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A Mirror descent with delayed subgradients

Geometries in Rn beyond ‖·‖2 The algorithm online-gradient-descent, presented in
Section 2, is designed for convex loss functions ft whose subgradients ∇ft|x have bounded Eu-
clidean length ‖∇ft|x‖2. While ‖·‖2 is a geometrically intuitive norm to analyze, there are settings
where other norms on Rn are more natural.

For example, in expert selection, we identify each dimension i ∈ [n] with one of n experts. Each
round t ∈ [T ], we select an expert i ∈ [n] and then receive a cost vector ct ∈ [−1, 1]n, where
the ith coordinate ct,i ∈ [−1, 1] measures the loss incurred by expert i for this round. More
precisely, we choose a distribution of experts defined by a point xt in the probability simplex
K =

{
x ∈ [0, 1]n : ‖x‖1

def
=
∑n
i=1|xi| = 1

}
. The ith coordinate xt,i corresponds to the proba-

bility of selecting expert i. The quantity ct · xt is the expected loss of the randomized strategy xt.
Note that the adversary selects ct with full knowledge of the randomized strategy xt, but not the
random bits that fix the choice of the ith expert.

A cost vector ct ∈ [−1, 1]n can have Euclidean norm ‖ct‖2 =
√
n, but its maximum norm is

bounded by ‖ct‖∞
def
= max{|ct,1|, . . . , |ct,n|} ≤ 1. Because it operates in the Euclidean norm,

online-gradient-descent obtains a regret bound on the order of O(
√
nT ) in expert se-

lection, and one would prefer a regret bound with respect to the L∞-bound of 1 rather than the
Euclidean bound of

√
n. Indeed, a different algorithm that selects experts in proportion to the ex-

ponential of the costs (among others) improves the regret bounds from O(
√
nT ) to O(

√
ln(n)T )

[1].

In this section, we analyze an algorithm called online-mirror-descent, introduced by
Nemirovski and Yudin for (offline) convex minimization [2], that generalizes both online-
gradient-descent and randomized expert selection by exponential weights‡. The algorithm
has a diverse body of analyses and interpretations [4, 5, 6, 7, 8, 9, 10], and our presentation is
particularly influenced by the survey [8] and the lecture notes [9].

Additional results from convex analysis Before discussing online-mirror-descent in
detail, we briefly review additional definitions and properties from convex analysis. These properties
∗http://illinois.edu/~quanrud2/. Supported in part by NSF grants CCF-1217462, CCF-

1319376, CCF-1421231, CCF-1526799.
†http://illinois.edu/~khashab2/. Supported in part by a grant from Google.
‡Technically, the form of online-mirror-descent presented here generalizes a lazy version of

online-gradient-descent, that applies a gradient ∇ft|xt to the unprojected point x′t rather than to the
projected point xt = πK(x′t) to obtain the next unprojected point xt. This variant of online-gradient-
descent is also analyzed in [3].
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are all well known. Our overview is not comprehensive and in particular we limit ourselves to Rn
for ease of exposition. We refer the reader to [11, 12, 13, 14, 15] for further background.

Let ϕ : Rn → R ∪ {+∞} be a convex function. The epigraph of ϕ is the set epiϕ =
{(x, µ) ∈ Rn × R : µ ≥ ϕ(x)} in the higher-dimensional space Rn+1. The function ϕ is closed
if epiϕ is a closed subset of Rn. The closure of a function ϕ is the closed function whose epigraph
is the closure of epiϕ. If the function ϕ is closed, then the closure of ϕ is ϕ. The domain of ϕ is the
convex set of points domϕ

def
= {x ∈ Rn : ϕ(x) <∞} where ϕ is finite. The function ϕ is proper

if domϕ 6= ∅.
Let ϕ : Rn → R ∪ {+∞} be a convex function. The Fenchel conjugate of ϕ is the function
ϕ̄ : Rn → R defined by ϕ̄(x̄) = supx∈Rn 〈x, x̄〉 − ϕ(x). The conjugate function ϕ̄ is a closed and
convex function, and proper if and only if ϕ is [11, Theorem 2.2]. The conjugate ¯̄ϕ of the conjugate
function ϕ̄ is the closure of the original function ϕ, and equals ϕ if ϕ is closed. The subgradients of
ϕ and ϕ̄ are related by the following.

Lemma A.1 ([11, Theorem 23.5]). Let ϕ : Rn → R ∪ {+∞} be a closed and proper convex
function, x ∈ Rn, and x̄ ∈ Rn. The following conditions are equivalent.

(i) x̄ ∈ ∂ϕ(x).
(ii) The function z 7→ 〈z, x̄〉 − ϕ(z) attains its supremum in z at z = x.

(iii) ϕ(x) + ϕ̄(x̄) ≤ 〈x, x̄〉.
(iv) ϕ(x) + ϕ̄(x̄) = 〈x, x̄〉.
(v) x ∈ ∂ϕ̄(x̄).

(vi) The function z̄ 7→ 〈x, z̄〉 − ϕ̄(z̄) attains its supremum at z̄ = x̄.

Consider any fixed norm ‖·‖ on Rn. The dual norm of ‖·‖ is the norm ‖·‖? on Rn defined by
‖y‖? = sup‖x‖=1|〈x, y〉|. A norm ‖·‖ and its dual norm ‖·‖? satisfy a generalized form of the
Cauchy-Schwartz inequality, 〈x, y〉 ≤ ‖x‖‖y‖?. For example, the dual norm of the Euclidean norm
‖·‖2 is again ‖·‖2. The dual norm of the L∞-norm ‖·‖∞ is the L1-norm ‖·‖1. For p > 1, the dual

norm of the Lp-norm ‖x‖p
def
= (

∑n
i=1|x|

p
)
1/p is the Lq-norm ‖·‖q , where q satisfies 1/p+1/q = 1.

Let ϕ : Rn → R ∪ {+∞} be a convex function. For a constant ρ > 0, we say f is smooth with
modulus ρ with respect to a norm ‖·‖ if it is differentiable and has ρ-Lipschitz-continuous gradients.
That is, for any two points x, y ∈ Rn, we have ‖∇ϕ|x −∇ϕ|y‖? ≤ ρ‖x− y‖. There are many
equivalent conditions for a convex function to be smooth; see, for example, [15, Theorem 2.1.5] or
[14, Section 3.5].

Let ϕ : Rn → R ∪ {+∞} be a convex function and σ > 0 a constant. The function ϕ is strongly

convex with modulus σ with respect to a norm ‖·‖ if the function ψ(x)
def
= ϕ(x) − (σ/2)‖x‖2 is

also convex. As with smoothness, there are many equivalent properties for a function to be strongly
convex; see, for example, [15, Section 2.1.3] or [14, Section 3.5]. In particular, for any two points
x, y ∈ Rn and subgradient∇ϕ|x ∈ ∂ϕ(x), we have ϕ(y) ≥ ϕ(x)+〈y − x,∇ϕ|x〉+(σ/2)‖y − x‖2.
Smoothness and strong convexity are dual properties in the following sense.

Lemma A.2 ([14, Section 3.5], [8, Lemma 2.19]). Let ϕ : Rn → R∪{+∞} be a closed and convex
function. Then ϕ is strongly convex with modulus σ with respect to a norm ‖·‖ if and only if ϕ̄ is
smooth with modulus σ−1 with respect to the dual norm ‖·‖?.

Mirror descent Let K be a closed convex set in Rn. Fix a norm ‖·‖ in Rn, and let ϕ be a closed
and strongly convex function on Rn. The strongly convex function ϕ is called the regularizer, and is
required to have subgradients in the closed input domain K. Without loss of generality, we assume
that ϕ(x) =∞ over all nonfeasible points x /∈ K.

Each round t ∈ [T ], online-mirror-descent has both a primal point xt ∈ K and a dual
point x̄t ∈ Rn. We choose the first dual point to be 0. Recall that by Lemma A.2, since ϕ is strongly
convex, its Fenchel conjugate ϕ̄ is smooth and in particular differentiable everywhere. Given the
tth dual point x̄t, the primal point xt is the derivative of the conjugate ϕ̄ at x̄t, xt

def
= ∇ϕ̄|x̄t

.
Given a subgradient∇ft|xt ∈ ∂ft(xt), we update the dual point against the gradient by the formula
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x̄t+1
def
= x̄t − η∇ft|xt . The overall process looks like,

. . . , xt
def
= ∇ϕ̄|x̄t

, x̄t+1
def
= x̄t − η∇ft|xt

, xt+1
def
= ∇ϕ̄|x̄t+1

, . . .

Intuitively, all the information (in the form of gradients) exists in the dual space (with norm ‖·‖?),
and is “mirrored” back into the primal space (with the original norm ‖·‖) via the smooth conjugate
function ϕ̄.

If we inline the role of the dual point and apply Lemma A.1, the next point xt+1 is chosen as a
function of xt as

xt+1 = ∇ϕ̄|x̄t+1
= ∇ϕ̄|x̄t−η∇ft|xt

= arg max
x∈K

{〈x, x̄t − η∇ft|xt
〉 − ϕ(x)}.

If we expand this last term further, then the algorithm can be written equivalently as

xt+1 = arg max
x∈K

{〈x, x̄t〉 − η 〈x,∇ft|xt
〉 − ϕ(x)}

= arg max
x∈K

{ϕ(xt) + 〈x− xt, x̄t〉 − η 〈x,∇ft|xt〉 − ϕ(x)}

= arg max
x∈K

{−η 〈x,∇ft|xt
〉 −Dϕ(x|xt, x̄t)}

= arg min
x∈K

{〈x, η∇ft|xt
〉+Dϕ(x|xt, x̄t)}, (1)

where Dϕ(x|xt, x̄t)
def
= ϕ(x) − ϕ(xt) − 〈x− xt, x̄t〉 is the Bregman divergence of ϕ from xt to

x with the choice of subgradient x̄t ∈ ∂ϕ(xt). The Bregman divergance Dϕ(x|xt, x̄t) measures
the amount of error between the actual value of ϕ at x and its first-order approximation from xt
with respect to the subgradient x̄t ∈ ∂ϕ(xt).

§ By convexity of ϕ, Dϕ(·|·) is always nonnegative.
Moreover, because ϕ is strongly convex,Dϕ(x|xt, x̄t) grows quadratically in the distance between x
and xt. Despite these and other nice properties, Dϕ(x|xt, x̄t) satisfies neither the triangle inequality
nor symmetry. The final formulation of mirror descent in equation (1) chooses xt+1 greedily against
the direction of the gradient, but the greediness is tempered by the Bregman diverganceDϕ(·|xt, x̄t).

The Bregman divergence satisfies the following identity that we will use. For x, y, z ∈ Rn, and
subgradients x̄ ∈ ∂ϕ(x) and ȳ ∈ ∂ϕ(y), we have

〈z − y, ȳ − x̄〉 = Dϕ(z|x, x̄)−Dϕ(z|y, ȳ)−Dϕ(y|x, x̄) (2)

(see, for example, [9, Fact 5.3.3]).
Example A.3. For a closed convex set K, consider the function

ϕ(x)
def
=

{
1
2‖x‖

2
2 if x ∈ K.

+∞ otherwise.

The function ϕ is strongly convex (with modulus 1) with respect to the Euclidean norm ‖·‖2. The
derivative of the conjugate ϕ̄ takes the dual point x̄ ∈ Rn to its closest point in K. Thus online-
mirror-descent, with this choice of norm and regularizer, resembles a lazy version of the
online-gradient-descent algorithm considered in Section 2.
Example A.4 ([16, 4]). Let K be the probability simplex in Rn, and consider the negative entropy
function

ϕ(x)
def
=

{∑n
i=1 xi lnxi if x ∈ K,

+∞ otherwise

where 0 ln 0
def
= 0. The negative entropy function ϕ is strongly convex (with modulus 1) with respect

to the L1-norm, and its Frenchel conjugate is the log-partition function ϕ̄(x̄)
def
= ln(

∑n
i=1 exp(x̄i)).

The derivative of ϕ̄ is defined coordinate-wise by (∇ϕ̄|x̄)i
def
= exp(x̄i)/(

∑n
i′=1 exp(x̄i′)). Note that

∇ϕ̄|x̄ is always a point in the probability simplex. In the context of expert selection, the online-
mirror-descent algorithm with this choice of norm and regularizer randomly selects an expert
i in round t in proportion to the exponential weight.

§We make the choice of subgradient explicit because ϕ is not necessarily differentiable.
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Mirror descent in the delayed setting In the delayed setting, the subgradient of the loss function
ft is not necessarily given by the adversary before we update the dual and pick the next point xt+1

(or even at all). The natural generalization of online-mirror-descent to this setting is to
process the convex loss functions and apply their subgradients to the dual point the moment they are
delivered. That is, we update

x̄t+1 = x̄t − η
∑
s∈Ft

∇fs|xs

for some fixed parameter η, and then project xt+1 = ∇ϕ̄|x̄t+1
. In the undelayed setting, we have

Ft = {t} for each t, and this algorithm is exactly online-mirror-descent.
Theorem A.5. Let K ⊆ Rn be a closed convex set. For a fixed norm ‖·‖ on Rn, let ϕ : Rn →
R ∪ {+∞} be a closed and strongly convex function with modulus σ and with domϕ = K. Let
f1, . . . , fT be convex functions with subgradients satisfying ‖∇ft|x‖? ≤ L for all x ∈ K and t ∈ T .
In the presence of adversarial delays, online-mirror-descent selects points x1, . . . , xT ∈
K such that for all y ∈ K,

T∑
t=1

ft(xt)−
T∑
t=1

ft(y) = O

(
1

η
(ϕ(y)− ϕ(x1)) + η

L2(T +D)

σ

)
.

In the gradient descent setup of example A.3, the term ϕ(y)−ϕ(x1) is bounded above by the square
of the diameter ∆

def
= supx,y∈K‖x− y‖2 of K. For η = Θ(∆

√
D/L), we again achieve a regret

bound on the order of O(∆L
√
D), matching Theorem 2.1 (there we treated ∆ as a constant). In

the expert selection setting of example A.4, ϕ(y) − ϕ(x1) is bounded above by O(ln(n)), and for
η = Θ(

√
ln(n)D), we achieve a regret bound on the order of O(

√
ln(n)D).

Proof of Theorem A.5. Let y ∈ K be any fixed point in K. By convexity, we first bound the regret
by

T∑
t=1

(ft(xt)− ft(y)) ≤
T∑
t=1

〈xt − y,∇ft|xt〉 . (3)

The standard (undelayed) analysis for mirror descent proceeds to analyze each summand
〈xt − y,∇ft|xt

〉 with the knowledge that ∇ft|xt
is applied to (the dual of) xt. This is not true

in the delayed setting, and we first align each gradient ∇fs|xs
∈ Ft alongside the primal point to

which it is effectively applied.

As in the proof for online-gradient-descent, we split the sum of subgradients∑
s∈Ft

∇fs|xs applied in a single round t ∈ [T ] and apply them one by one in increasing order

of their originating round s. For each s ∈ Ft, let Ft,s
def
= {r ∈ Ft : r < s} be the indices of other

gradients that are applied in round t before ∇fs|xs
. Let x̄−s

def
= x̄t − η

∑
r∈Ft,s

∇fr|xr
be the inter-

mediate dual point to which we apply∇fs|xs , and let x̄+
s

def
= x̄−s − η∇fs|xs be the intermediate dual

point after applying∇fs|xs
. Let x−s

def
= ∇ϕ̄|x̄−s and x+

s
def
= ∇ϕ̄|x̄+

s
be their projected primal points in

K.

Rearranging the sum in equation (3) and organizing the gradients by point of delivery, we have

T∑
t=1

〈xt − y,∇ft|xt〉 =

T∑
t=1

∑
s∈Ft

〈xs − y,∇fs|xs〉

=

T∑
t=1

∑
s∈Ft

〈
x−s − y,∇fs|xs

〉
+

T∑
t=1

∑
s∈Ft

〈
xs − x−s ,∇fs|xs

〉
. (4)

The first sum is familiar from the standard analysis of undelayed mirror descent and will be analyzed
by similar techniques. The second term generalizes the delay term in equation (2) from the earlier
proof for online-gradient-descent.
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To analyze the first sum, fix t ∈ [T ] and s ∈ Ft, and expand the summand〈
x−s − y,∇fs|xs

〉
=
〈
x+
s − y,∇fs|xs

〉
+
〈
x−s − x+

s ,∇fs|xs

〉
.

The subsequent primal point x+
s minimizes the function ψs(x)

def
= 〈x, η∇fs|xs − x̄−s 〉 + ϕ(x) over

x ∈ K. Since ψs is convex, K is convex, and y ∈ K, the first-order conditions at x+
s imply that

〈y − x+
s , δ〉 ≥ 0 for any subgradient δ of ψs at x+

s . In particular, at the subgradient η∇fs|xs − x̄−s +
x̄+
s ∈ ∂ψs(x+

s ), we have, 〈
y − x+

s , η∇fs|xs − x̄−s + x̄+
s

〉
≥ 0;

rearranging, this implies that〈
x+
s − y,∇fs|xs

〉
≤ 1

η

〈
y − x+

s , x̄
+
s − x̄−s

〉
.

Furthermore, by the aforementioned identity in equation (2), we have〈
y − x+

s , x̄
+
s − x̄−s

〉
= Dϕ

(
y|x−s , x̄−s

)
−Dϕ

(
y|x+

s , x̄
+
s

)
−Dϕ

(
x+
s |x−s , x̄−s

)
.

Thus,〈
x−s − y,∇fs|xs

〉
=
〈
x+
s − y,∇fs|xs

〉
+
〈
x−s − x+

s ,∇fs|xs

〉
≤ 1

η

(
Dϕ

(
y|x−s , x̄−s

)
−Dϕ

(
y|x+

s , x̄
+
s

)
−Dϕ

(
x+
s |x−s , x̄−s

))
+
〈
x−s − x+

s ,∇fs|xs

〉
=

1

η

(
Dϕ

(
y|x−s , x̄−s

)
−Dϕ

(
y|x+

s , x̄
+
s

))
+

1

η

(〈
x−s − x+

s ,∇fs|xs

〉
−Dϕ

(
x+
s |x−s , x̄−s

))
. (5)

The first term will later telescope over all rounds s ∈ [T ]. Consider the second term
〈x−s − x+

s , η∇fs|xs
〉 − Dϕ(x+

s |x−s , x̄−s ). Since ϕ is strongly convex with modulus σ, we have
Dϕ(x+

s |x−s , x̄−s ) ≥ σ
2 ‖x

+
s − x−s ‖

2
. Thus,〈

x−s − x+
s , η∇fs|xs

〉
−Dϕ

(
x+
s |x−s , x̄−s

)
≤
〈
x−s − x+

s , η∇fs|xs

〉
− σ

2

∥∥x+
s − x−s

∥∥2
by strong convexity of ϕ,

≤
∥∥x+

s − x−s
∥∥‖η∇fs|xs

‖? −
σ

2

∥∥x+
s − x−s

∥∥2
by Cauchy-Schwartz,

≤ 1

2σ
‖η∇fs|xs

‖2? by the identity 2ab− a2 ≤ b2,

= O

(
η2L2

σ

)
by assumption. (6)

Plugging equation (6) into equation (5), we have,〈
x−s − y,∇fs|xs

〉
≤ 1

η

(
Dϕ

(
y|x−s , x̄−s

)
−Dϕ

(
y|x+

s , x̄
+
s

))
+O

(
ηL2

σ

)
.

Summed over all s ∈ Ft and t ∈ [T ] and telescoping, we have,
T∑
t=1

∑
s∈Ft

〈
x−s − y,∇fs|xs

〉
=

T∑
t=1

∑
s∈Ft

(
1

η

(
Dϕ

(
y|x−s , x̄−s

)
−Dϕ

(
y|x+

s , x̄
+
s

))
+O

(
ηL2

σ

))

=
1

η
(Dϕ(y|x1, x̄1)−Dϕ(y|xT+1, x̄T+1)) +O

(
ηL2T

σ

)
. (7)

arriving at the usual bound for (undelayed) mirror descent.

It remains to analyze the delay term
∑T
t=1

∑
s∈Ft

〈xs − x−s ,∇fs|xs
〉 . As in the case of online-

gradient-descent, each summand 〈xs − x−s ,∇fs|xs
〉 reflects the distance between the point

xs when ∇fs|xs is generated, and the point x−s when ∇fs|xs is applied. By Cauchy-Schwartz, the
delay term is bounded above by

T∑
t=1

∑
s∈Ft

〈
xs − x−s ,∇fs|xs

〉
≤

T∑
t=1

∑
s∈Ft

∥∥xs − x−s ∥∥‖∇fs|xs
‖? ≤ L

T∑
t=1

∑
s∈Ft

∥∥xs − x−s ∥∥.
5



Fix s and consider the distance ‖xs − x−s ‖. Applying the triangle inequality many times over, we
first write ∥∥xs − x−s ∥∥ ≤ t−1∑

r=s

‖xr − xr+1‖+ ‖xt − xt,s‖

Fix r ∈ {s, s+ 1, . . . , t− 1} and consider a single term ‖xr − xr+1‖. This is the distance
traversed by the primal point from applying the gradients

∑
q∈Fr

∇fq|xq
to xr. In terms of

derivatives of the dual regularizer, we have ‖xr − xr+1‖ =
∥∥∇ϕ̄|x̄r −∇ϕ̄|x̄r+1

∥∥, where x̄r+1 =
x̄r − η

∑
q∈Fr

∇fq|xq
. As the Fenchel conjugate of a strongly convex function with modulus σ, ϕ̄

is smooth with modulus σ−1, and in particular,

∥∥∇ϕ̄|x̄r −∇ϕ̄|x̄r+1

∥∥ = O

(
1

σ
‖x̄r − x̄r+1‖?

)
= O

 1

σ

∥∥∥∥∥∥η
∑
q∈Fr

∇fq|xq

∥∥∥∥∥∥
?

.
Similarly, we have ‖xt − xs,t‖ ≤ O

(
σ−1

∥∥∥η∑p∈Ft,s
∇fp|xp

∥∥∥
?

)
. Thus,

∥∥xs − x−s ∥∥ = O

t−1∑
r=s

1

σ

∥∥∥∥∥∥η
∑
q∈Fr

∇fq|xq

∥∥∥∥∥∥
?

+
1

σ

∥∥∥∥∥∥η
∑
p∈Ft,s

∇fp|xp

∥∥∥∥∥∥
?


= O

 η

σ

t−1∑
r=s

∑
q∈Fr

∥∥∇fq|xq

∥∥
?

+
∑
p∈Ft,s

∥∥∇fp|xp

∥∥
?


= O

(
ηL

σ

(
t−1∑
r=s

|Fr|+ |Ft,s|

))
.

With respect to the delay term, we have

T∑
t=1

∑
s∈Ft

〈
xs − x−s ,∇fs|xs

〉
≤ L

T∑
t=1

∑
s∈Fs

∥∥x−s − xs∥∥ = O

(
ηL2

σ

T∑
t=1

∑
s∈Fs

(
t−1∑
r=s

|Fr|+ |Ft,s|

))
.

This sum was encountered earlier in the proof for online-gradient-descent, and the same
argument shows that the delay term is bounded by

∑T
t=1

∑
s∈Ft

〈xs − x−s ,∇fs|xs
〉 = O(ηL2D/σ).

Plugging this inequality along with equation (7) into equation (3), we bound the regret by

R(T ) ≤ 1

η
(Dϕ(y|x1, x̄1)−Dϕ(y|xT+1, x̄T+1)) + η

TL2

2σ
+O

(
η
DL2

σ

)
= O

(
1

η
(ϕ(y)− ϕ(x1)) + η

L2(T +D)

σ

)
,

as desired. �

B Late and lazy leaders

A basic application of online combinatorial optimization is adaptive data structures. For example,
in the tree update problem, one maintains a binary search tree over a collection of n items, and
serves an unknown sequence of access queries. If the cost of accessing an item is proportional to the
depth of the item in the tree, then one prefers to have frequently placed items near the root, and less
frequent items at the leaves. One classical data structure for this problem is the splay tree, by Sleater
and Tarjan, who also introduced the tree update problem [17]. Kalai and Vempala observe that this
problem can partially be solved by follow-the-perturbed-leader. We simply track the
sum of access costs for each item, and each round we rebuild an optimal binary search tree with
respect to those costs (plus a perturbation) by dynamic programming in O(n2) time. Compared to
the cost of the best fixed tree in hindsight, this algorithm has an additive loss of O(n

√
nT ) to serve
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T requests. This bound overlooks the fact that rebuilding a binary search tree between every two
queries is absurdly inefficient.

To model this and similar problems efficiently, one introduces the notion of a switching cost,
which is a fixed value that is charged every time we change our decision between subsequent
rounds. For this setting, Kalai and Vempala gave a similar algorithm called follow-the-lazy-
leader, which is nearly equivalent to follow-the-perturbed-leader, but changes deci-
sions very infrequently. Happily, follow-the-lazy-leader is just as simple as follow-
the-perturbed-leader.

Initially, the algorithm picks a point p ∈ Qε =
[
0, ε−1

]n
uniformly at random. This defines a grid,

Gε =
{
p+ ε−1z : z ∈ Zn

}
, of width ε−1 and shifted randomly. Rather than follow the perturbed

leader, we follow the leader and round it up to its nearest grid point. Formally, we define the tth
lazy leader to be the unique grid point yt ∈ Gε of the square yt +Q0. Because the grid is randomly
shifted by the same distribution as the perturbation in follow-the-perturbed-leader, the
perturbed leader and lazy leader are distributed identically and have identical expected costs [18,
Lemma 1.2]. This observation immediately implies that follow-the-lazy-leader obtains
regret O(

√
T )¶.

Extending follow-the-lazy-leader to the delayed setting has natural applications. For ex-
ample, in the tree update problem, it is preferable to be able to serve many queries simultaneously,
and to keep serving requests from an outdated search tree while building the next tree in parallel.
One simple implementation to satisfy these requirement is to keep a pointer to the tree in software
transactional memory (STM) [19]. When follow-the-lazy-leader shifts grid points, we
build the new search tree in the background and swap the pointer in the STM once the new tree
is completed. Here, the delays arise from serving requests from an outdated tree before the tree is
replaced by a new one.
Theorem B.1. Let K ⊆ Rn be a set with L1-diameter ≤ 1, let c1, . . . , cT ∈ Rn≥0 be non-negative
vectors with ‖ct‖1 ≤ 1 for all t, and let ε > 0. In the presence of adversarial delays, follow-
the-lazy-leader picks points x1, . . . , xT ∈ K such that two consecutive points xi and xi+1

differ at most εT times, and for all y ∈ K,
T∑
t=1

E[ct · xt] ≤
T∑
t=1

ct · y +O
(
ε−1 + εD

)
.

Proof. In the delayed setting, the tth delayed leader yd
t is the best point with respect to the grid point

corresponding to the sum of all feedback through the first t rounds. More formally, let g : Rn → Gε
be the mapping each point to the first grid point greater than or equal in each dimension to the point.
Formally, we have

yd
t = arg min

x∈K
x · g

(
t∑

s=1

∑
r∈Fs

cr

)
for each round t (as before, we use the superscript d to emphasize the delayed setting). Following
the lazy leader is the strategy that chooses the tth point xt as xt = yd

t−1 for each round t. Observe
that since each cost vector ci is nonnegative, and their sum has L1-norm ‖c1 + · · ·+ cT ‖1 ≤ T , yd

t
changes grid points at most εT times.

The same proof as [18, Lemma 1.2] shows that each yd
t is distributed identically as ỹd

t . By linearity
of expectation, E

[
ct · yd

t−1

]
= E

[
ct · ỹd

t−1

]
for all t ∈ [T ]. Summing this equality over all rounds

t ∈ [T ] and applying the regret bound for follow-the-perturbed-leader (Theorem 3.1)
gives the bounds we seek. �
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