1 . . . s (i.i.d. trials with replacement) do
3: Randomly sample indices (it, jt) ∈ [m]× [n] with P [(it, jt) = (i, j)] = pij .

4: Update Ã: Ãij ← Ãij + Aij/(s · pij).
5: return Ã (with at most s non-zero entries).

2.1 An (`1, `2)-Sampling Based Sketch

In the previous section, we created the sketch by deterministically setting the small data elements to
zero. Instead, we could randomly select the data elements to keep. It is natural to bias this random
sampling toward the larger elements. Therefore, we define sampling probabilities for each data
element Aij which are proportional to a mixture of the absolute value and square of the element:

pij = α
|Aij |
‖A‖`1

+ (1− α)
A2
ij

‖A‖2F
, (4)

where α ∈ (0, 1] is a mixing parameter. Such a sampling probability was used in [8] to sample
data elements in independent trials to get a sketch Ã. We repeat the prototypical algorithm for
element-wise matrix sampling in Algorithm 1.

Note that unlike with the deterministic zeroing of small elements, in this sampling scheme, one
samples the element Aij with probability pij and then rescales it by 1/pij . To see the intuition for
this rescaling, consider the expected outcome for a single sample: E[Ãij ] = pij · (Aij/pij) + (1−
pij) · 0 = Aij ; that is, Ã is a sparse but unbiased estimate for A. This unbiasedness holds for any
choice of the sampling probabilities pij defined over the elements of A in Algorithm 1. However, for
an appropriate choice of the sampling probabilities, we get much more than unbiasedness; we can
control the spectral norm of the deviation, ‖A− Ã‖2. In particular, the hybrid-(`1, `2) distribution
in (4) was analyzed in [8], where they suggest an optimal choice for the mixing parameter α∗ which
minimizes the theoretical bound on ‖A − Ã‖2. This algorithm to choose α∗ is summarized in
Algorithm 1 of [8].

Using the probabilities in (4) to create the sketch Ã using Algorithm 1, with α∗ selected using
Algorithm 1 of [8], one can prove a bound for ‖A−Ã‖2. We state a simplified version of the bound
from [8] in Theorem 4.

Theorem 4 ([8]) Let A ∈ Rm×n and let ε > 0 be an accuracy parameter. Define probabilities
pij as in (4) with α∗ chosen using Algorithm 1 of [8]. Let Ã be the sparse sketch produced using
Algorithm 1 with a number of samples s ≥ 2ε−2(ρ2 + γε/3) log((m+ n)/δ), where

ρ2 = k̃ ·max{m,n}
(
α · k̃ · ‖A‖2/ ‖A‖`1 + (1− α)

)−1
, and γ ≤ 1 +

√
mnk̃/α.

Then, with probability at least 1− δ, ‖A− Ã‖2 ≤ ε‖A‖2.

3 Experiments

We show the experimental performance of sparse PCA from a sketch using several real data matrices.
As we mentioned, sparse PCA is NP-Hard, and so we must use heuristics. These heuristics are
discussed next, followed by the data, the experimental design and finally the results.

Algorithms for Sparse PCA: Let G (ground truth) denote the algorithm which computes the prin-
cipal components (which may not be sparse) of the full data matrix A; the optimal variance is OPTk.
We consider six heuristics for getting sparse principal components.
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Gmax,r The r largest-magnitude entries in each principal component generated by G.
Gsp,r r-sparse components using the Spasm toolbox of [17] with A.
Hmax,r The r largest entries of the principal components for the (`1, `2)-sampled sketch Ã.
Hsp,r r-sparse components using Spasm with the (`1, `2)-sampled sketch Ã.
Umax,r The r largest entries of the principal components for the uniformly sampled sketch Ã.
Usp,r r-sparse components using Spasm with the uniformly sampled sketch Ã.

Output of an algorithm Z is sparse principal components V, and our metric is f(Z) =

trace(VTATAV), where A is the original centered data. We consider the following statistics.

f(Gmax,r)

f(Gsp,r)
Relative loss of greedy thresholding versus Spasm, illustrating the value of a good
sparse PCA algorithm. Our sketch based algorithms do not address this loss.

f(Hmax/sp,r)

f(Gmax/sp,r)
Relative loss of using the (`1, `2)-sketch Ã instead of complete data A. A ratio close
to 1 is desired.

f(Umax/sp,r)

f(Gmax/sp,r)
Relative loss of using the uniform sketch Ã instead of complete data A. A benchmark
to highlight the value of a good sketch.

We also report the computation time for the algorithms. We show results to confirm that sparse PCA
algorithms using the (`1, `2)-sketch are nearly comparable to those same algorithms on the complete
data; and, gain in computation time from sparse sketch is proportional to the sparsity.

Data Sets: We show results on image, text, stock, and gene expression data.

• Digit Data (m = 2313, n = 256): We use the [7] handwritten zip-code digit images (300
pixels/inch in 8-bit gray scale). Each pixel is a feature (normalized to be in [−1, 1]). Each 16 × 16
digit image forms a row of the data matrix A. We focus on three digits: “6” (664 samples), “9” (644
samples), and “1” (1005 samples).

• TechTC Data (m = 139, n = 15170): We use the Technion Repository of Text Categorization
Dataset (TechTC, see [6]) from the Open Directory Project (ODP). We removed words (features)
with fewer than 5 letters. Each document (row) has unit norm.

• Stock Data (m = 7056, n = 1218): We use S&P100 stock market data with 7056 snapshots
of prices for 1218 stocks. The prices of each day form a row of the data matrix and a principal
component represents an “index” of sorts – each stock is a feature.

• Gene Expression Data (m = 107, n = 22215): We use GSE10072 gene expression data for
lung cancer from the NCBI Gene Expression Omnibus database. There are 107 samples (58 lung
tumor cases and 49 normal lung controls) forming the rows of the data matrix, with 22,215 probes
(features) from the GPL96 platform annotation table.

3.1 Results

We report results for primarily the top principal component (k = 1) which is the case most consid-
ered in the literature. When k > 1, our results do not qualitatively change. We note the optimal
mixing parameter α∗ using Algorithm 1 of [8] for various datasets in Table 1.

Handwritten Digits. We sample approximately 7% of the elements from the centered data using
(`1, `2)-sampling, as well as uniform sampling. The performance for small r is shown in Table 1,
including the running time τ . For this data, f(Gmax,r)/f(Gsp,r) ≈ 0.23 (r = 10), so it is important
to use a good sparse PCA algorithm. We see from Table 1 that the (`1, `2)-sketch significantly
outperforms the uniform sketch. A more extensive comparison of recovered variance is given in
Figure 2(a). We also observe a speed-up of a factor of about 6 for the (`1, `2)-sketch. We point
out that the uniform sketch is reasonable for the digits data because most data elements are close to
either +1 or −1, since the pixels are either black or white.

We show a visualization of the principal components in Figure 1. We observe that the sparse com-
ponents from the (`1, `2)-sketch are almost identical to that of from the complete data.

TechTC Data. We sample approximately 5% of the elements from the centered data using our
(`1, `2)-sampling, as well as uniform sampling. For this data, f(Gmax,r)/f(Gsp,r) ≈ 0.84 (r =
10). We observe a very significant performance difference between the (`1, `2)-sketch and uniform
sketch. A more extensive comparison of recovered variance is given in Figure 2(b). We also observe
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α∗ r
f(Hmax/sp,r)

f(Gmax/sp,r)

τ(G)

τ(H)

f(Umax/sp,r)

f(Gmax/sp,r)

τ(G)

τ(U)

Digit .42 40 0.99/0.90 6.21 1.01/0.70 5.33
TechTC 1 40 0.94/0.99 5.70 0.41/0.38 5.96
Stock .10 40 1.00/1.00 3.72 0.66/0.66 4.76
Gene .92 40 0.82/0.88 3.61 0.65/0.15 2.53

Table 1: Comparison of sparse principal components from the (`1, `2)-sketch and uniform sketch.

(a) r = 100% (b) r = 50% (c) r = 30% (d) r = 10%

Figure 1: [Digits] Visualization of top-3 sparse principal components. In each figure, left panel
shows Gsp,r and right panel showsHsp,r.
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Figure 2: Performance of sparse PCA for (`1, `2)-sketch and uniform sketch over an extensive
range for the sparsity constraint r. The performance of the uniform sketch is significantly worse
highlighting the importance of a good sketch.

a speed-up of a factor of about 6 for the (`1, `2)-sketch. Unlike the digits data which is uniformly
near ±1, the text data is “spikey” and now it is important to sample with a bias toward larger
elements, which is why the uniform-sketch performs very poorly.

As a final comparison, we look at the actual sparse top component with sparsity parameter r = 10.
The topic IDs in the TechTC data are 10567=”US: Indiana: Evansville” and 11346=”US: Florida”.
The top-10 features (words) in the full PCA on the complete data are shown in Table 2.

In Table 3 we show which words appear in the top sparse principal component with sparsity r = 10
using various sparse PCA algorithms. We observe that the sparse PCA from the (`1, `2)-sketch with
only 5% of the data sampled matches quite closely with the same sparse PCA algorithm using the
complete data (Gmax/sp,r matchesHmax/sp,r).

Stock Data. We sample about 2% of the non-zero elements from the centered data using the (`1, `2)-
sampling, as well as uniform sampling. For this data, f(Gmax,r)/f(Gsp,r) ≈ 0.96 (r = 10). We
observe a very significant performance difference between the (`1, `2)-sketch and uniform sketch.
A more extensive comparison of recovered variance is given in Figure 2(c). We also observe a
speed-up of a factor of about 4 for the (`1, `2)-sketch. Similar to TechTC data this dataset is also
“spikey”, so biased sampling toward larger elements significantly outperforms the uniform-sketch.

Gene Expression Data. We sample about 9% of the elements from the centered data using the
(`1, `2)-sampling, as well as uniform sampling. For this data, f(Gmax,r)/f(Gsp,r) ≈ 0.05 (r = 10)
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ID Top 10 in Gmax,r ID Other words
1 evansville 11 service
2 florida 12 small
3 south 13 frame
4 miami 14 tours
5 indiana 15 faver
6 information 16 transaction
7 beach 17 needs
8 lauderdale 18 commercial
9 estate 19 bullet
10 spacer 20 inlets

21 producer

Table 2: [TechTC] Top ten words in top princi-
pal component of the complete data (the other
words are discovered by some of the sparse
PCA algorithms).

Gmax,r Hmax,r Umax,r Gsp,r Hsp,r Usp,r

1 1 6 1 1 6
2 2 14 2 2 14
3 3 15 3 3 15
4 4 16 4 4 16
5 5 17 5 5 17
6 7 7 6 7 7
7 6 18 7 8 18
8 8 19 8 6 19
9 11 20 9 12 20
10 12 21 13 11 21

Table 3: [TechTC] Relative ordering of the
words (w.r.t. Gmax,r) in the top sparse principal
component with sparsity parameter r = 10.

which means a good sparse PCA algorithm is imperative. We observe a very significant perfor-
mance difference between the (`1, `2)-sketch and uniform sketch. A more extensive comparison of
recovered variance is given in Figure 2(d). We also observe a speed-up of a factor of about 4 for
the (`1, `2)-sketch. Similar to TechTC data this dataset is also “spikey”, and consequently biased
sampling toward larger elements significantly outperforms the uniform-sketch.

Performance of Other Sketches: We briefly report on other options for sketching A. We consider
suboptimal α (not α∗ from Algorithm 1 of [8] ) in (4) to construct a suboptimal hybrid distribution,
and use this in proto-Algorithm 1 to construct a sparse sketch. Figure 3 reveals that a good sketch
using the α∗ is important.

20 40 60 80 100

0.85

0.9

0.95

Sparsity constraint:  r (percent)

 

 

f(Hsp,r),α
∗ = 0.1

f(Hsp,r),α = 1.0

Figure 3: [Stock data] Performance of sketch us-
ing suboptimal α to illustrate the importance of
the optimal mixing parameter α∗.

Conclusion: It is possible to use a sparse sketch (incomplete data) to recover nearly as good sparse
principal components as one would have gotten with the complete data. We mention that, while Gmax
which uses the largest weights in the unconstrained PCA does not perform well with respect to the
variance, it does identify good features. A simple enhancement to Gmax is to recalibrate the sparse
component after identifying the features - this is an unconstrained PCA problem on just the columns
of the data matrix corresponding to the features. This method of recalibrating can be used to improve
any sparse PCA algorithm.

Our algorithms are simple and efficient, and many interesting avenues for further research remain.
Can the sampling complexity for the top-k sparse PCA be reduced from O(k2) to O(k). We suspect
that this should be possible by getting a better bound on

∑k
i=1 σi(A

TA−ÃT Ã); we used the crude
bound k‖ATA − ÃT Ã‖2. We also presented a general surrogate optimization bound which may
be of interest in other applications. In particular, it is pointed out in [13] that though PCA optimizes
variance, a more natural way to look at PCA is as the linear projection of the data that minimizes
the information loss. [13] gives efficient algorithms to find sparse linear dimension reduction that
minimizes information loss – the information loss of sparse PCA can be considerably higher than op-
timal. To minimize information loss, the objective to maximize is f(V) = trace(ATAV(AV)†A).
It would be interesting to see whether one can recover sparse low-information-loss linear projectors
from incomplete data.
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4 Supplementary Material

In this section we provide a proof of Lemma 1.

A Proof of Lemma 1. We need the following lemma.

Lemma 2 Let f and g be functions on a domain S. Then,

sup
x∈S

f(x)− sup
y∈S

g(y) ≤ sup
x∈S

(f(x)− g(x)).

Proof:
sup
x∈S

(f(x)− g(x)) ≥ f(x)− g(x) ≥ f(x)− sup
y∈S

g(y), ∀x ∈ S.

Since the RHS holds for all x, it follows that supx∈S(f(x) − g(x)) is an upper bound for f(x) −
supy∈S g(U), and hence

sup
x∈S

(f(x)− g(x)) ≥ sup
x∈S

(
f(x)− sup

y∈S
g(y)

)
= sup
x∈S

f(x)− sup
y∈S

g(y).

�
Proof:(Lemma 1) Suppose that maxV∈S f(V,X) is attained at V∗ and maxV∈S f(V, X̃) is at-
tained at Ṽ

∗
, and define ε = f(V∗,X)− f(Ṽ

∗
,X). We have that

ε = f(V∗,X)− f(Ṽ
∗
, X̃) + f(Ṽ

∗
, X̃)− f(Ṽ

∗
,X)

= max
V

f(V,X)−max
U

f(U, X̃) + f(Ṽ
∗
, X̃)− f(Ṽ

∗
,X)

≤ max
V

(
f(V,X)− f(V, X̃)

)
+ f(Ṽ

∗
, X̃)− f(Ṽ

∗
,X),

where the last step follows from Lemma 2. Therefore,

|ε| ≤ max
V

∣∣∣f(V,X)− f(V, X̃)
∣∣∣+ |f(Ṽ

∗
, X̃)− f(Ṽ

∗
,X)|

≤ max
V

γ(X)‖X− X̃‖2 + γ(X)‖X− X̃‖2 = 2γ(X)‖X− X̃‖2.

(We used the Lipschitz condition in the second step.) �
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