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Abstract

Learning the structure of a probabilistic graphical models is a well studied prob-
lem in the machine learning community due to its importance in many applica-
tions. Current approaches are mainly focused on learning the structure under re-
strictive parametric assumptions, which limits the applicability of these methods.
In this paper, we study the problem of estimating the structure of a probabilistic
graphical model without assuming a particular parametric model. We consider
probabilities that are members of an infinite dimensional exponential family [4]],
which is parametrized by a reproducing kernel Hilbert space (RKHS) 7 and its
kernel k. One difficulty in learning nonparametric densities is the evaluation of
the normalizing constant. In order to avoid this issue, our procedure minimizes
the penalized score matching objective [10,[11]]. We show how to efficiently min-
imize the proposed objective using existing group lasso solvers. Furthermore, we
prove that our procedure recovers the graph structure with high-probability under
mild conditions. Simulation studies illustrate ability of our procedure to recover
the true graph structure without the knowledge of the data generating process.

1 Introduction

Undirected graphical models, or Markov random fields [13], have been extensively studied and ap-
plied in fields ranging from computational biology [15, [28]], to natural language processing [[16, 20]
and computer vision [9} [17]]. In an undirected graphical model, conditional independence assump-
tions underlying a probability distribution are encoded in the graph structure. Furthermore, the joint
probability density function can be factorized according to the cliques of the graph [14]. One of the
fundamental problems in the literature is learning the structure of a graphical model given an i.i.d.
sample from an unknown distribution. A lot of work has been done under specific parametric as-
sumptions on the unknown distribution. For example, in Gaussian Graphical Models the structure of
the graph is encoded by the sparsity pattern of the precision matrix [6,[30]. Similarly, in the context
of exponential family graphical models, where the node conditional distribution given all the other
nodes is a member of an exponential family, the structure is described by the non-zero coefficients
[29]. Most existing approaches to learn the structure of a high-dimensional undirected graphical
model are based on minimizing a penalized loss objective, where the loss is usually a log-likelihood
or a composite likelihood and the penalty induces sparsity on the resulting parameter vector [see,
for example, (6 [12} [18] 22} 24| 29, [30]]. In addition to sparsity inducing penalties, methods that
use other structural constraints have been proposed. For example, since many real-world networks
are scale-free [[1], several algorithms are designed specifically to learn structure of such networks



[5L119]. Graphs tend to have cluster structure and learning simultaneously the structure and cluster
assignment has been investigated [2} 27].

In this paper, we focus on learning the structure of a pairwise graphical models without assuming
a parametric class of models. The main challenge in estimating nonparametric graphical models
is computation of the log normalizing constant. To get around this problem, we propose to use
score matching [[10, [11]] as a divergence, instead of the usual KL divergence, as it does not require
evaluation of the log partition function. The probability density function is estimated by minimizing
the expected distance between the model score function and the data score function, where the score
function is defined as gradient of the corresponding probability density functions. The advantage
of this measure is that the normalization constant is canceled out when computing the distance. In
order to learn the underlying graph structure, we assume that the logarithm of the density is additive
in node-wise and edge-wise potentials and use a sparsity inducing penalty to select non-zero edge
potentials. As we will prove later, our procedure will allow us to consistently estimate the underlying
graph structure.

The rest of paper is organized as follows. We first introduce the notations, background and related
work. Then we formulate our model, establish a representer theorem and present a group lasso
algorithm to optimize the objective. Next we prove that our estimator is consistent by showing that
it can recover the true graph with high probability given sufficient number of samples. Finally the
results for simulated data are presented to demonstrate the correctness of our algorithm empirically.

1.1 Notations

Let [n] denote the set {1,2,...,n}. For a vector § = (b1,...,04)7 € R% let 0], =
(Xieq) |0i|p)% denote its [, norm. Let column vector vec(D) denote the vectorization of ma-

trix D, cat(a,b) denote the concatenation of two vectors a and b, and mat(al,...,al) the
matrix with rows given by a7, ... ,ag. For x C RY, let LP(x,po) denote the space of func-
tion for which the p-th power of absolute value is pg integrable; and for f € LP(x,pg), let

1

1fllze ooy = Ifllp = (fx |f|Pdz)» denote its LP norm. Throughout the paper, we denote H
(or H;,H;5) as Hilbert space and (-, -)3, || - || as corresponding inner product and norm.

For any operator C' : H1 — Hao, we use ||C|| to denote the usual operator norm, which is defined as
[C]l = inf{a > 0: |Cflls, < all fllw, forall feHi};
and ||C|| g s to denote its Hilbert-Schmidt norm, which is defined as
ICIEs = D ICesl3,,
iel

where e; is an orthonormal basis of H for an index set I. Also, we use R(C') to denote operator C’s
range space. For any f € H{; and g € H, let f ® g denote their tensor product.

2 Background & Related Work

2.1 Learning graphical models in exponential families

Letxz = (x1, x2, ..., ¢4) be a d-dimensional random vector from a multivariate Gaussian distribution.
It is well known that the conditional independency of two variables given all the others is encoded
in the zero pattern of its precision matrix €2, that is, z; and x; are conditionally independent given
x_;; if and only if Q;; = 0, where x_;; is the vector of = without x; and x;. A sparse estimate
of ) can be obtained by maximum-likelihood (joint selection) or pseudo-likelihood (neighborhood
selection) optimization with an added /; penalty [0} 22| [30]. Given n independent realizations of x
(rows of X € R"*9), the penalized maximum-likelihood estimate of the precision matrix can be
obtained as

O :arggli%tr(SQ)—logdetQ—i-)\HQHl, (1)
-

where § = n~! X7 X and \ controls the sparsity level of estimated graph.



The pseudo-likelihood method estimates the neighborhood of a node a by the non-zeros of the
solution to a regularized linear model

- 1
05 :argn%inE”Xs —X750‘|§+/\||0H1. 2)
The estimated neighborhood is then N (s) = {a : 65, # 0}.

Another way to specify a parametric graphical model is by assuming that each node-conditional
distributions is a part of the exponential family [29]. Specifically, the conditional distribution of x
given x_g is assumed to be

P(zz_o) =exp( Y Ouwszs + Clzs) — D(x_,0)), 3)
teEN(s)

where C is the base measure, D is the log-normalization constant and N () is the neighborhood a the
node s. Similar to (2)), the neighborhood of each node can be estimated by minimizing the negative
log-likelihood with [ penalty on . The optimization is tractable when the normalization constant
D can be easily computed based on the model assumption. For example, under Poisson graphical
model assumptions for count data, the normalization constant is — GXP(EtE N(s) Osix¢). When using
the neighborhood estimation, the graph can be estimated as the union of the neighborhoods of each
node, which leads to consistent graph estimation [22, [29].

2.2 Generalized Exponential Family and RKHS

We say H is a RKHS associated with kernel & : x x x — Ry if and only if for each x € Y, the
following two conditions are satisfied: (1) k(-, ) € H and (2) it has reproducing properties such that
flx) = (f,k(-,x))n for all f(-) € H, where k is a symmetric and positive semidefinite function.
Denote the RKHS H with kernel k as #H (k).

For any f € H(k), there exists a set of z; and «, such that f(-) = > ;2 a;k(-,z;). Similarly
for any g € H(k),g(-) = >52, Bjk(- y;), the inner product of f and g is defined as (f, g)» =

> ij=1 @iBjk(xi, y;). Therefore the norm of f simply is || |2 = \/Z” a;ok(2;, 25). The sum-
mation is guaranteed to be larger than or equal to zero because the kernel £ is positive semidefinite.
We consider the exponential family in infinite dimensions [4], where

P ={ps(x) = /AWy (2),x € x; f € F}
and the function space F is defined as

F={f €U0): Af) =log [ /Pao(w)dz < o),

where go(z) is the base measure, A(f) is a generalized normalization constant such that ps(x) is
a valid probability density function, and H is a RKHS [3] associated with kernel k. To see it as
a generalization of the exponential family, we show some examples that can generate useful finite
dimension exponential families:

e Normal: x = R, k(z,y) = 2y + 2%y?

e Poisson: x = NU {0}, k(z,y) = zy

e Exponential: x = Ry, k(z,y) = zy.
For more detailed information, please refer to [4].

When learning structure of a graphical model, we will further impose structural conditions on H (k)
in order ensure that F consists of additive functions.

2.3 Score Matching

Score matching is a convenient procedure that allows for estimating a probability density without
computing the normalizing constant [10 11]]. Tt is based on minimizing Fisher divergence

‘PM? ~ dlogpo(a) ||

9z dzx, 4)

J(pllpo) =

2



where

alogf(z) = (Ylosr(@) alcégxi(x)) is the score function. Observe that for p(z,0) =

- roumnt RRRE
%q(z, ) the normalization constant Z(#) cancels out in the gradient computation, which makes
the divergence independent of Z(#). Since the score matching objective involves the unknown or-
acle probability density function py, it is typically not computable. However, under some mild
conditions which we will discuss in METHODS section, (H]) can be rewritten as

1 dlogp(x),, = 0*logp(x)
J = - .
(pllpo) /po(m) Z 5! o ) e (5)
i€[d] 2
After substituting the expectation with an empirical average, we get
1 alogp a) 02 log p(Xa)
J(pllpo) = Z P e T ©6)
ae [n] i€[d) ¢ i

Compared to maximum likelihood estimation, minimizing J(p||po) is computationally tractable.
While we will be able to estimate py only up to a scale factor, this will be sufficient for the purpose
of graph structure estimation.

3 Methods

3.1 Model Formulation and Assumptions

We assume that the true probability density function pg is in P. Furthermore, for simplicity we
assume that

logpo() = f(x) = Y fou(@i,zy),
(1LJS)]€S

where fo ;;(;,2;) is a node potential and fy ;;(x;, x;) is an edge potential. The set S denotes the
edge set of the graph. Extensions to models where potentials are defined over larger cliques are
possible. We further assume that fy;; € H;;(ki;), where ;; is a RKHS with kernel k;;. To
simplify the notation, we use fo ;;(x) or k;;(-, x) to denote fo;;(x;,x;) and ky; (-, (z;,2;)). If the
context is clear, we drop the subscript for norm or inner product. Define

H(S) =A{f= Z fijlfi; € Hij} (N

(i,5)eS

as a set of functions that decompose as sum of bivariate functions on edge set S. Note that
H(S) is also (a subset of) a RKHS with the norm Hf||$_[(s) = Y (ij)es ||f”||3_1” and kernel
k = Z(l,j)es k’L]~

Let Q(f) = [[flln1 = >2i<j |1 fijll,- For any edge set S (not necessarily the true edge set), we
denote Qs(fs) = >, cg |l fs|l2. as the norm Q reduced to S. Similarly, denote its dual norm as
Vs[fs] = maxqg(gs)<1(fs, gs) [23].

Under the assumption that the unknown fy is additive, the loss function becomes

0L oS (2B

i€[d]
: Okij (-, (@i, Okjr (-, (@i, jr
3 2 3 U fus ooy PR SN iy o)
i€(d] j,j'€ld] i ;
1
=52 2. U= fous Oy iy = foay))
i€[d] 4,5’ €[d]

Intuitively, C' can be viewed as a d> matrix, and the operator at position (ij,ij') is Cyj;;. For
general (i7,4'j"),4 # ¢’ the corresponding operator simply is 0. Define Csg as

/po(x) Z Okij (-, (i, 75)) @ 3ki'j/('a(ﬂfi/vﬂfj’))dx’

ox; ox;
(1,5)€8,(i",5") €S’ ! !




which intuitively can be treated as a sub matrix of C' with rows .S and columns S’. We will use this
notation intensively in the main theorem and its proof.

Following [26]], we make the following assumptions.
Al. Each £;; is twice differentiable on x x x.
A2. For any i and Z; € x; = [a;, b;], we assume that
0k
hm L] (I7 y)

z;—al or b 8-7518%

i

|y=3f p%(x) =0,

where © = (z;, %;) and a;, b; could be —oo or co.
A3. This condition ensures that J(p||py) < oo for any p € P [for more details see [26]:
akij(-,ib) ﬁzkij(~,x)

HT 22 1., € L2(X7P0)-

H'H” € LQ(Xap0)7 H

Ad4. The operator Csg, is compact and the smallest eigenvalue wyin = Amin(Css) > 0.
AS. Q% [CSCSCSfé] <1-—n, where n > 0.
A6. fy € R(C), which means there exists v € H, such that fo = Cy. fo is the oracle function.

We will discuss the definition of operator C' and 2* in section 4. Compared with [29], A4 can be
interpreted as the dependency condition and the A5 is the incoherence condition, which is a standard
condition for structure learning in high dimensional statistical estimators.

3.2 Estimation Procedure
We estimate f by minimizing the following penalized score matching objective
min £,(f) = J() + Gl
st fij € Hij, (®)
where J(f) is given in (). The norm ||f|j3.1 = > i<j I fijlla, is used as a sparsity inducing

penalty. A simplified form of J (f) is given below that will lead to efficient algorithm for solving

The following theorem states that the score matching objective can be written as a penalized
quadratic function on f.

Theorem 3.1 (i) The score matching objective can be represented as

£u() = 54~ Fo O = o)) + Bl ©

where C' = [ po(x) > ield) a%(g'c’f) ® %ﬁdm is a trace operator.

(ii) Given observed data X,y q, the empirical estimation of L, is

. 1 . .
Lu(£) =5 (F.CH + D igs—Eia) + S| fllaa + const (10)
i<j
A k(- Xa k(X4 £ %kij ((XairXaj
Where C = %Zae[n] ZiG[d] (8:1:1 ) ® éwL ) and é"b] = %Zae[n] W +

62k1 ) Xai7Xa” £ - £ 1 62’% ) Xaiaxa' ;
il Xag)) éz? D ifi # jooor iy = £ e, T4 éxf 2 otherwise

Please refer to our supplementary material for detailed proof

The above theorem still requires us to minimize over F. Our next results shows that the solution is
finite dimensional. That is, we establish a representer theorem for our problem.

'Please visit ttic.uchicago.edu/~siqi for supplementary material and code.



Theorem 3.2 (i) The solution to (I0) can be represented as

Okij (-5 (Xoi, Xp;))

o, + g, (11)

fzg Z ﬂ bij ak”( (Xb“Xb])) +5]z

be[n] 81‘1

where 1 < j.
(ii) Minimizing is equivalent to minimizing the following quadratic function:

2
1 Z Z a
% < (Bblj zjll +Bbﬂ zj12 al.]hl )

bj

+ ZZ Buijhiy + Bujihiy) + Zaij||§ij||2 + §||f\|7{,1

i<j 1<j
1 T H
=5 (D 0+ B0+ 5 > (/08 F6 (12)
(59
where ijbrs = %ﬁ;yﬁxxb) h”b = <%7Xb),éw> are constant that only depends on X, 0 =

cat(vec(a), vec(B)) is the vector parameter and 6;; = cat(ca;, vec(f.i;)) is a group of parameters.
Dy, E and F are corresponding constant vectors and matrices based on G, h and the order of
parameters. Then the above problem can be solved by group lasso [7 121]].

The first part of theorem states our representer theorem, and the second part is obtained by plugging
in (TI) to (I0). See supplementary material for a detailed proof. Theorem [3.2] provides us with an
efficient way to minimize (8, as it reduced the optimization to a group lasso problem for which
many efficient solvers exist.

Let f” = argminyey LA',#( /) denote the solution to (I2)). We can estimate the graph as follows:
Su=1{(,4) : 1751 # 0}, (13)

That is, the graph is encoded in the sparsity pattern of f ®,

4 Statistical Guarantees

In this section we study statistical properties of the proposed estimator (I3)). Let .S denote the true

edge set and S¢ its complement. We prove that S, recovers .S with high probability when the sample
size n is sufficiently large.

Denote D = mat(D7,,...,DL

L. ...,DT,). We will need the following result on the estimated
operator C’ y

Proposition 4.1 (Lemma 5 in [8] or Theorem 5 in [26]] ) (Properties of C')

1

1. ||C = Cllzrs = Opy(n~2)

2. [(C+pL)~H| <
positive constants.

m (C+pL)~Y| <1, where > 0 and L is diagonal with

The following result gives first order optimality conditions for the optimization problem (g).

Proposition 4.2 (Optimality Condition)
J(f) + 5Q([)? achieves optimality when the following two conditions are satisfied:

(1) VI + ) fﬂm

(2) Qs[Vise J(f)] < pQf).

=0 VseS



With these preliminary results, we have the following main results.

Theorem 4.3 Assume that conditions A1-A7 are satisfied. The regularization parameter |1 is se-

NKEminWmin

1
_1 ; < R .
lected at the order of n™ 1 and satisfies j1 < prEW P T where Kpin = Minges || fZ]] > 0

5

and Fmax = maxges || £ > 0. Then P(S, = S) — 1.

Proof Idea: The theorem above is the main theoretical guarantee for our score matching estimator.
We use the “witness” proof framework inspired by [23}29]]. Let f* denote the true density function

and p* the probability density function. We first construct a solution fs on true edge set S as
; 7 I 2
= = i 14
fs = min J(f) +5( Z 1fi511) (14)
(i,5)€S
and set fse as zero. Using Proposition we prove that || fg — el = O,(n~%). Then we
compute the subgradient on S¢ and prove that its dual norm is upper bounded by p€(f) by using

assumptions A4, A5 and A6. Therefore we construct a solution that satisfied the optimality condition
and converges in probability to the true graph. Refer to supplementary material for detailed proof.

5 Experiments

We illustrate performance of our method on two simulations. In our experiments, we use the same
kernel defined as follows:
2
Iz = yl2
202

that is, the summation of a Gaussian kernel and a polynomial kernel. We set 0 = 1.5,7 = 0.1 and
¢ = 0.5 for all the simulations.

k(z,y) = exp(— )+ 7r(@"y +c)?, (15)

We report the true positive rate vs false positive rate (ROC) curve to measure the performance of

different procedures. Let S be the true edge set, and let S# be the estimated graph. The true positive

rate is defined as TPR,, = %, and false positive rate is FPR, = W, where |-|
is the cardinality of the set. The curve is then plotted based on 100 uniformly-sampled regularization

parameters and based on 20 independent runs.

In the first simulation, we apply our algorithm to data sampled from a simple chain graph-based
Gaussian model (see Figure 1 for detail), and compare its performance with glasso [6]. We use the
same sampling method as in [31]] to generate the data: we set {2, = 0.4 for s € S and its diagonal
to a constant such that € is positive definite. We set the dimension d to 25 and change the sample
size n € {20, 40, 60, 80, 100} data points.

Except for the low sample size case (n = 20), the performance of our method is comparable with
glasso, without utilizing the fact that the underlying distribution is of a particular parametric form.
Intuitively, to capture the graph structure, the proposed nonparametric method requires more data
because of much weaker assumptions.

To further show the strength of our algorithm, we test it on a nonparanormal (NPN) distribution
([18]). A random vector = (1, ..., Zp) has a nonparanormal distribution if there exist functions
(f1,---, fp) such that (fi(z1),..., fa(za)) ~ N(u, ). When f is monotone and differentiable,
the probability density function is given by

1
P(z) =————exp{—=(f(z) — w)T2 7 (f(z) — 2.
() EREHDE p{—5(f(z) =) 7 (f(z) u)}l;lf]\

Here the graph structure is still encoded in the sparsity pattern of 2 = 71, that is, z; La;|z_; ; if
and only if €;; = 0 [18].
In our experiments we use the “Symmetric Power Transformation” [18], that is,
90(2j — 1))
fi(z5) = o5( - - Jt,u,.
VI = o5t




Adjacent Matrix Glasso SME

TruePositiveRate

Figure 1: The estimation results for Gaussian graphical models. left: The adjacent matrix of true
graph. center: the ROC curve of glasso. right: the ROC curve of score matching estimator (SME).
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TruePositiveRate
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Figure 2: The estimated ROC curves of nonparanormal graphical models for glasso (left), NPN
(center) and SME (right).

where go(t) = sign(¢)|t|*, to transform data. For comparison with graph lasso, we first use a
truncation method to Gaussianize the data, and then apply graphical lasso to the transformed data.
See 18, 31]] for details. From figure 2, without knowing the underlying data distribution, the score
matching estimator outperforms glasso, and show similar results to nonparanormal when the sample
size is large.

6 Discussion

In this paper, we have proposed a new procedure for learning the structure of a nonparametric graph-
ical model. Our procedure is based on minimizing a penalized score matching objective, which can
be performed efficiently using existing group lasso solvers. Particularly appealing aspect of our
approach is that it does not require computing the normalization constant. Therefore, our proce-
dure can be applied to a very broad family of infinite dimensional exponential families. We have
established that the procedure provably recovers the true underlying graphical structure with high-
probability under mild conditions. In the future, we plan to investigate more efficient algorithms for

solving (L0), since it is often the case that C is well structured and can be efficiently approximated.
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