
Scale Up Nonlinear Component Analysis with

Doubly Stochastic Gradients: Supplementary Material

This supplementary material is organized as follows. Section 1 reviews notations, the definition of Kernel
PCA and the update rules considered. Section 2 provides the sketch of the proof as in the paper. Section 3
provides the proof for the stochastic update rule, and Section 4 provides the proof for the doubly stochastic
update rule. Section 5 provides details about different extensions.

1 Setting

Notations Given a distribution P(x), a kernel function k(x, x′) with RKHS F , the covariance operator
A : F 7→ F is a linear self-adjoint operator defined as

Af(·) := Ex[f(x) k(x, ·)], ∀f ∈ F , (1)

and furthermore

〈g,Af〉F = Ex[f(x) g(x)], ∀g ∈ F .

Let F = (f1(·), f2(·), . . . , fk(·)) be a list of k functions in the RKHS, and we define matrix-like notation

AF (·) := (Af1(·), . . . , Afk(·)) , (2)

and F>AF is a k × k matrix, whose (i, j)-th element is 〈fi, Afj〉F . The outer-product of a function v ∈ F
defines a linear operator vv> : F 7→ F such that

(vv>)f(·) := 〈v, f〉F v(·), ∀f ∈ F (3)

Let V = (v1(·), . . . , vk(·)) be a list of k functions, then the weighted sum of a set of linear operators,{
viv
>
i

}k
i=1

, can be denoted using matrix-like notation as

V ΣkV
> :=

k∑
i=1

λiviv
>
i (4)

where Σk is a diagonal matrix with λi on the i-th entry of the diagonal.

Kernel PCA Kernel PCA aims to identify the top k eigenfunctions V = (v1(·), . . . , vk(·)) for the covariance
operator A, where V is also called the top k subspace for A.

A function v is an eigenfunction of covariance operator A with the corresponding eigenvalue λ if

Av(·) = λv(·). (5)

Given a set of eigenfunctions {vi} and associated eigenvalues {λi}, where 〈vi, vj〉F = δij . We can denote the
eigenvalue of A as

A = V ΣkV
> + V⊥Σ⊥V

>
⊥ (6)

where V = (v1(·), . . . , vk(·)) is the top k eigenfunctions of A, and Σk is a diagonal matrix with the corre-
sponding eigenvalues, V⊥ is the collection of the rest of the eigenfunctions, and Σ⊥ is a diagonal matrix with
the rest of the eigenvalues.
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Update rules The stochastic update rule is

Gt+1 = Gt + ηt
(
I −GtG>t

)
AtGt (7)

where Gt :=
(
g1t , . . . , g

k
t

)
and git is the i-th function. Denote the evaluation of Gt at the current data point

as

gt =
[
g1t (xt), . . . , g

k
t (xt)

]> ∈ Rk. (8)

Then the update rule can be re-written as

Gt+1 = Gt
(
I − ηtgtg>t

)
+ ηtk(xt, ·)g>t . (9)

The doubly stochastic update rule is

Ht+1 = Ht

(
I − ηththt>

)
+ ηtφωt

(xt)φωt
(·)ht>, (10)

where ht is the evaluation of Ht at the current data point:

ht =
[
h1t (xt), . . . , h

k
t (xt)

]> ∈ Rk. (11)

When larger mini-batch sizes are used, the update rule is adjusted accordingly. For example, when using

Bx,t points
{
xbt
}

and Bω,t features
{
ωb
′

t

}
, the update rule for Ht is

Ht+1 ← Ht +
ηt
∑
b,b′

(
φωb′

t
(xbt)φωb′

t
(·)
[
h1t (x

b
t), . . . , h

k
t (xbt)

])
Bx,tBω,t

− ηtHt

(
1

Bx,t

∑
b

[
hit(x

b
t)h

j
t (x

b
t)
] )k

i,j=1

.

2 Analysis Roadmap

In order to analyze the convergence of our doubly stochastic kernel PCA algorithm, we will need to define
a few intermediate subspaces. For simplicity of notation, we will assume the mini-batch size for the data
points is one.

1. Let Ft :=
(
f1t , . . . , f

k
t

)
be the subspace estimated using stochastic gradient and explicit orthogonaliza-

tion:

F̃t+1 ← Ft + ηtAtFt (12)

Ft+1 ← F̃t+1

(
F̃>t+1F̃t+1

)−1/2
2. Let Gt :=

(
g1t , . . . , g

k
t

)
be the subspace estimated using stochastic update rule without orthogonaliza-

tion:

Gt+1 ← Gt + ηt
(
I −GtG>t

)
AtGt. (13)

where AtGt and GtG
>
t AtGt can be equivalently written using the evaluation of the function

{
git
}

on
the current data point, leading to the equivalent rule (9):

Gt+1 ← Gt
(
I − ηtgtg>t

)
+ ηtk(xt, ·)g>t .
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3. Let G̃t :=
(
g̃1t , . . . , g̃

k
t

)
be the subspace estimated using stochastic update rule without orthogonaliza-

tion, but the evaluation of the function
{
g̃it
}

on the current data point is replaced by the evaluation

ht =
[
hit(xt)

]>
:

G̃t+1 ← G̃t + ηtk(xt, ·)h>t − ηtG̃thth>t (14)

4. Let Ht :=
(
h1t , . . . , h

k
t

)
be the subspace estimated using doubly stochastic update rule without orthog-

onalization, i.e., the update rule (10):

Ht+1 ← Ht + ηtφωt
(xt)φωt

(·)h>t − ηtHthth
>
t . (15)

The relation of these subspaces are summarized in Table 1. Using these notations, we describe a sketch
of our analysis in the rest of the section, while the complete proofs are provided in the following sections.

We first consider the subspace Gt estimated using the stochastic update rule, since it is simpler and its
proof can provide the bases for analyzing the subspace Ht estimated by the doubly stochastic update rule.

Table 1: Relation between various subspaces.

Subspace Evaluation Orth. Data Mini-batch RF Mini-batch
V – – – –
Ft ft(x) 3 3 7
Gt gt(x) 7 3 7

G̃t g̃t(x) 7 3 7
Ht ht(x) 7 3 3

2.1 Stochastic update

Our guarantee is on the cosine of the principal angle between the computed subspace and the ground truth
eigen subspace V (also called the potential function), which is a standard criterion for measuring the quality
of the subspace:

cos2 θ(V,Gt) = min
w

∥∥V >Gtw∥∥2
‖Gtw‖2

.

We will focus on the case when a good initialization V0 is given:

V >0 V0 = I, cos2 θ(V, V0) ≥ 1/2. (16)

In other words, we analyze the later stage of the convergence, which is typical in the literature (e.g., [5]).
The early stage can be analyzed using established techniques (e.g., [1]).

We will also focus on the dependence of the potential function on the step t. For this reason, throughout
the paper we suppose |k(x, x′)| ≤ κ, |φω(x)| ≤ φ and regard κ and φ as constants. Note that this is true for
all the kernels and corresponding random features considered. We further regard the eigengap λk − λk+1 as
a constant, which is also true for typical applications and datasets. Details can be found in the following
sections.

Our final guarantee for Gt is stated in the following.

Theorem 2. Assume (16) and suppose the mini-batch sizes satisfy that for any 1 ≤ i ≤ t, ‖A−Ai‖ <
(λk − λk+1)/8. There exist step sizes ηi = O(1/i) such that

1− cos2 θ(V,Gt) = O(1/t).
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The convergence rate O(1/t) is in the same order as that when computing only the top eigenvector in
linear PCA [1], though we are not aware of any other convergence rate for computing the top k eigenfunctions
in Kernel PCA. The bound requires the mini-batch sizes are large enough so that the spectral norm of A
is approximated up to the order of the eigengap. This is due to the fact that approximating A with At
will result in an error term in the order of ‖A−At‖, while the increase of the potential is in the order of
the eigengap. Similar terms appear in the analysis of the noisy power method [3] which, however, requires
normalization and is not suitable for the kernel case. We do not specify the mini-batch sizes, but by assuming
suitable data distributions, it is possible to obtain explicit bounds; see for example [6, 2].

Proof sketch To prove the theorem, we first prove the guarantee for the normalized subspace Ft which is
more convenient to analyze, and then show that the update rules for Ft and Gt are first order equivalent so
that Gt enjoys the same guarantee.

Lemma 3. 1− cos2 θ(V, Ft) = O(1/t).

Let c2t denote cos2 θ(V, Ft), then a key step in proving the lemma is to show that

c2t+1 ≥ c2t (1 + 2ηt(λk − λk+1 − 2 ‖A−At‖)(1− c2t ))−O(η2t ). (17)

Therefore, we will need the mini-batch sizes large enough so that 2 ‖A−At‖ is smaller than the eigen-gap.
Another key element in the proof of the theorem is the first order equivalence of the two update rules.

To show this, we need to compare the subspaces obtained by applying the them on the same subspace Gt.
So we introduce F (Gt) to denote the subspace by applying the update rule of Ft on Gt:

F̃ (Gt)← Gt + ηtAtGt

F (Gt)← F̃ (Gt)
[
F̃ (Gt)

>F̃ (Gt)
]−1/2

We show that the potentials of Gt+1 and F (Gt) are close:

Lemma 4. cos2 θ(V,Gt+1) = cos2 θ(V, F (Gt))±O(η2t ).

The lemma means that applying the two update rules to the same input will result in two subspaces with
similar potentials. Since cos2 θ(V, F (Gt)) enjoys the recurrence in (17), we know that cos2 θ(V,Gt+1) also
enjoys such a recurrence, which then results in 1− cos2 θ(V,Gt) = O(1/t).

The proof of the lemma is based on the observation that

cos2 θ(V,X) = λmin(V >X(X>X)−1X>V ).

The lemma follows by plugging in X = Gt+1 or X = F (Gt) and comparing their Taylor expansions w.r.t.
ηt.

2.2 Doubly stochastic update

For doubly stochastic update rule, the computed Ht is no longer in the RKHS so the principal angle is not
well defined. Since the eigenfunction v is usually used for evaluating on points x, we will use the following
point-wise convergence in our analysis. For any function v in the subspace of V with unit norm ‖v‖F = 1,
we will find a specially chosen function h in the subspace of Ht such that for any x,

err := |v(x)− h(x)|2
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is small with high probability. More specifically, the w is chosen to be G̃>v, and let g̃ = G̃tw and h = Htw.
Then the error measure can be decomposed as

|v(x)− h(x)|2

= |v(x)− g̃(x) + g̃(x)− h(x)|2

≤ 2 |v(x)− g̃(x)|2 + 2 |g̃(x)− h(x)|2

≤ 2κ2 ‖v − g̃‖2F︸ ︷︷ ︸
(I: Lemma 6)

+ 2 |g̃(x)− h(x)|2︸ ︷︷ ︸
(II: Lemma 7)

. (18)

The distance ‖v − g̃‖F is closely related to the squared sine of the subspace angle between V and G̃t.

In fact, by definition, ‖v − g̃‖2F = ‖v‖2F − ‖g̃‖
2
F ≤ 1 − cos2 θ(V, G̃t). Therefore, the first error term can be

bounded by the guarantee on G̃t, which can be obtained by similar arguments as for the stochastic update
case. For the second term, note that G̃t is defined in such a way that the difference between g̃(x) = G̃t(x)w
and h(x) = Ht(x)w is a martingale, which can be bounded by careful analysis.

Overall, we have the following results. Suppose we use random Fourier features; see [4]. Similar bounds
hold for other random features, where the batch sizes will depend on the concentration bound of the random
features used.

Theorem 5. Assume (16) and suppose the mini-batch sizes satisfy that for any 1 ≤ i ≤ t, ‖A−Ai‖ <
(λk − λk+1)/8 and are of order Ω(ln t

δ ). There exist step sizes ηi = O(1/i), such that the following holds. If

Ω(1) = λk(G̃>i G̃i) ≤ λ1(G̃>i G̃i) = O(1) for all 1 ≤ i ≤ t, then for any x and any function v in the span of V
with unit norm ‖v‖F = 1, we have that with probability ≥ 1− δ, there exists h in the span of Ht satisfying

|v(x)− h(x)|2 = O

(
1

t
ln
t

δ

)
.

The point-wise error scales as Õ(1/t) with the step t, which is in similar order as that for the stochastic
update rule. Again, we require the spectral norm of A to be estimated up to the order of the eigengap, for
the same reason as before. We additionally need that the random features approximate the kernel function
up to constant accuracy on all the data points up to time t, since the evaluation of the kernel function on
these points are used in the update. This eventually leads to Ω(ln t

δ ) mini-batch sizes. Finally, we need G̃>i G̃i
to be roughly isotropic, i.e., G̃i is roughly orthonormal. Intuitively, this should be true for the following
reasons: G̃0 is orthonormal; the update for G̃t is close to that for Gt, which in turn is close to Ft that are
orthonormal.

Proof sketch The analysis is carried out by bounding each term in (18) separately. As discussed above, in
order to bound term I, we need a bound on the squared cosine of the subspace angle between V and G̃t.

Lemma 6. 1− cos2 θ(V, G̃t) = O
(
1
t ln t

δ

)
.

To prove this lemma, we follow the argument for Theorem 2 and get the recurrence as shown in (17),
except with an additional error term, which is caused by the fact that the update rule for G̃t+1 is using the
evaluation ht(xt) rather than g̃t(xt). Bounding this additional term thus relies on bounding the difference
between ht(x)− g̃t(x), which is also what we need for bounding term II in (18). For this purpose, we show
the following bound:

Lemma 7. For any x and unit vector w, with probability ≥ 1 − δ over (Dt, ωt), |g̃t(x)w − ht(x)w|2 =
O
(
1
t ln

(
t
δ

))
.

The key to prove this lemma is that our construction of G̃t makes sure that the difference between
g̃t(x)w and ht(x)w consists of their difference in each time step. Furthermore, the difference in each time
step conditioned on previous history has mean 0. In other words, the difference forms a martingale and
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thus can be bounded by Azuma’s inequality. The resulting bound depends on the mini-batch sizes, the step
sizes ηi, and the evaluations hi(xi) used in the update rules. We then judiciously choose the parameters and
simplify it to the bound in the lemma. The complication of the proof is mostly due to the interweaving of
the parameter values; see the following sections for the details.

3 Stochastic Update

To prove the convergence of the stochastic update rule, we first prove the convergence of the normalized
version Ft, and then we establish the first-order equivalence of the potential functions of the two update
rules for Ft and Gt. Since the final recurrence result does not depend on higher order terms, this first-order
equivalence establishes the convergence of the stochastic update rule without normalization.

3.1 Stochastic update with normalization

We consider the potential function 1− cos2 θ (V, Ft) and prove a recurrence for it. We first show this for the
simpler case where at each step we use the expected operator A in the update rule, and then show this for
the general case where At can be different from A.

3.1.1 Update rule with expected operator

The following lemma states the recurrence for the update rule which replace At in the stochastic update rule
with the expected operator A = EAt:

F̃t+1 ← Ft + ηtAFt (19)

Ft+1 ← F̃t+1

(
F̃>t+1F̃t+1

)−1/2
Lemma 8. Let the sequence {Fi}i be obtained from the update rule (19), then

1− cos2 θ (V, Ft+1) ≤
[
1− cos2 θ (V, Ft)

] [
1− 2ηt (λk − λk+1) cos2 θ (V, Ft)

]
+ βt,

where βt = 5η2tB
2 + 3η3tB

3 and λk and λk+1 are the top k and k + 1-th eigenvalues of A.

Proof. First note that the cosine of subspace angle does not change under linear combination of the basis

cos2 θ (V, Ft+1) = min
w′

∥∥V >Ft+1w
′
∥∥2

‖Ft+1w′‖2
= min

w′

∥∥∥∥V >F̃t+1

(
F̃>t+1F̃t+1

)−1/2
w′
∥∥∥∥2∥∥∥∥F̃t+1

(
F̃>t+1F̃t+1

)−1/2
w′
∥∥∥∥2

= min
w

∥∥∥V >F̃t+1w
∥∥∥2∥∥∥F̃t+1w
∥∥∥2 (20)

The update rule gives us∥∥∥V >F̃t+1w
∥∥∥2 ≥ ∥∥V >Ftw∥∥2 + 2ηt

〈
V >Ftw, V

>AFtw
〉

(21)

∥∥∥F̃t+1w
∥∥∥2 ≤ ‖Ftw‖2 + 2ηt 〈Ftw,AFtw〉+B ‖Ftw‖2 η2t (22)
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Let ŵ = w/ ‖Ftw‖, u = Ftŵ, so ‖u‖ = 1. Denote c =
∥∥V >u∥∥ and s =

∥∥V >⊥ u∥∥. According to the
definition, we have c ≥ cos θk (V, Ft). Keep expanding the update rule leads to∥∥∥V >F̃t+1w

∥∥∥2∥∥∥F̃t+1w
∥∥∥2 ≥

∥∥V >Ftw∥∥2 + 2ηt
〈
V >Ftw, V

>AFtw
〉

‖Ftw‖2 + 2ηt 〈Ftw,AFtw〉+B ‖Ftw‖2 η2t
(23)

=

∥∥V >u∥∥2 + 2ηt
〈
V >u, V >Au

〉
1 + 2ηt 〈u,Au〉+Bη2t

≥
{∥∥V >u∥∥2 + 2ηt

〈
V >u, V >Au

〉}{
1− 2ηt 〈u,Au〉 −Bη2t

}
≥
∥∥V >u∥∥2 + 2ηt

〈
V >u, V >Au

〉
− 2ηt

∥∥V >u∥∥2 〈u,Au〉
− 5η2tB

2 − 2η3tB
3

= c2 + 2ηt
{
u>V V >Au− c2u>Au

}
− βt

= c2 + 2ηtu
> (V V > − c2I)Au− βt

= c2 + 2ηtu
> (s2V V > − c2V⊥V >⊥ )Au− βt.

Recall that A = V ΛkV
> + V⊥Λk+1V

>
⊥ . Then

u>
(
s2V V > − c2V⊥V >⊥

)
Au = s2u>V ΛkV

>u− c2u>V⊥Λk+1V
>
⊥ u (24)

≥ λks2c2 − λk+1c
2s2 = s2c2 (λk − λk+1)

The recurrence is therefore

cos2 θ (V, Ft+1) ≥ c2 + 2ηts
2c2 (λk − λk+1)− βt (25)

= c2
(
1 + 2ηt (λk − λk+1)

(
1− c2

))
− βt.

The first term is a quadratic function of c2:

x (1 + a (1− x)) (26)

where x := c2 and a = 2ηt (λk − λk+1). It has two roots at 0 and 1 + 1
a . Therefore, if 1

2 + 1
2a ≥ 1, it is a

monotonic increasing function in the interval of [0, 1].
Thus, if ηt ≤ 1

4(λk−λk+1)
, which holds for all t large enough, we have

cos2 θ (V, Ft+1) ≥ cos2 θ (V, Ft)
(
1 + 2ηt (λk − λk+1)

(
1− cos2 θ (V, Ft)

))
− βt (27)

which leads to the lemma.

3.1.2 Using different operators in different iterations

Now consider the case of stochastic update rule (12) where we use a mini-batch to approximate the expec-
tation in each iteration.

Lemma 9. Let the sequence {Fi}i be obtained from the update rule (12), then

1− cos2 θ (V, Ft+1) ≤
[
1− cos2 θ (V, Ft)

] [
1− 2ηt (λk − λk+1 − ‖At −A‖) cos2 θ (V, Ft+1)

]
+ βt,

where βt = 5η2tB
2 + 3η3tB

3 and λk and λk+1 are the top k and k + 1-th eigenvalues of A.
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Proof. The effect of the stochastic update is an additional term in the recurrence

cos2 θ (V, Ft+1) ≥ c2 + 2ηtu
> (s2V V > − c2V⊥V >⊥ )Au+ Zt − βt (28)

where

Zt = 2ηtu
> (s2V V > − c2V⊥V >⊥ ) (At −A)u. (29)

The effect of the noise can be bounded, i.e.

Zt = 2ηts
2u>V V > (At −A)u− 2ηtc

2u>V⊥V
>
⊥ (At −A)u (30)

= 2ηts
2u>

(
V V > + l1I

)
(At −A)u− 2ηtc

2u>
(
V⊥V

>
⊥ + l2I

)
(At −A)u,

where s2l1 = c2l2 are positive numbers such that V V > + l1I and V⊥V
>
⊥ + l2I are positive-definite.

The generalized Rayleigh quotient leads to the inequality∣∣u> (V V > + l1I
)

(At −A)u
∣∣ ≤ λu> (V V > + l1I

)
u (31)

≤ λ
(
c2 + l1

)
where λ is the largest generalized eigen-value that satisfies(

V V > + l1I
)

(At −A)x = λ
(
V V > + l1I

)
x. (32)

Since V V > + l1I is positive definite, we have λ = ‖At −A‖.
Similarly, we have ∣∣u> (V⊥V >⊥ + l2I

)
(At −A)u

∣∣ ≤ ‖At −A‖ (s2 + l2
)
. (33)

The noise term is thus bounded by

Zt ≥ −2ηts
2 ‖At −A‖

(
c2 + l1

)
− 2ηtc

2 ‖At −A‖
(
s2 + l2

)
. (34)

Note that l1 and l2 can be infinitely small positive so we can ignore them.
Therefore, the recurrence is

cos2 θ (V, Ft+1) ≥ c2 + 2ηts
2c2 (λk − λk+1)− 4ηt ‖At −A‖ s2c2 − βt (35)

= c2
(
1 + 2ηt (λk − λk+1 − 2 ‖At −A‖)

(
1− c2

))
− βt

which then leads to the lemma.

In order to get fast convergence, we need to take sufficiently large mini-batches such that the variance of
the noise is small enough compared with the eigen-gap.

3.2 Stochastic update without normalization

We show that the cosine angles of the two updates are first-order equivalent. Then, since the recurrence
is not affected by higher order terms, when the step size is small enough, we can show it also converges in
O(1/t).

To show the first order equivalence, we need to compare the subspaces obtained by applying the them
on the same subspace Gt. So we introduce F (Gt) to denote the subspace by applying the update rule of Ft
on Gt:

F̃ (Gt)← Gt + ηtAtGt (36)

F (Gt)← F̃ (Gt)
[
F̃ (Gt)

>F̃ (Gt)
]−1/2

(37)

Then the first order equivalence as stated in Lemma 4 follows from the following two lemmas for the nor-
malized update rule (12) and the unnormalized update rule (36), respectively.
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Lemma 10. cos2 θ (V, F (Gt)) = λmin

(
M +O(η2)

)
where

M = V >PP>V + ηV >PP>AV + ηV >APP>V − 2ηV >PP>APP>V,

where PP> = Gt
(
G>t Gt

)−1
G>t , and P is an orthonormal basis for the subspace Gt.

Proof. For simplicity, let G denote Gt, and let A denote At in the following. We first have

cos2 θ (V, F (G)) = λmin

(
V >F (G)F (G)>V

)
(38)

= λmin

(
F (G)>V V >F (G)

)
(39)

= λmin

{
V > (G+ ηtAG)

[
(G+ ηtAG)

>
(G+ ηtAG)

]−1
(G+ ηtAG)

>
V

}
. (40)

Note that (39) is due to the fact that

λmin

(
F (G)>V V >F (G)

)
= min

w

w>F (G)>V V >F (G)w

w>w

= min
w

w>R−1 (G+ ηtAG)
>
V V > (G+ ηtAG)R−1w

w>w

= min
z

z> (G+ ηtAG)
>
V V > (G+ ηtAG) z

z>R2z

= min
z

z> (G+ ηtAG)
>
V V > (G+ ηtAG) z

z> (G+ ηtAG)
>

(G+ ηtAG) z

= min
z

∥∥V > (G+ ηtAG) z
∥∥2

‖(G+ ηtAG) z‖2

where R =
[
(G+ ηtAG)

>
(G+ ηtAG)

]1/2
.

Now turn back to (40). Expand the matrix-valued function

φ(η) =
[
(G+ ηAG)

>
(G+ ηAG)

]−1
(41)

= φ(0) + φ′(0)η +O(η2).

φ′(0) = −2
(
G>G

)−1
G>AG

(
G>G

)−1
. (42)

So,

φ(η) =
(
G>G

)−1 − 2η
(
G>G

)−1
G>AG

(
G>G

)−1
+O(η2). (43)

Therefore,

V > (G+ ηtAG)
[
(G+ ηtAG)

>
(G+ ηtAG)

]−1
(G+ ηtAG)

>
V (44)

=
(
V >G+ ηtV

>AG
) [(

G>G
)−1 − 2η

(
G>G

)−1
G>AG

(
G>G

)−1
+O(η2)

] (
G>V + ηtG

>AV
)

= V >G
(
G>G

)−1
G>V + ηV >G

(
G>G

)−1
G>AV + ηV >AG

(
G>G

)−1
G>V

− 2ηV >G
(
G>G

)−1
G>AG

(
G>G

)−1
G>V +O(η2)

= V >PP>V + ηV >PP>AV + ηV >APP>V − 2ηV >PP>APP>V +O(η2),

where PP> = G
(
G>G

)−1
G>, and P is an orthonormal basis for the subspace G.
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Lemma 11. cos2 θ (V,Gt+1) = λmin (M) where M is as defined in Lemma 10.

Proof. For simplicity, let G denote Gt and let A denote At. Then cos2 θ (V,Gt+1) = λmin (N), where

N = V >Gt+1

[
G>t+1Gt+1

]−1
G>t+1V with Gt+1 = G+ η

(
I −GG>

)
AG.

Now it suffices to show N = M . Consider

φ(η) =
[(
G+ η

(
I −GG>

)
AG
)> (

G+ η
(
I −GG>

)
AG
)]−1

.

Then

φ′(0) = −
(
G>G

)−1 [
G>

(
I −GG>

)
AG+G>A

(
I −GG>

)
G
] (
G>G

)−1
Therefore, N is

V >
(
G+ η

(
I −GG>

)
AG
) [(

G+ η
(
I −GG>

)
AG
)> (

G+ η
(
I −GG>

)
AG
)]−1 (

G+ η
(
I −GG>

)
AG
)>
V

=
(
V >G+ ηV >

(
I −GG>

)
AG
) [(

G+ η
(
I −GG>

)
AG
)> (

G+ η
(
I −GG>

)
AG
)]−1 (

G>V + ηG>A
(
I −GG>

)
V
)

=
(
V >G+ ηV >

(
I −GG>

)
AG
)[(

G>G
)−1 − η (G>G)−1 [G> (I −GG>)AG+G>A

(
I −GG>

)
G
] (
G>G

)−1] (
G>V + ηG>A

(
I −GG>

)
V
)

= V >G
(
G>G

)−1
G>V + ηV >G

(
G>G

)−1
G>A

(
I −GG>

)
V + ηV >

(
I −GG>

)
AG

(
G>G

)−1
G>V

− ηV >G
(
G>G

)−1 [
G>

(
I −GG>

)
AG+G>A

(
I −GG>

)
G
] (
G>G

)−1
G>V

= V >PP>V + ηV >PP>A
(
I −GG>

)
V + ηV >

(
I −GG>

)
APP>V

− ηV >PP>
(
I −GG>

)
APP>V − ηV >PP>A

(
I −GG>

)
PP>V

= V >PP>V + ηV >PP>AV + ηV >APP>V − 2ηV >PP>APP>V

− ηV >PP>AGG>V − ηV >GG>APP>V + ηV >PP>GG>APP>V + ηV >PP>AGG>PP>V

= V >PP>V + ηV >PP>AV + ηV >APP>V − 2ηV >PP>APP>V

which completes the proof.

4 Doubly Stochastic Update

In this section, we consider the doubly stochastic update rule. Suppose in step t, we use a mini-batch
consisting of Bx,t random data points xrt (1 ≤ r ≤ Bx,t) and Bω,t random features ωst (1 ≤ s ≤ Bω,t). Then
the update rule is

Ht+1 = Ht + ηtEt [φωt
(xt)φωt

(·)ht(xt)]− ηtHtEt
[
ht(xt)

>ht(xt)
]

(45)

= Ht(I − ηtEt
[
ht(xt)

>ht(xt)
]
) + ηtEt [φωt

(xt)φωt
(·)ht(xt)] (46)

where for any function f(x, ω), Etf(xt, ω) denotes
∑Bx,t

r=1

∑Bω,t

s=1 f(xrt , ω
s
t )/(Bx,tBω,t). As before, we assume

H0 = F0 is a good initialization, i.e., F>0 F0 = I and cos2 θ(F0, V ) ≥ 1/2. Note that Ht = [h1t (·), . . . , hkt (·)],
while ht(xt) is its evaluation at xt, i.e., ht(xt) is a row vector [h1t (xt), . . . , h

k
t (xt)].

We introduce the following intermediate function for analysis:

G̃t+1 = G̃t + ηtEt [k(xt, ·)ht(xt)]− ηtG̃tEt
[
ht(xt)

>ht(xt)
]

(47)

= G̃t(I − ηtEt
[
ht(xt)

>ht(xt)
]
) + ηtEt [k(xt, ·)ht(xt)] . (48)
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Again, G̃0 = F0.
The analysis follows our intuition: we first bound the difference between Ht and G̃t by a martingale

argument, and then bound the difference between G̃t and V . For the second step we can apply the previous
argument. Note that G̃t is different from Ft since AtFt = k(xt, ·)Ft(xt) is now replaced by k(xt, ·)ht(xt), so
we need to adjust our previous analysis.

Suppose we use random Fourier features for points in Rd; see [4]. Then we have

Theorem 5. Suppose the mini-batch sizes satisfy that for any 1 ≤ i < t, ‖A−Ai‖ < (λk − λk+1)/8 and
Bx,i = Ω(ln t

δ ). There exist step sizes ηi = O(1/i), such that the following holds. If Ω(1) = λk(G̃>i G̃i) ≤
λ1(G̃>i G̃i) = O(1) for all 1 ≤ i ≤ t, then for any x and any function v in the span of V with unit norm
‖v‖F = 1, we have that with probability ≥ 1− δ, there exists h in the span of Ht satisfying

|v(x)− h(x)|2 = O

(
1

t
ln
t

δ

)
.

Proof. Let w = G̃>t v, z = G̃tw, and h = Htw.

|v(x)− h(x)|2 = |v(x)− z(x) + z(x)− h(x)|2

≤ 2 |v(x)− z(x)|2 + 2 |z(x)− h(x)|2

≤ 2 ‖v − z‖2F ‖k(x, ·)‖2F + 2 |z(x)− h(x)|2

≤ 2κ2 ‖v − z‖2F + |z(x)− h(x)|2 .

Roughly speaking, the difference between v and z is the error due to random data points and can be bounded
by Lemma 15, while the difference between z(x) and h(x) is the error due to random features and can be
bounded by Lemma 13(2). More precisely, since z is the projection of v on the span of G̃t,

‖v − z‖2F = ‖v‖2F − ‖z‖
2
F ≤ 1− cos2 θ(G̃t, V ) = O

(
1

t
ln
t

δ

)
where the last step is by Lemma 15. Also, since ‖w‖ ≤ 1, we have |z(x)− h(x)|2 = O

(
1
t ln t

δ

)
by Lemma 13.

What is left is to check the mini-batch sizes; see the assumptions in Lemma 12 and Lemma 15. We need

λk(Ei
[
hi(xi)

>hi(xi)
]
) = λk(Ex

[
hi(x)>hi(x)

]
)±O(1), so we only need to estimate Ex

[
hji (x)>h`i(x)

]
up to

constant accuracy for all 1 ≤ j, ` ≤ k, for which Bx,i = O(ln t
δ ) suffices. We also need ∆ω = O(λk −λk+1) =

O(1), so we only need ∆ω = O(1). This is a bound for (tBx,i)
2 pairs of points, for which Bω,i = O(ln t

δ )
suffices.

Similar bounds hold for other random features, where the batch sizes will depend on the concentration
bound of the random features used.

The rest of this section is the proof of the theorem. For simplicity, ‖·‖F is shorten as ‖·‖.
First, we bound the difference between Ht and G̃t.

Lemma 12. Suppose |k(x, x′)| ≤ κ, |φω(x)| ≤ φ. Suppose the mini-batch sizes are large enough so that∣∣∣k(xi, xj)−
∑Bω,i

s=1 φωs
(xi)φωs

(xj)/Bω,i

∣∣∣ ≤ ∆ω for all sampled data points xi and xj. For any w and x, with

probability ≥ 1− δ over (Dt, ωt),

|g̃t+1(x)w − ht+1(x)w|2 ≤ B2
t+1 :=

1

2
∆2
ω ln

(
2

δ

) t∑
i=1

∣∣Ei |hi(xi)| at,iw∣∣2
where at,i = ηi

∏t
j=i+1

(
I − ηjEj

[
hj(xj)

>hj(xj)
])

for 1 ≤ i ≤ t, and |hi(xi)| :=
[∣∣∣hji (xi)∣∣∣]k

j=1
.
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Furthermore, for any x and w,

EDt,ωt |g̃t+1(x)w − ht+1(x)w|2 ≤ B2
2,t+1 := ∆2

ω

t∑
i=1

∣∣Ei |hi(xi)| at,iw∣∣2.
Proof. Note that

Ht+1 =

t∑
i=1

Ei [φωi
(xi)φωi

(·)hi(xi)] at,i + F0at,0, (49)

G̃t+1 =

t∑
i=1

Ei [k(xi, ·)hi(xi)] at,i + F0at,0, (50)

where at,0 =
∏t
j=1

(
I − ηjEj

[
hj(xj)

>hj(xj)
])

.

We have g̃t+1(x)w − ht+1(x)w =
∑t
i=1 Vt,i(x) where

Vt,i(x) = Ei [k(xi, x)hi(xi)− φωi
(xi)φωi

(x)hi(xi)] at,iw.

Vt,i(x) is a function of (Di, ωi) and

EDi,ωi

[
Vt,i(x)|ωi−1

]
= EDi,ωi−1Eωi

[
Vt,i(x)|ωi−1

]
= 0,

so {Vt,i(x)} is a martingale difference sequence.
Since |Vt,i(x)| < ∆ω|Ei |hi(xi)| at,iw|, the lemma follows from Azuma’s Inequality.

So to bound |g̃t(x)w − ht(x)w|, we need to bound |Ei |hi(xi)| at,iw|, which requires some additional
assumptions.

Lemma 13 (Complete version of Lemma 7). Suppose the conditions in Lemma 12 are true. Further suppose
for all i < t, ηi = θ/i where θ is sufficiently large so that θ ≥ 1/λk(Ei

[
hi(xi)

>hi(xi)
]
); also suppose

λ1

(
G̃>i G̃i

)
= O(1).

(1) With probability ≥ 1− δ over (Dt, ωt), for all 1 ≤ i ≤ t and ` ∈ [k], we have

|g̃`i (xi)− h`i(xi)|2 = O

(
∆2
ωθ

4

t
ln

(
t

δ

))
.

(2) For any x and unit vector w, with probability ≥ 1− δ over (Dt, ωt),

|g̃t(x)w − ht(x)w|2 = O

(
∆2
ωθ

4

t
ln

(
t

δ

))
.

(3) For any x and unit vector w,

EDt,ωt |g̃t(x)w − ht(x)w|2 = O

(
∆2
ωθ

4 ln t

t

)
.

Proof. We first do induction on statement (1), which is true initially. Assume it is true for t, we prove it for
t+ 1.
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We have that for any unit vector w,

|Ei |hi(xi)| at,iw| =

∣∣∣∣∣∣ηiEi |hi(xi)|
t∏

j=i+1

[
I − ηjEj

[
hj(xj)

>hj(xj)
]]
w

∣∣∣∣∣∣
≤ ηi ‖Ei |hi(xi)|‖ ‖w‖

t∏
j=i+1

∥∥I − ηjEj [hj(xj)>hj(xj)]∥∥
≤ O(1)

θ2

i

t∏
j=i+1

(
1− 1

j

)
= O

(
θ2

t

)
.

We use in the second line

‖hi(xi)‖ ≤ O

(√
θ2

t
ln
t

δ

)
+ ‖g̃i(xi)‖ ≤ O

(√
θ2

t
ln
t

δ

)
+

√∥∥∥G̃>i G̃i∥∥∥ ‖φ(xi)‖ = O(θ)

that holds with probability 1−tδ/(t+1) by induction, and we use in the last line θλk(Ei
[
hi(xi)

>hi(xi)
]
) ≥ 1.

Then by Lemma 12, with probability ≥ 1− δ/(k(t+ 1)),

|g̃t+1(xt+1)w − ht+1(xt+1)w|2 ≤ 1

2
∆2
ω ln

(
2(t+ 1)

δ

) t∑
i=1

∣∣Ei |hi(xi)| at,iw∣∣2
≤ O(∆2

ω) ln

(
t+ 1

δ

) t∑
i=1

θ4

t2
= O

(
∆2
ωθ

4

t+ 1
ln

(
t+ 1

δ

))
.

Repeating the argument for k basis vectors w = ei(1 ≤ i ≤ k) completes the proof.
The other statements follow from similar arguments.

Next, we bound the difference between G̃t and V .

Lemma 14. Suppose the conditions in Lemma 13 are true and furthermore, λk(G̃>i G̃i) = Ω(1) for all i ∈ [t].
Let c2t denote cos2 θ(G̃t, V ). Then with probability ≥ 1− δ,

c2t+1 ≥ c2t

{
1 + 2ηt

[
λk − λk+1 − 2 ‖At −A‖ −O

(
∆ωθ

2

√
1

t
ln
t

δ

)](
1− c2t

)
−O

(
ηt∆ωθ

2

√
1− c2t
t

ln
t

δ

)}
−βt

where βt is as defined in Lemma 8.

Proof. The potential of G̃t can be computed by a similar argument as in the previous section; the only
difference is replacing Atu with k(xt, ·)ht(xt)ŵ. This leads to

cos2 θ(G̃t+1, V ) ≥ c2 + 2ηtu
> (s2V V > − c2V⊥V >⊥ ) k(xt, ·)ht(xt)ŵ − βt

= c2 + 2ηtu
> (s2V V > − c2V⊥V >⊥ ) [(k(xt, ·)ht(xt)ŵ −Atu) + (Atu−Au) +Au]− βt (51)

where u = G̃tŵ with unit norm ‖u‖ = 1.
The terms involving (Atu−Au) and Au can be dealt with as before, so we only need to bound the extra

term

u>
(
s2V V > − c2V⊥V >⊥

)
[k(xt, ·)ht(xt)ŵ −Atu]

= u>
(
s2V V > − c2V⊥V >⊥

)
[k(xt, ·)ht(xt)ŵ − k(xt, ·)g̃t(xt)ŵ]

= u>
(
s2V V > − c2V⊥V >⊥

)
k(xt, ·)[ht(xt)− g̃t(xt)]ŵ.
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So we need to bound [ht(xt) − g̃t(xt)]ŵ, which in turn relies on Lemma 13(1). More precisely, we have

‖ht(xt)− g̃t(xt)‖∞ ≤ Õ
(

∆ωθ
2
√

1/t
)

with probability ≥ 1 − δ. Also, we have u = G̃tŵ has unit norm, so

‖ŵ‖ = O(1) when λk(G̃>i G̃i) = Ω(1). Then∣∣u>V V >k(xt, ·)[ht(xt)− g̃t(xt)]ŵ
∣∣ ≤∥∥u>V ∥∥ ‖k(xt, ·)‖ Õ

(
∆ωθ

2
√

1/t
)
≤ c2Õ

(
∆ωθ

2
√

1/t
)

where the last step follows from c ≥ 1/2 by assumption. Similarly,

∣∣u>V⊥V >⊥ k(xt, ·)[ht(xt)− g̃t(xt)]ŵ
∣∣ ≤∥∥u>V⊥∥∥ ‖k(xt, ·)‖ Õ

(
∆ωθ

2
√

1/t
)
≤ sÕ

(
∆ωθ

2
√

1/t
)

= Õ

(
∆ωθ

2

√
1− c2
t

)
.

Plugging into (51) and apply a similar argument as in Lemma 8 and 9 we have the lemma.

Lemma 15 (Complete version of Lemma 6). If the mini-batch sizes are large enough so that ‖A−Ai‖ <
(λk − λk+1)/8, λk(Ei

[
hi(xi)

>hi(xi)
]
) = λk(Ex

[
hi(x)>hi(x)

]
)±O(1), and ∆ω = O(λk − λk+1), then

(1) θ = O(1);

(2) 1− c2t = O
(
1
t ln t

δ

)
.

Proof. If the mini-batch size is large enough so that λk(Ei
[
hi(xi)

>hi(xi)
]
) = λk(Ex

[
hi(x)>hi(x)

]
)±O(1),

we only need to show λk(Ex
[
hi(x)>hi(x)

]
) = Ω(1), which will lead to θ = O(1) and then solving the

recurrence in Lemma 14 leads to 1− cos2 θ(G̃t+1, V ) = Õ(1/t).
Formally, we prove our statements (1)(2) by induction. They are true initially. Suppose they are true

for t− 1, we prove them for t.
First, by solving the recurrence for ct, we have that statement (2) is true up to step t.
Next, since Ex

[
g̃t(x)>g̃t(x)

]
= G̃>t AG̃t, we have

w>Ex
[
g̃t(x)>g̃t(x)

]
w =w>G̃>t AG̃tw

=w>G̃>t (V ΛkV
> + V⊥Λ⊥V

>
⊥ )G̃tw

≥w>G̃>t V ΛkV
>G̃tw

≥λkc2t ‖w‖
2

which means λk(Ex
[
g̃t(x)>g̃t(x)

]
) = Ω(1) by induction on ct. This then leads to λk(Ei

[
hi(xi)

>hi(xi)
]
)) =

Ω(1), which means θ = O(1) up to step t. To see this, let ei(x) = hi(x)− g̃i(x). Then

Ex
[
hi(x)>hi(x)

]
= Ex

[
g̃i(x)>g̃i(x)

]
+ 2Ex

[
ei(x)>hi(x)

]
− Ex

[
ei(x)>ei(x)

]
.

By Lemma 13(3), Ex
∣∣∣eji (x)

∣∣∣ = Õ(θ4/t), which is o(1) if θ = O(1). Then the norm of 2Ex
[
ei(x)>hi(x)

]
−

Ex
[
ei(x)>ei(x)

]
is o(1), so λk(Ex

[
g̃t(x)>g̃t(x)

]
) = Ω(1) means λk(Ei

[
hi(xi)

>hi(xi)
]
)) = Ω(1).

5 Extensions

The proposed algorithm is a general technique for solving eigenvalue problems in the functional space.
Numerous machine learning algorithms boil down to this fundamental operation. Therefore, our method can
be easily extended to solve many related tasks, including latent variable estimation, kernel CCA, etc..
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Algorithm 3: {αi, βi}t1 = DSGD-KSVD(P(x),P(y), k)

Require: P(ω), φω(x).

1: for i = 1, . . . , t do
2: Sample xi ∼ P(x). Sample yi ∼ P(y).
3: Sample ωi ∼ P(ω) with seed i.

4: ui = Evaluate(xi, {αj}i−1j=1) ∈ Rk.

5: vi = Evaluate(yi, {βj}i−1j=1) ∈ Rk.

6: W = uiv
>
i + viu

>
i

7: αi = ηiφωi
(xi)vi.

8: βi = ηiφωi
(yi)ui.

9: αj = αj − ηiWαj , for j = 1, . . . , i− 1.
10: βj = βj − ηiWβj , for j = 1, . . . , i− 1.
11: end for

5.1 Locating individual eigenfunctions

The proposed algorithm finds the subspace spanned by the top k eigenfunctions, but it does not isolate the
individual eigenfunctions. When we need to locate these individual eigenfunctions, we can use a modified
version. Its update rule is

Gt+1 = Gt + ηtAtGt − ηtGt UT
[
G>t AtGt

]
, (52)

where UT [·] is an operator that sets the lower triangular parts to zero.
To understand the effect of the upper triangular operator, we can see that UT [·] forces the update rule

for the first function of Gt to be exactly the same as that of one-dimensional subspace; all the contributions
from the other functions are zeroed out.

g1t+1 = g1t + ηtAtg
1
t − ηtg1t g1t

>
Atg

1
t , (53)

Therefore, the first function will converge to the eigenfunction corresponding to the top eigenvalue.
For all the other functions, UT [·] implements a Gram-Schmidt-like orthogonalization that subtracts the

contributions from other eigenfunctions.

5.2 Latent variable models and kernel SVD

Our algorithm can be straightforwardly extended to solve kernel SVD. The extension hinges on the
following relation [

0 A>

A 0

] [
V
U

]
=

[
A>U
AV

]
=

[
V
U

]
Σ,

where UΣV > is the SVD of A.
It is therefore reduced to the eigenvalue problem. Plugging it into the update rule and treating the two

blocks separately, we thus get two simultaneous update rules

Wt = U>t AVt + V >t A
>Ut (54)

Ut+1 = Ut + ηt (AVt − UtWt) , (55)

Vt+1 = Vt + ηt
(
A>Ut − VtWt

)
. (56)

The algorithm for updating the coefficients is summarized in Algorithm 3.
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Algorithm 4: {αi, βi}t1 = DSGD-KCCA(P(x),P(y), k)

Require: P(ω), φω(x).

1: for i = 1, . . . , t do
2: Sample xi ∼ P(x). Sample yi ∼ P(y).
3: Sample ωi ∼ P(ω) with seed i.

4: ui = Evaluate(xi, {αj}i−1j=1) ∈ Rk.

5: vi = Evaluate(yi, {βj}i−1j=1) ∈ Rk.

6: W = uiv
>
i + viu

>
i

7: αi = ηiφωi
(xi) [vi −Wui].

8: βi = ηiφωi
(yi) [ui −Wvi].

9: end for

5.3 Kernel CCA and generalized eigenvalue problem

Kernel CCA and ICA can also be solved under the proposed framework because they can be viewed as
generalized eigenvalue problem. Given two variables X and Y , CCA finds two projections such that the
correlations between the two projected variables are maximized. Given the covariance matrices CXX , CY Y ,
and CXY , CCA is equivalent to the following problem[

CXX CXY
CY X CY Y

] [
gX
gY

]
=
(
1 + σ2

) [ CXX
CY Y

] [
gX
gY

]
,

where gX and gY are the top canonical correlation functions for variables X and Y , respectively, and σ is
the corresponding canonical correlation.

This is a generalized eigenvalue problem. It can reformulated as the following non-convex optimization
problem

max
G

tr
(
G>AG

)
, (57)

s.t. G>BG = I. (58)

Following the derivation for the standard eigenvalue problem, we get the foliowing update rules

Gt+1 = Gt + ηt
(
I −BGtG>t

)
AGt. (59)

Denote GXt and GYt the canonical correlation functions for X and Y , respectively. We can rewrite the
above update rule as two simultaneous rules

Wt = GYt
>
CY XG

X
t +GXt

>
CXYG

Y
t (60)

GXt+1 = GXt + ηt
[
CXYG

Y
t − CXXGXt W

]
(61)

GYt+1 = GYt + ηt
[
CY XG

X
t − CY YGYt W

]
. (62)

We present the detailed updates for coefficients in Algorithm 4.
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