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Abstract

We study an idealised sequential resource allocation problem. In each time step
the learner chooses an allocation of several resource types between a number of
tasks. Assigning more resources to a task increases the probability that it is com-
pleted. The problem is challenging because the alignment of the tasks to the re-
source types is unknown and the feedback is noisy. Our main contribution is the
new setting and an algorithm with nearly-optimal regret analysis. Along the way
we draw connections to the problem of minimising regret for stochastic linear
bandits with heteroscedastic noise. We also present some new results for stochas-
tic linear bandits on the hypercube that significantly improve on existing work,
especially in the sparse case.

1 Introduction

Economist Thomas Sowell remarked that “The first lesson of economics is scarcity: There is never
enough of anything to fully satisfy all those who want it.”1 The optimal allocation of resources is
an enduring problem in economics, operations research and daily life. The problem is challenging
not only because you are compelled to make difficult trade-offs, but also because the (expected)
outcome of a particular allocation may be unknown and the feedback noisy.

We focus on an idealised resource allocation problem where the economist plays a repeated resource
allocation game with multiple resource types and multiple tasks to which these resources can be
assigned. Specifically, we consider a (nearly) linear model with D resources and K tasks. In each
time step t the economist chooses an allocation of resources Mt ∈ RD×K where Mtk ∈ RD is the
kth column and represents the amount of each resource type assigned to the kth task. We assume
that the kth task is completed successfully with probability min {1, 〈Mtk, νk〉} and νk ∈ RD is an
unknown non-negative vector that determines how the success rate of a given task depends on the
quantity and type of resources assigned to it. Naturally we will limit the availability of resources
by demanding that Mt satisfies

∑K
k=1Mtdk ≤ 1 for all resource types d. At the end of each time

step the economist observes which tasks were successful. The objective is to maximise the number
of successful tasks up to some time horizon n that is known in advance. This model is a natural
generalisation of the one used by Lattimore et al. [2014a], where it was assumed that there was a
single resource type only.

1He went on to add that “The first lesson of politics is to disregard the first lesson of economics.” Sowell
[1993]
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An example application might be the problem of allocating computing resources on a server between
a number of Virtual Private Servers (VPS). In each time step (some fixed interval) the controller
chooses how much memory/cpu/bandwidth to allocate to each VPS. A VPS is said to fail in a given
round if it fails to respond to requests in a timely fashion. The requirements of each VPS are
unknown in advance, but do not change greatly with time. The controller should learn which VPS
benefit the most from which resource types and allocate accordingly.

The main contribution of this paper besides the new setting is an algorithm designed for this problem
along with theoretical guarantees on its performance in terms of the regret. Along the way we present
some additional results for the related problem of minimising regret for stochastic linear bandits on
the hypercube. We also prove new concentration results for weighted least squares estimation, which
may be independently interesting.

The generalisation of the work of Lattimore et al. [2014a] to multiple resources turns out to be fairly
non-trivial. Those with knowledge of the theory of stochastic linear bandits will recognise some
similarity. In particular, once the nonlinearity of the objective is removed, the problem is equivalent
to playing K linear bandits in parallel, but where the limited resources constrain the actions of the
learner and correspondingly the returns for each task. Stochastic linear bandits have recently been
generating a significant body of research (e.g., Auer [2003], Dani et al. [2008], Rusmevichientong
and Tsitsiklis [2010], Abbasi-Yadkori et al. [2011, 2012], Agrawal and Goyal [2012] and many oth-
ers). A related problem is that of online combinatorial optimisation. This has an extensive literature,
but most results are only applicable for discrete action sets, are in the adversarial setting, and can-
not exploit the additional structure of our problem. Nevertheless, we refer the interested reader to
(say) the recent work by Kveton et al. [2014] and references there-in. Also worth mentioning is that
the resource allocation problem at hand is quite different to the “linear semi-bandit” proposed and
analysed by Krishnamurthy et al. [2015] where the action set is also finite (the setting is different in
many other ways besides).

Given its similarity, it is tempting to apply the techniques of linear bandits to our problem. When
doing so, two main difficulties arise. The first is that our payoffs are non-linear: the expected
reward is a linear function only up to a point after which it is clipped. In the resource allocation
problem this has a natural interpretation, which is that over-allocating resources beyond a certain
point is fruitless. Fortunately, one can avoid this difficulty rather easily by ensuring that with high
probability resources are never over-allocated. The second problem concerns achieving good regret
regardless of the task specifics. In particular, when the number of tasks K is large and resources are
at a premium the allocation problem behaves more like aK-armed bandit where the economist must
choose the few tasks that can be completed successfully. For this kind of problem regret should scale
in the worst case with

√
K only [Auer et al., 2002, Bubeck and Cesa-Bianchi, 2012]. The standard

linear bandits approach, on the other hand, would lead to a bound on the regret that depends linearly
on K. To remedy this situation, we will exploit that if K is large and resources are scarce, then
many tasks will necessarily be under-resourced and will fail with high probability. Since the noise
model is Bernoulli, the variance of the noise for these tasks is extremely low. By using weighted
least-squares estimators we are able to exploit this and thereby obtain an improved regret. An added
benefit is that when resources are plentiful, then all tasks will succeed with high probability under
the optimal allocation, and in this case the variance is also low. This leads to a poly-logarithmic
regret for the resource-laden case where the optimal allocation fully allocates every task.

2 Preliminaries

If F is some event, then ¬F is its complement (i.e., it is the event that F does not occur). If A is
positive definite and x is a vector, then ‖x‖2A = x>Ax stands for the weighted 2-norm. We write |x|
to be the vector of element-wise absolute values of x. We let ν ∈ RD×K be a matrix with columns
ν1, . . . νK . All entries in ν are non-negative, but otherwise we make no global assumptions on ν. At
each time step t the learner chooses an allocation matrix Mt ∈M where

M =

{
M ∈ [0, 1]D×K :

K∑
k=1

Mdk ≤ 1 for all d

}
.

The assumption that each resource type has a bound of 1 is non-restrictive, since the units of any
resource can be changed to accommodate this assumption. We write Mtk ∈ [0, 1]D for the kth
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column of Mt. The reward at time step t is ‖Yt‖1 where Ytk ∈ {0, 1} is sampled from a Bernoulli
distribution with parameter ψ(〈Mtk, νk〉) = min {1, 〈Mtk, νk〉}. The economist observes all Ytk,
however, not just the sum. The optimal allocation is denoted by M∗ and defined by

M∗ = arg max
M∈M

K∑
k=1

ψ(〈Mk, νk〉) .

We are primarily concerned with designing an allocation algorithm that minimises the expected
(pseudo) regret of this problem, which is defined by

Rn = n

K∑
k=1

ψ(〈M∗k , νk〉)− E

[
n∑
t=1

K∑
k=1

ψ(〈Mtk, νk〉)

]
,

where the expectation is taken over both the actions of the algorithm and the observed reward.

Optimal Allocations

If ν is known, then the optimal allocation can be computed by constructing an appropriate linear
program. Somewhat surprisingly it may also be computed exactly in O(K logK + D logD) time
using Algorithm 1 below. The optimal allocation is not so straight-forward as, e.g., simply allocating
resources to the incomplete task for which the corresponding ν is largest in some dimension. For
example, for K = 2 tasks and d = 2 resource types:

ν =

(
ν1 ν2

)
=

(
0 1/2

1/2 1

)
=⇒ M∗ =

(
M∗1 M∗2

)
=

(
0 1

1/2 1/2

)
.

Algorithm 1
Input: ν
M = 0 ∈ RD×K andB = 1 ∈ RD

while ∃ k, d s.t 〈Mk, νk〉 < 1 andBd > 0 do

A = {k : 〈Mk, νk〉 < 1} and B = {d : Bd > 0}

k, d = arg max
(k,d)∈A×B

min
i∈A\{k}

(
νdk

νdi

)

Mdk = min

{
Bd,

1− 〈Mk, νk〉
νdk

}
end while
returnM

We see that even though ν22 is the largest param-
eter, the optimal allocation assigns only half of the
second resource (d = 2) to this task. The right ap-
proach is to allocate resources to incomplete tasks
using the ratios as prescribed by Algorithm 1. The
intuition for allocating in this way is that resources
should be allocated as efficiently as possible, and ef-
ficiency is determined by the ratio of the expected
success due to the allocation of a resource and the
amount of resources allocated.
Theorem 1. Algorithm 1 returns M∗.

The proof of Theorem 1 can be found in Appendix D.

We are interested primarily in the case when ν is unknown, so Algorithm 1 will not be directly
applicable. Nevertheless, the algorithm is useful as a module in the implementation of a subsequent
algorithm that estimates ν from data.

3 Optimistic Allocation Algorithm

We follow the optimism in the face of uncertainty principle. In each time step t, the algorithm
constructs an estimator ν̂kt for each νk and a corresponding confidence set Ctk for which νk ∈ Ctk
holds with high probability. The algorithm then takes the optimistic action subject to the assumption
that νk does indeed lie in Ctk for all k. The main difficulty is the construction of the confidence sets.
Like other authors [Dani et al., 2008, Rusmevichientong and Tsitsiklis, 2010, Abbasi-Yadkori et al.,
2011] we define our confidence sets to be ellipses, but the use of a weighted least-squares estimator
means that our ellipses may be significantly smaller than the sets that would be available by using
these previous works in a straightforward way. The algorithm accepts as input the number of tasks
and resource types, the horizon and constants α > 0 and β where constant β is defined by

δ =
1

nK
, N =

(
4n4D2

)D
, B ≥ max

k
‖νk‖22 , so that

β =

(
1 +
√
αB + 2

√
log

(
6nN

δ
log

(
3nN

δ

)))2

. (1)
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Note that B must be a known bound on maxk ‖νk‖22, which might seem like a serious restriction,
until one realizes that it is easy to add an initialisation phase where estimates are quickly made
while incurring minimal additional regret, as was also done by Lattimore et al. [2014a]. The value
of α determines the level of regularisation in the least squares estimation and will be tuned later to
optimise the regret.

Algorithm 2 Optimistic Allocation Algorithm

1: Input K, D, n, α, β
2: for t ∈ 1, . . . , n do
3: // Compute confidence sets for all tasks k:
4: Gtk = αI +

∑
τ<t γτkMτkM

>
τk

5: ν̂tk = G−1
tk

∑
τ<t γτkMτYτk

6: Ctk =
{
ν̃k : ‖ν̃k − ν̂tk‖2Gtk

≤ β
}

and C ′tk =
{
ν̃k : ‖ν̃k − ν̂tk‖2Gtk

≤ 4β
}

7: // Compute optimistic allocation:
8: Mt = arg maxMt∈Mmaxν̃k∈Ctk

ψ(〈Mtk, ν̃k〉)
9: // Observe success indicators Ytk for all tasks k:

10: Ytk ∼ Bernoulli(ψ(〈Mtk, νk〉))
11: // Compute weights for all tasks k:
12: γ−1

tk = arg maxν̃k∈C′tk 〈Mtk, ν̃k〉 (1− 〈Mtk, ν̃k〉)
13: end for

Computational Efficiency

We could not find an efficient implementation of Algorithm 2 because solving the bilinear optimi-
sation problem in Line 8 is likely to be NP-hard (Bennett and Mangasarian [1993] and also Petrik
and Zilberstein [2011]). In our experiments we used a simple algorithm based on optimising for M
and ν in alternative steps combined with random restarts, but for large D and K this would likely
not be efficient. In Appendix E we present an alternative algorithm that is efficient, but relies on
the assumption that ‖νk‖1 ≤ 1 for all k. In this regime it is impossible to over-allocate resources
and this fact can be exploited to obtain an efficient and practical algorithm with strong guarantees.
Along the way, we are able to construct an elegant algorithm for linear bandits on the hypercube that
enjoys optimal regret and adapts to sparsity.

Computing the weights γtk (Line 12) is (somewhat surprisingly) straight-forward. Define

p̄tk = 〈Mtk, ν̂tk〉+ 2
√
β ‖Mtk‖G−1

tk
and ptk = 〈Mtk, ν̂tk〉 − 2

√
β ‖Mtk‖G−1

tk
.

Then the weights can be computed by

γ−1
tk =


p̄tk(1− p̄tk) if p̄tk ≤ 1

2

ptk(1− ptk) if ptk ≥ 1
2

1
4 otherwise .

(2)

A curious reader might wonder why the weights are computed by optimising within confidence set
C ′tk, which has double the radius of Ctk. The reason is rather technical, but essentially if the true
parameter νk were to lie on the boundary of the confidence set, then the corresponding weight could
become infinite. For the analysis to work we rely on controlling the size of the weights. It is not
clear whether or not this trick is really necessary.

4 Worst-case Regret for Algorithm 2

We now analyse the regret of Algorithm 2. First we offer a worst-case bound on the regret that
depends on the time-horizon like O(

√
n). We then turn our attention to the resource-laden case

where the optimal allocation satisfies 〈M∗k , νk〉 = 1 for all k. In this instance we show that the
dependence on the horizon is only poly-logarithmic, which would normally be unexpected when the
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action-space is continuous. The improvement comes from the weighted estimation that exploits the
fact that the variance of the noise under the optimal allocation vanishes.

Theorem 2. Suppose Algorithm 2 is run with bound B ≥ maxk ‖νk‖22. Then

Rn ≤ 1 + 4D

√
2βnK

(
max
k
‖νk‖∞ + 4

√
β/α

)
log(1 + 4n2) .

Choosing α = B−1 log
(

6nN
δ log

(
3nN
δ

))
and assuming that B ∈ O(maxk ‖νk‖22), then

Rn ∈ O
(
D3/2

√
nK max

k
‖νk‖2 log n

)
.

The proof of Theorem 2 will follow by carefully analysing the width of the confidence sets as the
algorithm makes allocations. We start by proving the validity of the confidence sets, and then prove
the theorem.

Weighted Least Squares Estimation

For this sub-section we focus on the problem of estimating a single unknown ν = νk. Let
M1, . . . ,Mn be a sequence of allocations to task k with Mt ∈ RD. Let {Ft}nt=0 be a filtration
with Ft containing information available at the end of round t, which means that Mt is Ft−1-
measurable. Let γ1, . . . , γn be the sequence of weights chosen by Algorithm 2. The sequence of
outcomes is Y1, . . . , Yn ∈ {0, 1} for which E[Yt|Ft−1] = ψ(〈Mt, ν〉). The weighted regularised
gram matrix isGt = αI+

∑
τ<t γτMτM

>
τ and the corresponding weighted least squares estimator

is

ν̂t = G−1
t

∑
τ<t

γtMτYτ .

Theorem 3. If ‖ν‖22 ≤ B and β is chosen as in Eq. (1), then ‖ν̂t − ν‖2Gt
≤ β for all t ≤ n with

probability at least 1− δ = 1/(nK).

Similar results exist in the literature for unweighted least-squares estimators (for example, Dani
et al. [2008], Rusmevichientong and Tsitsiklis [2010], Abbasi-Yadkori et al. [2011]). In our case,
however, Gt is the weighted gram matrix, which may be significantly larger than an unweighted
version when the weights become large. The proof of Theorem 3 is presented in Appendix C.

Analysing the Regret

We start with some technical lemmas. Let F be the failure event that ‖ν̂tk − νk‖2Gtk
> β for some

t ≤ n and 1 ≤ k ≤ K.

Lemma 4 (Abbasi-Yadkori et al. [2012]). Let x1, . . . , xn be an arbitrary sequence of vectors with
‖xt‖22 ≤ c and let Gt = I +

∑t−1
s=1 xsx

>
s . Then

∑n
t=1 min

{
1, ‖xt‖2G−1

t

}
≤ 2D log

(
1 + c·n

D

)
.

Corollary 5. If F does not hold, then
n∑
t=1

γtk min
{

1, ‖Mtk‖2G−1
tk

}
≤ 8D log(1 + 4n2).

Proof. Since F does not hold we can apply Lemma 15 in the appendix to obtain

γtk min
{

1, ‖Mtk‖2G−1
tk

}
≤ 4 min

{
1, γtk ‖Mtk‖2G−1

tk

}
.

By Lemma 13 in the appendix, γtk ‖Mtk‖22 ≤ 4tD ≤ 4nD. Then simply apply Lemma 4.

Lemma 6. Suppose F does not hold, then
K∑
k=1

γ−1
tk ≤ D

(
max
k
‖νk‖∞ + 4

√
β/α

)
.
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Proof. We exploit the fact that γ−1
tk is an estimate of the variance, which is small whenever ‖Mtk‖1

is small:
γ−1
tk = arg max

ν̃k∈C′tk
〈Mtk, ν̃k〉 (1− 〈Mtk, ν̃k〉) ≤ arg max

ν̃k∈C′tk
〈Mtk, ν̃k〉

= 〈Mtk, ν〉+ arg max
ν̃k∈Ctk′

〈Mtk, ν̃k − ν〉
(a)

≤ ‖Mtk‖1 ‖νk‖∞ + 4
√
β ‖Mtk‖G−1

tk

(b)

≤ ‖Mtk‖1 ‖νk‖∞ + 4
√
β ‖Mtk‖I/α

(c)

≤ ‖Mtk‖1
(
‖νk‖∞ + 4

√
β/α

)
,

where (a) follows from Cauchy-Schwartz and the fact that νk ∈ C ′tk, (b) since G−1
tk ≤ I/α and

Proposition 8, (c) since ‖Mtk‖I/α =
√

1/α ‖Mtk‖2 ≤
√

1/α ‖Mtk‖1. The result is completed

since the resource constraints implies that
∑K
k=1 ‖Mtk‖1 ≤ D.

Proof of Theorem 2. By Theorem 3 we have that F holds with probability at most δ = 1/(nK).
If F does not hold, then by the definition of the confidence set we have νk ∈ Ctk for all t and k.
Therefore

Rn = E
n∑
t=1

K∑
k=1

(〈M∗k , νk〉 − ψ(〈Mtk, νk〉)) ≤ 1 + E

[
1 {¬F}

n∑
t=1

K∑
k=1

〈M∗k −Mtk, νk〉

]
.

Note that we were able to replace ψ(〈Mtk, νk〉) = 〈Mtk, νk〉, since if F does not hold, then Mtk

will never be chosen in such a way that resources are over-allocated. We will now assume that F
does not hold and bound the argument in the expectation. By the optimism principle we have:
n∑
t=1

K∑
k=1

〈M∗k −Mtk, νk〉
(a)

≤
n∑
t=1

K∑
k=1

min {1, 〈Mtk, ν̃tk − νk〉}

(b)

≤
n∑
t=1

K∑
k=1

min
{

1, ‖Mtk‖G−1
tk
‖ν̃tk − νk‖Gtk

}
(c)

≤ 2

n∑
t=1

K∑
k=1

min
{

1, ‖Mtk‖G−1
tk

√
β
}

(d)

≤ 2

√√√√n

n∑
t=1

β

(
K∑
k=1

min
{

1, ‖Mtk‖G−1
tk

})2

(e)

≤ 2

√√√√n

n∑
t=1

β

(
K∑
k=1

γ−1
tk

)(
K∑
k=1

γtk min
{

1, ‖Mtk‖2G−1
tk

})

(f)

≤ 2

√√√√nD

(
max
k
‖νk‖∞ + 4

√
β

α

)
n∑
t=1

β

(
K∑
k=1

γtk min
{

1, ‖Mtk‖2G−1
tk

})

(g)

≤ 4D

√√√√2βnK

(
max
k
‖νk‖∞ + 4

√
β

α

)
log(1 + 4n2) .

where (a) follows from the assumption that νk ∈ Ctk for all t and k and since Mt is chosen opti-
mistically, (b) by the Cauchy-Schwarz inequality, (c) by the definition of ν̃kt, which lies inside Ctk,
(d) by Jensen’s inequality, (e) by Cauchy-Schwarz again, (f) follows from Lemma 6. Finally (g)
follows from Corollary 5.

5 Regret in Resource-Laden Case

We now show that if there are enough resources such that the optimal strategy can complete every
task with certainty, then the regret of Algorithm 2 is poly-logarithmic (in contrast to O(

√
n) other-

wise). As before we exploit the low variance, but now the variance is small because 〈Mtk, νk〉 is
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close to 1, while in the previous section we argued that this could not happen too often (there is no
contradiction as the quantity maxk ‖νk‖ appeared in the previous bound).

Theorem 7. If
∑K
k=1 〈M∗k , νk〉 = K, then Rn ≤ 1 + 8βKD log(1 + 4n2).

Proof. We start by showing that the weights are large:

γ−1
tk = max

ν∈C′tk
〈Mtk, ν〉 (1− 〈Mtk, ν〉) ≤ max

ν∈C′tk
(1− 〈Mtk, ν〉)

≤ max
ν̄,ν∈C′tk

〈Mtk, ν̄ − ν〉 ≤ ‖Mtk‖G−1
tk

max
ν̄,ν∈C′tk

‖ν̄ − ν‖Gtk
≤ ‖Mtk‖G−1

tk
4
√
β .

Applying the optimism principle and using the bound above combined with Corollary 5 gives the
result:

ERn ≤ 1 + E

[
1 {¬F}

n∑
t=1

K∑
k=1

min {1, 〈Mtk, ν̃kt − νk〉}

]

≤ 1 + 2E

[
1 {¬F}

n∑
t=1

K∑
k=1

min
{

1, ‖Mtk‖G−1
tk

√
β
}]

= 1 + 2E

[
1 {¬F}

n∑
t=1

K∑
k=1

min
{

1, γ−1
tk γtk ‖Mtk‖G−1

tk

}√
β

]

≤ 1 + 8β E

[
1 {¬F}

n∑
t=1

K∑
k=1

min
{

1, γtk ‖Mtk‖2G−1
tk

}]
≤ 1 + 8βKD log(1 + 4n2) .

6 Experiments

We present two experiments to demonstrate the behaviour of Algorithm 2. All code and data is
available in the supplementary material. Error bars indicate 95% confidence intervals, but sometimes
they are too small to see (the algorithm is quite conservative, so the variance is very low). We used
B = 10 for all experiments. The first experiment demonstrates the improvements obtained by
using a weighted estimator over an unweighted one, and also serves to give some idea of the rate of
learning. For this experiment we used D = K = 2 and n = 106 and

ν =

(
ν1 ν2

)
=

(
8/10 2/10
4/10 2

)
=⇒ M∗ =

(
1 0

1/2 1/2

)
and

K∑
k=1

〈M∗k , νk〉 = 2 ,

where the kth column is the parameter/allocation for the kth task. We ran two versions of the
algorithm. The first, exactly as given in Algorithm 2 and the second identical except that the weights
were fixed to γtk = 4 for all t and k (this value is chosen because it corresponds to the minimum
inverse variance for a Bernoulli variable). The data was produced by taking the average regret over
8 runs. The results are given in Fig. 1. In Fig. 2 we plot γtk. The results show that γtk is increasing
linearly with t. This is congruent with what we might expect because in this regime the estimation
error should drop with O(1/t) and the estimated variance is proportional to the estimation error.
Note that the estimation error for the algorithm with γtk = 4 will be O(

√
1/t).

For the second experiment we show the algorithm adapting to the environment. We fix n = 5× 105

and D = K = 2. For α ∈ (0, 1) we define

να =

(
1/2 α/2
1/2 α/2

)
=⇒ M∗ =

(
1 0
1 0

)
and

K∑
k=1

〈M∗k , νk〉 = 1 .

The unusual profile of the regret as α varies can be attributed to two factors. First, if α is small then
the algorithm quickly identifies that resources should be allocated first to the first task. However, in
the early stages of learning the algorithm is conservative in allocating to the first task to avoid over-
allocation. Since the remaining resources are given to the second task, the regret is larger for small
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α because the gain from allocating to the second task is small. On the other hand, if α is close to 1,
then the algorithm suffers the opposite problem. Namely, it cannot identify which task the resources
should be assigned to. Of course, if α = 1, then the algorithm must simply learn that all resources
can be allocated safely and so the regret is smallest here. An important point is that the algorithm
never allocates all its resources at the start of the process because this risks over-allocation, so even
in “easy” problems the regret will not vanish.

Figure 1: Weighted vs unweighted estimation
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Figure 2: Weights
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7 Conclusions and Summary

We introduced the stochastic multi-resource allocation problem and developed a new algorithm that
enjoys near-optimal worst-case regret. The main drawback of the new algorithm is that its com-
putation time is exponential in the dimension parameters, which makes practical implementations
challenging unless both K and D are relatively small. Despite this challenge we were able to im-
plement that algorithm using a relatively brutish approach to solving the optimisation problem, and
this was sufficient to present experimental results on synthetic data showing that the algorithm is
behaving as the theory predicts, and that the use of the weighted least-squares estimation is leading
to a real improvement.

Despite the computational issues, we think this is a reasonable first step towards a more practical al-
gorithm as well as a solid theoretical understanding of the structure of the problem. As a consolation
(and on their own merits) we include some other results:

• An efficient (both in terms of regret and computation) algorithm for the case where over-
allocation is impossible.

• An algorithm for linear bandits on the hypercube that enjoys optimal regret bounds and
adapts to sparsity.

• Theoretical analysis of weighted least-squares estimators, which may have other applica-
tions (e.g., linear bandits with heteroscedastic noise).

There are many directions for future research. The most natural is to improve the practicality of the
algorithm. We envisage such an algorithm might be obtained by following the program below:

• Generalise the Thompson sampling analysis for linear bandits by Agrawal and Goyal
[2012]. This is a highly non-trivial step, since it is no longer straight-forward to show
that such an algorithm is optimistic with high probability. Instead it will be necessary to
make do with some kind of local optimism for each task.

• The method of estimation depends heavily on the algorithm over-allocating its resources
only with extremely low probability, but this significantly slows learning in the initial
phases when the confidence sets are large and the algorithm is acting conservatively. Ideally
we would use a method of estimation that depended on the real structure of the problem,
but existing techniques that might lead to theoretical guarantees (e.g., empirical process
theory) do not seem promising if small constants are expected.

It is not hard to think up extensions or modifications to the setting. For example, it would be
interesting to look at an adversarial setting (even defining it is not so easy), or move towards a
non-parametric model for the likelihood of success given an allocation.
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A Linear Algebra

We collect some well-known results in linear algebra for easy of reference. A square matrix A
is said to be positive definite (semi-definite) if it is symmetric and all its eigenvalues are positive
(nonnegative). For A,B positive definite, A ≤ B means B −A is positive semi-definite.
Proposition 8. Let A and B be positive-definite and x and y be vectors. The following hold:

1. If A ≤ B, then ‖x‖A ≤ ‖x‖B .
2. If A ≤ B, then A−1 ≥ B−1.
3. If A has maximum eigenvalue λmax, then ‖Ax‖2 ≤ λmax ‖x‖2 and λmax ≤ trace (A).
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B Concentration Bounds

Theorem 9. Let δ ∈ (0, 1) andX1, . . . , Xn be a sequence of random variables adapted to filtration
{Ft} with E[Xt|Ft−1] = 0. Let Z ⊆ {1, . . . , n} be such that 1 {t ∈ Z} is Ft−1-measurable and
let Rt be Ft−1-measurable such that |Xt| ≤ Rt almost surely. Now define

V =
∑
t∈Z

V[Xt|Ft−1] +
∑
t/∈Z

R2
t /2 , R = max

t∈Z
Rt , and S =

n∑
t=1

Xt .

Then P {S ≥ f(R, V )} ≤ δ, where

f(r, v) =
2(r + 1)

3
log

2

δr,v
+

√
2(v + 1) log

2

δr,v
, and

δr,v =
δ

3(r + 1)2(v + 1)2
.

The proof follows along precisely the same lines as the proof of Theorem 13 by Lattimore et al.
[2014b], which itself is essentially just a modification of the Freedman’s version of the Bernstein’s
inequality [Bernstein, 1946, Freedman, 1975]. The only modification required is to merge the proofs
of Theorems 3.14 and 3.15 by McDiarmid [1998] using either Lemma 2.6 or 2.7 in that work de-
pending on whether t ∈ Z or otherwise. The intuition is that we are locally able to use either
Hoeffding’s lemma (Lemma 2.6) or Bennet’s variance-dependent lemma (Lemma 2.7). See also
the classical works by Bennett [1962] and Hoeffding [1963]. Once this is done, a simple peeling
argument, identical to that used in the proof of their Theorem 13 by Lattimore et al. [2014b], is used.

C Proof of Theorem 3

Our approach generalises that used by Lattimore et al. [2014a] to the multi-dimensional case. Note
that similar results were given by Dani et al. [2008], Rusmevichientong and Tsitsiklis [2010] and
Abbasi-Yadkori et al. [2011], but none are able to effectively handle the heteroscedastic noise and
so are unsuitable for our needs. Unfortunately we were not able to generalise the beautiful method
of Abbasi-Yadkori et al. [2011], but our approach still enjoys relatively small constants and (in our
view) is relatively insightful.

We will abbreviate the notation for simplicity. Pick some task k and letM1, . . . ,Mt be a sequence of
allocations chosen for it, Y1, . . . , Yt the corresponding rewards and γ1, . . . , γt the weights as chosen
by Algorithm 2. Fixing k, we omit the k-dependence in this section.

Recall that for t ≥ 1 the gram matrix and weighted least-squares estimator are defined by

Gt = αI +
∑
s<t

γsMsM
>
s ,

ν̂t = G−1
t

∑
s<t

γsMsYs .

We also setG0 = I . Remember also that Ys is sampled from a Bernoulli distribution with parameter
〈Ms, ν〉. Assuming that 〈Ms, ν〉 ≤ 1, we can separate signal and noise by writing

Yt = 〈Ms, ν〉+ ηs ,

where ηs ∈ [−1, 1], E[ηs|Fs−1] = 0 and V[ηs|Fs−1] = 〈Ms, ν〉 (1 − 〈Ms, ν〉). Note that the
algorithm is crafted in such a way that 〈Ms, ν〉 ≤ 1 unless some confidence interval fails, which
only occurs on a low probability failure event Ft to be defined shortly. For this reason we are able to
ignore the non-linear part of the pay-off for this section, but the price we pay is that the confidence
intervals must be chosen wide enough that the failure probability is very low, while other algorithms
(such as UCB) are able to recover from failing confidence intervals. The confidence sets are given
by

Cs =
{
ν̃ : ‖ν − ν̂s‖2Gs

≤ β
}

and C ′s =
{
ν̃ : ‖ν − ν̂s‖2Gs

≤ 4β
}
.
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The key in the proof of Theorem 3 will be controlling the size of St defined by

St =
∑
s<t

γsηsMs .

Let F0 ⊆ F1 ⊆ · · · ⊆ Fn be a sequence of failure events defined by

Ft =
{
∃s ≤ t such that ‖Ss‖G−1

s
+
√
αB ≥

√
β
}
.

Lemma 10. Let t ≥ 1. If Ft does not hold, then ν ∈ Ct.

Proof. Since Ft does not hold, we have that ‖St‖G−1
t

+
√
αB ≤

√
β. Then,

‖ν̂t − ν‖Gt

(a)
=

∥∥∥∥∥G−1
t St +G−1

t

∑
s<t

γsMsM
>
s ν −G−1

t Gtν

∥∥∥∥∥
Gt

(b)
=
∥∥G−1

t St − αG−1
t ν

∥∥
Gt

(c)

≤ ‖St‖G−1
t

+ α ‖ν‖I/α
(d)

≤
√
β −
√
αB +

√
α ‖ν‖2

(e)

≤
√
β ,

where (a), (b) are immediate by substituting the definitions, (c) from the triangle inequality and
Proposition 8.§2. Finally, (d) and (e) follow from the assumptions and because ‖ν‖2 ≤

√
B. There-

fore ν ∈ Ct.

Proof of Theorem 3. Note that by definition β ≥ B, hence F0 holds. Let t ≤ n and assume that
Ft−1 holds, which by Lemma 10 implies that ν ∈ Cs for all s < t. Shortly we will show that

P
{
‖St‖G−1

t
+
√
αB ≥

√
β and not Ft−1

}
≤ δ/n . (3)

Then by induction we see that P {¬Fn} ≥ 1− δ, and so by Lemma 10 it follows that ν ∈ Ct for all
t ≤ n with probability at least 1− δ.

We now work on showing Eq. (3). Let λ ∈ RD and define

Vs,λ =

{
V[ηs|Fs−1]γ2

s 〈Ms, λ〉2 , if γs > 4;

γs 〈Ms, λ〉2 , otherwise,

Rλ = max
s<t
{γs 〈Ms, λ〉 : γs > 4} .

Then, by Theorem 9 we have with probability at least 1− δ/n that

〈St, λ〉 =
∑
s<t

γsηs 〈Ms, λ〉

≤ 2(Rλ + 1)

3
log

1

δλ
+

√√√√2

(
1 +

∑
s<t

Vs,λ

)
log

1

δλ
,

where

δλ =
3n

δ (1 +Rλ)
2 (

1 +
∑
s<t Vs,λ

)2 .
Let ε > 0 and C > 0 be constants to be chosen later and define the covering set

Λ = {−C,−C + ε, . . . , 0, . . . , ε, . . . , C − ε, C}D ,
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which has size N = |Λ| = (2C/ε)D. Then, by the union bound we have with probability at least
1− δ that

〈St, λ〉 ≤
2(Rλ + 1)

3
log

N

δλ
+

√√√√2

(
1 +

∑
s<t

Vs,λ

)
log

N

δλ
for all λ ∈ Λ . (4)

From now on, assume this event occurs. Since Ft−1 does not hold we can apply Lemma 14 to get∥∥G−1
t St

∥∥
∞ ≤ ‖St‖1 ≤ 2t2D = C .

Let λ = G−1
t St (which is a random quantity) for which ‖λ‖∞ ≤ C. Then there exists a λ′ ∈ Λ

such that λ′ ≤ λ and ‖λ′ − λ‖∞ ≤ ε.

‖St‖2G−1
t

= 〈St, λ〉 ≤ ‖St‖1 ε+ 〈St, λ′〉 .

Therefore

‖St‖2G−1
t
≤ ‖St‖1 ε+

2(Rλ + 1)

3
log

N

δλ
+

√√√√2

(
1 +

∑
s<t

Vs,λ

)
log

N

δλ
, (5)

where we used the fact that Rλ1 ≤ Rλ2 and Vs,λ1 ≤ Vs,λ2 and 1/δλ1 ≤ 1/δλ2 for λ1 ≤ λ2. We
now bound the sum term: ∑

s<t

Vs,λ
(a)

≤
∑
s<t

γs 〈Ms, λ〉2

(b)
=
∑
s<t

γs(G
−1
t St)

>MsM
>
s G
−1
t St

(c)
= (G−1

t St)
>
∑
s<t

γsMsM
>
s G
−1
t St

(d)

≤ S>t G
−1
t St

(e)
= ‖St‖2G−1

t
, (6)

where (a) follows from the definition of Vs,λ and since if ν ∈ Cs, then γs ≤ V[ηs|Fs−1], (b) by
substituting the definition of λ, (c) by calculation, (d) follows since

∑
s<t γsMsM

>
s < Gt and (e)

is just the definition. We now set ε = 1/(2t2D) to obtain

‖St‖2G−1
t

(a)

≤ ‖St‖1 ε+
2(Rλ + 1)

3
log

N

δλ
+

√
2
(

1 + ‖St‖2G−1
t

)
log

N

δλ
(b)

≤ 1 +
2(Rλ + 1)

3
log

N

δλ
+

√
2
(

1 + ‖St‖2G−1
t

)
log

N

δλ

(c)

≤ 1 +

2

(
2‖St‖G−1

t√
β

+ 1

)
3

log
N

δλ
+

√
2
(

1 + ‖St‖2G−1
t

)
log

N

δλ
, (7)

where (a) follows by substituting the previous computation into Eq. (5), (b) since ‖St‖1 ε ≤ 1 by
Lemma 14 and the assumption that Ft−1 does not hold, (c) by Lemma 12 and the assumption that
Ft−1 does not hold. From Eq. (3) and Lemma 12 and the definition of β we also obtain

δλ ≤
3n

δ
(

1 + ‖St‖2G−1
t

)2 .

By rearranging and naively simplifying Eq. (7), it can be shown that

‖St‖G−1
t

+
√
B ≤ 1 +

√
αB + 2

√
log

N

δλ

= 1 +
√
αB + 2

√√√√√√log

3nN
(

1 + ‖St‖2G−1
t

)2

δ

 .
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The result is finally completed by solving the equation above and choosing

β =

(
1 +
√
αB + 2

√
log

(
6nN

δ
log

(
3nN

δ

)))2

.

It remains to prove the lemmas that were used in this proof.

Lemma 11. For any s < t, it holds that

γs ‖Ms‖G−1
t
≤ γs ‖Ms‖G−1

s
.

Further, if Ft−1 does not hold, then for all s < t such that γs > 4,

γs ‖Ms‖G−1
t
≤ γs ‖Ms‖G−1

s
≤ 2√

β
≤ 1 .

Proof. The first inequality follows because Gt ≥ Gs and an application of Proposition 8.§2. Since
Ft−1 does not hold, we have ν ∈ Cs and since γs > 4 we have from Eq. (2) that one of the following
is true:

γ−1
s ≥ 1

2

(
〈Ms, ν̂s〉+ 2

√
β ‖Ms‖G−1

s

)
≥
√
β ‖Ms‖G−1

s
/2 ;

γ−1
s ≥ 1

2

(
1− 〈Ms, ν̂s〉+ 2

√
β ‖Ms‖G−1

s

)
≥
√
β ‖Ms‖G−1

s
/2 .

Lemma 12. If Ft−1 does not hold and λ = G−1
t St, then Rλ ≤

2 ‖St‖G−1
t√

β
.

Proof. We apply Lemma 11 to get

γs 〈Ms, λ〉
(a)

≤ 2 〈Ms, λ〉
‖Ms‖G−1

t

√
β

(b)
=

2 〈Ms, G
−1
t St〉

‖Ms‖G−1
t

√
β

(c)

≤
2 ‖St‖G−1

t√
β

,

where (a) follows from Lemma 11, (b) is just the definition of λ and (c) is follows from Cauchy-
Schwarz.

Lemma 13. If Ft does not hold, then γt ‖Mt‖1 ≤ 4tD and γt ‖Mt‖22 ≤ 4tD.

Proof. The result holds trivially if γt = 4. Suppose γt > 4 and let λmax be the maximum eigenvalue
of Gt. Then, by Lemma 11, we have

γt ‖Mt‖22
(a)

≤ 2√
β
‖Mt‖22 ‖Mt‖−1

G−1
t

(b)

≤ 2
√
D/β ‖Mt‖2 ‖Mt‖−1

G−1
t

(c)

≤
∥∥∥G1/2

t G
−1/2
t Mt

∥∥∥
2
‖Mt‖−1

G−1
t

(d)

≤
√
λmax ,

where (a) follows from Lemma 11, (b) by bounding ‖Mt‖2 ≤
√
D, (c) holds by 4D ≤ β, and (d)

follows from Proposition 8.§3. Similarly,

γt ‖Mt‖1 ≤
2√
β
‖Mt‖1 ‖Mt‖−1

G−1
t

≤ 2
√
D√
β
‖Mt‖2 ‖Mt‖−1

G−1
t

≤
√
λmax .
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Now assume that γs ‖Ms‖22 ≤ 4sD for all s < t, which is immediate if t = 1. Then,

γt ‖Mt‖22 ≤
√
λmax

(a)

≤
√

trace (Gt)

=

√√√√(D +

t−1∑
s=1

γt ‖Mt‖22

)
≤

√√√√(D + 4D

t−1∑
s=1

s

)
=
√
D (1 + 2t(t− 1)) ≤ 4tD ,

where (a) again follows from Proposition 8.§3 and the remaining steps are immediate. Therefore by
induction, we have γt ‖Mt‖22 ≤ 4tD for all t.

Lemma 14. If Ft−1 does not hold, then ‖St‖1 ≤ 2t2D.

Proof. We use |ηs| ≤ 1 and the previous lemma to get

‖St‖1 =

∥∥∥∥∥∑
s<t

γsηsMs

∥∥∥∥∥
1

≤
∑
s<t

γs ‖Ms‖1 ≤
∑
s<t

4sD ≤ 2t2D .

Lemma 15. If Ft does not hold, then γt min
{

1, ‖Mt‖2G−1
t

}
≤ 4 min

{
1, γt ‖Mt‖2G−1

t

}
.

Proof. If γt = 4, then the result is trivial. For γt > 4, by Lemma 11, γt ‖Mt‖2G−1
t
≤ 1. Hence, we

need to prove γt min
{

1, ‖Mt‖2G−1
t

}
≤ 4γt ‖Mt‖2G−1

t
, which is obvious.

D Proof of Theorem 1

Define edi ∈ RD×K to be the matrix with (edi)ck = 1 {c = d and k = i}. For M ∈ M we write
µ(M) =

∑K
k=1 ψ(〈Mk, νk〉) to be the reward for allocation M . Given an allocation M ∈ M we

define the conditional optimal allocation function M∗ :M→ RD×K by

M∗(M) = arg max
M ′∈M

{
K∑
k=1

ψ(〈M ′k, ν〉) : M ′dk ≥Mdk for all d and k

}
,

µ∗(M) =

K∑
k=1

ψ(〈M∗(M)k, νk〉) ,

µ∗ = µ∗(0) .

Note that M∗(0) = M∗ is the optimal allocation while M∗(M) is the optimal allocation given
that one has committed to allocating at least M already. Let Mt ∈ [0, 1]K×D be the allocation of
Algorithm 1 after t iterations. Assume that µ∗(Mt−1) = µ∗, which is trivial for t = 1. Let (i, d)
be the task/resource pair selected in the tth iteration of Algorithm 1. Suppose that at this point it is
sub-optimal to allocate resource d to task i. Then

∇ediµ∗(Mt−1) < 0 .

This implies that under the optimal allocation, resource d should not be allocated to task i and instead
to some other task j 6= i. Therefore ψ(〈M∗(Mt−1)i, νi〉) = 1, since otherwise

∇edi−edjµ∗(Mt−1) = νdi − νdj ≥ 0 ,

which is a contradiction. Therefore there exists some other resource 1 ≤ c ≤ D that is assigned to
task i under the optimal allocation. We choose

α =
νdjνci
νdiνcj

≤ 1
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and compute the derivative, to get

∇edi−eciνdi/νci−edj+ecjανdi/νciµ
∗(Mt−1)

= νcjα
νdi
νci
− νdj

= 0 ,

which again implies that allocating resource d to task i is not sub-optimal, which is a contradiction.
Therefore∇ediµ∗(Mt−1) = 0 and so Algorithm 1 is optimal by induction.

E Resource Allocation when ‖νk‖1 ≤ 1

Throughout this subsection we assume that ‖νk‖1 ≤ 1 for all k. Therefore ψ(〈Mk, νk〉) = 〈Mk, νk〉
for allM ∈M and k. Therefore the optimal strategy assigns all of resource d to the task k for which
νkd is the greatest:

M∗kd = 1

{
k = arg max

i
νid

}
,

where ties are broken arbitrarily. The algorithm operates by maintaining a set of tasks for each
resource that are plausibly still optimal. Each resource type is then allocated to a single task in this
set uniformly at random, with tasks being removed from this set in phases as the algorithm proves
that allocating a particular resource to this task is sub-optimal with high probability. The structure
of the problem then allows us to simultaneously estimate all parameters of ν using importance
sampling, which ultimately leads to an optimal rate. The algorithm is easily implemented to run in
O(KD) per iteration.

Algorithm 3 Unconstrained Allocation Algorithm

1: Input: K, D, n, δ
2: Ad := [K] and ∆d := 1 and τd := nd := 0
3: for t ∈ 1, . . . , n do
4: for d ∈ 1, . . . , D do
5: if t = τd + 1 then
6: ν̂kd := 1

nd

∑τd
s=τd−nd+1 ZskdYsk

7: Ad := Ad ∩ {k : µ̂kd + 2∆d ≥ maxj µ̂jd}
8: ∆d := ∆d/2
9: nd := n(|Ad|,∆d) and τd := τd + nd

10: end if
11: Itd ∼ Uniform(Ad)
12: Choose Mtkd := 1 {k = Itd}
13: Ztkd := |Ad|Mtkd − |Ad|

|Ad|−1 (1−Mtkd)

14: end for
15: Observe reward Ytk ∼ Bernoulli(〈Mtk, νk〉)
16: end for
17: function n(m,∆)

18: Return
⌈

2(6 + 3m+ ∆)

3∆2
log

2

δ

⌉
19: end function

F Regret of Algorithm 3

Theorem 16. Define ν∗d = maxk νkd and ∆kd = ν∗d − νkd ≥ 0. The regret of Algorithm 3 when
run with δ = (DKn)−2 is at most

Rn ∈ O

(
D∑
d=1

∑
k:∆kd>0

log nKD

∆kd

)
. (8)
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Corollary 17. The regret of Algorithm 3 satisfies Rn ∈ Õ(D
√
Kn) in the worst-case.

The proof of the corollary is omitted, but follows from standard arguments for converting from
problem-dependent to problem-independent regret bounds (Bubeck and Cesa-Bianchi [2012] and
others).

Before presenting the analysis we compare the regret bound of Theorem 16 to the well-known prob-
lem dependent bounds for finite-armed bandits, which look the same as Eq. (8), but with D = 1. An
incautious reader might believe that a bound similar to Eq. (8) could be derived by simultaneously
running D copies of some optimal bandit algorithm. But this is not the case because the algorithm
observes a reward for each task and not for each resource. Alternatively one could ignore the semi-
bandit feedback and apply an algorithm designed for stochastic linear bandits. This approach also
leads to sub-optimal bounds because the K will appear outside of the square root. The optimal
regret can only be obtained be exploiting the special structure of the problem. Notably, that if only a
small amount of resources are allocated to a particular task, then the probability that it is completed
is close to zero and hence the variance of the outcome is significantly reduced. This low variance
can then be exploited to accelerate the rate of estimation of the parameters beyond what is normally
possible.

Proof of Theorem 16. We will analyse the regret using the following decomposition

Rn =

n∑
t=1

D∑
d=1

ν∗d − E

[
n∑
t=1

K∑
k=1

〈Mtk, νk〉

]
=

D∑
d=1

E

[
n∑
t=1

∆dItd

]
.

Now we fix d and analyse the expectation inside the sum. Let τd1, τd2, . . . be the sequence of values
of τd as it is updated in Line 9 of the algorithm, and let nd1, nd2, . . . be the corresponding sequence
of the values of nd. Similarly, let Ad1,Ad2, . . . be the sequence of sets of active tasks.

E

[
n∑
t=1

∆dItd

]
= E

[ ∞∑
`=1

τd∑̀
t=τd`−nd`+1

∆dItd

]
=

∞∑
`=1

E

[
τd∑̀

t=τd`−nd`+1

∆dItd

]

=

∞∑
`=1

E

[
nd`

∑
k∈Ad`

∆kd

|Ad`|

]
≤
∞∑
`=1

E

[
20

3(2−`)2

(
log

2

δ

) ∑
k∈Ad`

∆kd

]
. (9)

Shortly we are going to show with sufficiently high probability that for ` ≥ d− log2(∆kd/4)e we
have k /∈ Ad` and that k∗d = arg maxk νkd is in Ad`. Therefore

(9) ≤
K∑
k=1

d− log2(∆kd/4)e∑
`=1

20∆kd

3(2−`)2
log

2

δ
≤

K∑
k=1

16 · 20 · 4
3∆kd

log
2

δ
.

Let {Ft}nt=1 be the filtration of information available up to each time step. Let τd` − nd` + 1 ≤ t ≤
τd`. A straightforward computation shows the following results:

1. E[ZtkdYtk|Ft−1] = νkd.
2. ZtkdYtk ∈ {0, |Ad|}.
3. V[ZtkdYtk|Ft−1] ≤ |Ad|+ 2.

Let ν̂kd be the estimate of νkd made at time step τ` in Line 6 of Algorithm 3. We apply the martingale
version of Bernstein’s inequality (Theorem 3.15 by McDiarmid [1998]) to obtain

P
{
|ν̂kd − νkd| ≥ 2−`

}
= P

{∣∣∣∣∣
τd∑

s=τd−nd+1

ZskdRsk − ndνkd

∣∣∣∣∣ ≥ nd2−`
}

≤ 2 exp

− nd(2
−`)2

2
(
|Ad|+ 2 + |Ad|2−`

3

)
 ≤ δ .

But if |ν̂kd−νkd| ≤ 2−` for all k, then (a) k∗d is not removed from |Ad| and (b) ` ≥ d− log2(∆kd/4)e
implies that k is removed fromAd. The probability that there exists a resource d, phase ` and k such
that |ν̂kd − νkd| ≥ 2−` in the `th phase is bounded using the union bound by DK`δ ≤ DKnδ.
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Therefore if Algorithm 3 is run with δ = (DKn)−2, then the contribution of the regret to the failure
of any confidence set is at most 1, which leads to a regret bound

Rn ≤ 1 +
4 · 16 · 20

3

D∑
d=1

K∑
k=1

1

∆kd
log

2

δ

as required.

G Linear Bandits on the Hypercube

The importance sampling approach used in the previous section can be applied to linear stochastic
bandits on the hypercube. In this case the algorithm chooses Mt ∈ [0, 1]d at each time step and
receives reward Yt = 〈Mt, ν〉 + ηt where ν ∈ Rd satisfies ‖ν‖1 ≤ 1 and ηt ∈ [−1, 1] has zero
mean. Note that ν may be negative in some dimensions, so the optimal strategy is not knowable in
advance.

Algorithm 4
1: for t ∈ 1, . . . , n do
2: for d ∈ 1, . . . , D do

3: ν̂td =

∑t−1
τ=1 ψtdMtdYt∑t−1

τ=1 ψtd

4: ctd =

√
2 log(2n2)∑t−1

τ=1 ψtd
5: Sample Xtd ∈ {−1, 1} with P {Xtd = 1} = 1/2

6: ψtd =

{
1 if ν̂td ∈ (−ctd, ctd)
0 otherwise

7: Mtd =


1 if ν̂td − ctd > 0

−1 if ν̂td + ctd < 0

Xtd otherwise
8: end for
9: end for

Theorem 18. The regret of Algorithm 4 is at most Rn ≤ 3 ‖ν‖1 +
∑
d:νd 6=0

2 log(2n2)

|νd|
.

This result is especially nice because (a) the algorithm is efficient, (b) the bound scales optimally
with the dimension, (c) the problem-dependent bound is essentially correct, and finally (d), the
bound is adaptive to sparsity in ν with no dependence on D if ν is sparse. The algorithm and proof
are significantly more straight-forward than above as the Bernstein’s inequality and phases can be
replaced by straight-forward union bounds in combination with Azuma’s inequality. Details may be
found in Appendix G.

Proof of Theorem 18. Let {Ft} be the filtration with Ft containing information up to time step t.
Then ν̂td, ctd and ψtd are all Ft−1-measurable. First we note that Yt ∈ [−2, 2] and that if ψtd = 1,
then E[ψtdMtdYt|Ft−1] = νd and ψtdMtdYt ∈ [−2, 2]. Let Fd be the event that there exists a t ≤ n
for which |ν̂td − νd| > ctd. By Azuma’s inequality and the union bound we have P {Fd} ≤ 1/n.
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We now decompose the regret

Rn = E

[
n∑
t=1

D∑
d=1

(|νd| −Mtdνd)

]

=

D∑
d=1

E

[
1 {Fd} · 2n|νd|+ 1 {¬Fd}

n∑
t=1

(|νd| −Mtdνd)

]

≤ 2 ‖ν‖1 +

D∑
d=1

E

[
1 {¬Fd}

n∑
t=1

(|νd| −Mtdνd)

]

= 2 ‖ν‖1 +
∑
d:νd 6=0

|νd|
⌈

2 log(2n2)

|νd|2

⌉

≤ 3 ‖ν‖1 +
∑
d:νd 6=0

2 log(2n2)

|νd|
.

The second last line follows from two facts. First, if ψtd = 0 and ¬F , then |νd| −Mtdνd = 0.
Second, if ¬F and

t−1∑
τ=1

ψτd >

⌈
2 log(2n2)

|νd|2

⌉
,

then ψtd = 0.

Remark 19. With only a little effort this algorithm could be made anytime. It may also be possible
to make the (already quite small) constants smaller.
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