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Abstract

This document present additional results for the paper “Biologically Inspired Dy-
namic Textures for Probing Motion Perception”. In particular it proves the equiv-
alence between the initial (spatial or spectral) definition of MC and a sPDE for-
mulation, which is useful both for fast numerical simulation and also for fast
evaluation of the conditional density of MC (in order to use it as likelihood for
psychophysical data analysis).

1 Graphical Display of MC

We recall that MC are stationary Gaussian random field with a parameterized power spectrum having
the form

∀ (ξ, τ) ∈ R3, γ̂(ξ, τ) =
PZ (||ξ||)
||ξ||2 PΘ (∠ξ)L(P||V−v0||)

(
||v0|| cos(∠v0 − ∠ξ)− τ

||ξ||

)
. (1)

Similarly as was previously proposed in [4]. We show in Figure 1 two examples of such stimuli for
different spatial frequency bandwidths. In particular, by tuning this bandwidth we could dissociate
their respective role in action and perception [4, 5]. Extending the study of visual perception to other
dimensions, such as orientation or speed bandwidths, should provide essential data to titrate their
respective role in motion integration.

2 sPDE Formulation and Numerics

The formulation of the MC gives an explicit parameterization (1) of the covariance over the Fourier
domain. We show here that it can be equivalently discretized by the solutions of a local PDE driven
by a Gaussian noise. This formulation is important since we aim to deal with dynamic stimulation,
which should be described by a causal equation which is local in time. This is indeed crucial to offer
a fast simulation algorithm (see Section 2.5) and to offer a coherent Bayesian inference framework,
as shown in Section 3.
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A B

Figure 1: Broadband vs. narrowband stimuli. We show in (A) and (B) instances of the same Motion
Clouds with different frequency bandwidths σZ , while all other parameters (such as z0) are kept
constant. The top column displays iso-surfaces of the spectral envelope by displaying enclosing
volumes at different energy values with respect to the peak amplitude of the Fourier spectrum. The
bottom column shows an isometric view of the faces of the movie cube. The first frame of the movie
lies on the x-y plane, the x-t plane lies on the top face and motion direction is seen as diagonal lines
on this face (vertical motion is similarly see in the y-t face). The Motion Cloud with the broadest
bandwidth is thought to best represent natural stimuli, since, as those, it contains many frequency
components. (A) σZ = 0.25, (B) σZ = 0.0625.
2.1 Dynamic Textures as Solutions of sPDE

A MC I with speed v0 can be obtained from a MC I0 with zero speed by the constant speed time
warping

I(x, t)
def.
= I0(x− v0t, t). (2)

We now restrict our attention to I0.

We consider Gaussian random fields defined by a stochastic partial differential equation (sPDE) of
the form

D(I0) =
∂W

∂t
(x) where D(I0)

def.
=
∂2I0
∂t2

(x) + α ?
∂I0
∂t

(x) + β ? I0(x) (3)

This equation should be satisfied for all (x, t), and we look for Gaussian fields that are stationary
solutions of this equation. In this sPDE, the driving noise ∂W

∂t is white in time (i.e. corresponding to
the temporal derivative of a Brownian motion in time) and has a 2-D covariance ΣW in space and ?
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is the spatial convolution operator. The parameters (α, β) are 2-D spatial filters that aim at enforcing
an additional correlation in time of the model. Section 2.2 explains how to choose (α, β,ΣW ) so
that the stationary solutions of (3) have the power spectrum given in (1) (in the case that v0 = 0),
i.e. are motion clouds.

This sPDE formulation is important since we aim to deal with dynamic stimulation, which should
be described by a causal equation which is local in time. This is crucial for numerical simulation
(as explained in Section 2.5) but also to simplify the application of MC inside a bayesian model of
psychophysical experiments (see Section 3).

While it is beyond the scope of this paper to study theoretically this equation, one can show existence
and uniqueness results of stationary solutions for this class of sPDE under stability conditions on the
filers (α, β) (see for instance [8]) that we found numerically to be always satisfied in our simulations.
Note also that one can show that in fact the stationary solutions to (3) all share the same law. These
solutions can be obtained by solving the sODE (4) forward for time t > t0 with arbitrary boundary
conditions at time t = t0, and letting t0 → −∞. This is consistent with the numerical scheme
detailed in Section 2.5.

2.2 Equivalence Between Spectral and sPDE MC Formulations

The sPDE equation (3) corresponds to a set of independent stochastic ODEs over the spatial Fourier
domain, which reads, for each frequency ξ,

∀ t ∈ R,
∂2Î0(ξ, t)

∂t2
+ α̂(ξ)

∂Î0(ξ, t)

∂t
+ β̂(ξ)Î0(ξ, t) = σ̂W (ξ)ŵ(ξ, t) (4)

where Î0(ξ, t) denotes the Fourier transform with respect to the space variable x only. Here, σ̂W (ξ)2

is the spatial power spectrum of ∂W∂t , which means that

ΣW (x, y) = c(x− y) where ĉ(ξ) = σ̂2
W (ξ). (5)

Here ŵ(ξ, t) ∼ N (0, 1) and w is a white noise in space and time. This formulation makes explicit
that (α̂(ξ), β̂(ξ)) should be chosen in order to make the temporal covariance of the resulting process
equal (or at least approximate) the temporal covariance appearing in (1) in the motion-less setting
(since we deal here with I0), i.e. when v0 = 0. This covariance should be localized around 0 and
non-oscillating. It thus makes sense to constrain (α̂(ξ), β̂(ξ)) for the corresponding ODE (4) to be
critically damped, which corresponds to imposing the following relationship

∀ ξ, α̂(ξ) =
2

ν̂(ξ)
and β̂(ξ) =

1

ν̂2(ξ)

for some relaxation step size ν̂(ξ). The model is thus solely parameterized by the noise variance
ˆσW (ξ) and the characteristic time ν̂(ξ).

The following proposition shows that the sPDE model (3) and the motion cloud model (1) are iden-
tical for an appropriate choice of function P||V−v0||.
Proposition 1. When considering

∀ r > 0, P||V−v0||(r) = L−1(h)(r/σV ) where h(u) = (1 + u2)−2 (6)

where L is defined in (1), equation (4) admits a solution I which is a stationary Gaussian field with
power spectrum (1) when setting

σ̂2
W (ξ) =

1

ν̂(ξ)||ξ||2PZ(||ξ||)PΘ(∠ξ), and ν̂(ξ) =
1

σV ||ξ||
. (7)

Proof. For this proof, we denote IMC the motion cloud defined by (1), and I a stationary solution
of the sPDE defined by (3). We aim at showing that under the specification (7), they have the same
covariance. This is equivalent to show that IMC

0 (x, t) = IMC(x + ct, t) has the same covariance as
I0. One shows that for any fixed ξ, equation (4) admits a unique (in law) stationary solution Î0(ξ, ·)
which is a stationary Gaussian process of zero mean and with a covariance which is σ̂2

W (ξ)r ? r̄
where r is the impulse response (i.e. taking formally a = δ) of the ODE r′′ + 2r′/u + r′′/u2 = a
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where we denoted u = ν̂(ξ). This impulse response is easily shown to be r(t) = te−t/u1R+(t).
The covariance of Î0(ξ, ·) is thus, after some computation, equal to σ̂2

W (ξ)r ? r̄ = σ̂2
W (ξ)h(·/u)

where h(t) ∝ (1 + |t|)e−|t|. Taking the Fourier transform of this equality, the power spectrum γ̂0 of
I0 thus reads

γ̂0(ξ, τ) = σ̂2
W (ξ)ν̂(ξ)h(ν̂(ξ)τ) where h(u) =

1

(1 + u2)2

and where it should be noted that this h function is the same as the one introduced in (6). The
covariance γMC of IMC and γMC

0 of IMC
0 are related by the relation

γ̂MC
0 (ξ, τ) = γ̂MC(ξ, τ − 〈ξ, v0〉) =

1

||ξ||2PZ(||ξ||)PΘ (∠ξ)h

(
− τ

σV ||ξ||

)
.

where we used the expression (1) for γ̂MC and the value of L(P||V−v0||) given by (6). Condition (7)
guarantees that expression (2.2) and (2.2) coincide, and thus γ̂0 = γ̂MC

0 .

2.3 Expression for P||V−v0||

Equation (6) states that in order to obtain a perfect equivalence between the MC defined by (1) and
by (3), the function has L−1(h) to be well-defined. It means we need to compute the inverse of the
transform of the linear operator L

∀u ∈ R, L(f)(u) = 2

∫ π/2

0

f(−u/ cos(ϕ))dϕ.

to the function h. The following proposition gives a closed-form expression for this function, and
shows in particular that it is a function in L1(R), i.e. it has a finite integral, which can be normalized
to unity to define a density distribution. Figure 2 shows a graphical display.
Proposition 2. One has

L−1(h)(u) =
2− u2

π(1 + u2)2
− u2(u2 + 4)(log(u)− log(

√
u2 + 1 + 1))

π(u2 + 1)5/2
.

In particular, one has

L−1(h)(0) =
2

π
and L−1(h)(u) ∼ 1

2πu3
when u→ +∞.

Proof. The variable substitution x = cos(ϕ) allows to rewrite (2.3) as

∀u ∈ R, L(h)(u) = 2

∫ 1

0

h
(
−u
x

) x√
1− x2

dx

x
.

In such a form, we recognize a Mellin convolution which could be inverted by the use of Mellin
convolution table.

2.4 Parametrization of PZ

Parametrization by mode and standard deviation The log-normal distribution could be written

PZ(z) ∝ z0

z
e
−

ln( z
z0

)
2

2 ln(1+σ2
Z) .

The parameters (z0, σZ) are convenient to write the distribution but they do not reflect remark-
able values of a log-normal random variable. Instead, we prefer to fix directly the mode mZ =

argmaxz PZ(z) and standard deviation dZ =
√∫

R+
z2PZ(z)dz. These couples of variable are

linked by the following equations,

mZ =
z0

1 + σ2
Z

and dZ = z0σ
2
Z(1 + σ2

Z).

Such formula could be inverted by finding the unique positive root of

P (x) = x2(1 + x2)2 − dZ
mZ

because P (σZ) = 0 and finally set z0 = mZ(1 + σ2
Z).
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Figure 2: Functions h and L−1(h).
Parametrization by mode and octave bandwidth Another choice would be to parametrize PZ
by its mode mZ and octave bandwidth BZ which is defined by

BZ =
ln
(
z+
z−

)
ln(2)

where (z−, z+) are the half-power cutoff frequencies ie verifies PZ(z−) = PZ(z+) = PZ(mZ)
2 . This

last condition comes down to study the roots of the following polynomial

Q(X) = X2 + 2 ln(1 + σ2
Z)X − 2 ln(2) ln(1 + σ2

Z) +
1

2
ln(1 + σ2

Z)2

where X = ln
(
z
z0

)
. It follows that

BZ =

√
8 ln(1 + σ2

Z)

ln(2)
.

Conversely,

σZ =

√
exp

(
ln(2)

8
B2
Z

)
− 1.

2.5 AR(2) Discretization of the sPDE

Most previous works (such as [3] for static and [4, 5] for dynamic textures) have used global Fourier-
based approach that makes use of the explicit power spectrum expression 1. The main drawbacks
of such an approach are: (i) it introduces an artificial periodicity in time and thus can only be used
to synthesize a finite number of frames; (ii) the discrete computational grid may introduce artifacts,
in particular when one of the bandwidths is of the order of the discretization step; (iii) these frames
must be synthesized at once, before the stimulation, which prevents real-time synthesis.

To address these issues, we follow the previous works of [2, 10] and make use of an auto-regressive
(AR) discretization of the sPDE (3). In contrast with these previous works, we use a second order
AR(2) regression (in place of a first order AR(1) model). Using higher order recursions is crucial to
be consistent with the continuous formulation (3). Indeed, numerical simulations show that AR(1)
iterations lead to unacceptable temporal artifacts: in particular, the time correlation of AR(1) random
fields typically decays too fast in time.

The discretization computes a (possibly infinite) discrete set of 2-D frames (I
(`)
0 )`>`0 separated by

a time step ∆, and we approach at time t = `∆ the derivatives as
∂I0(·, t)
∂t

≈ ∆−1(I
(`)
0 − I(`−1)

0 ) and
∂2I0(·, t)
∂t2

≈ ∆−2(I
(`+1)
0 + I

(`−1)
0 − 2I

(`)
0 ),
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which leads to the following explicit recursion

∀ ` > `0, I
(`+1)
0 = (2δ −∆α−∆2β) ? I

(`)
0 + (−δ + ∆α) ? I

(`−1)
0 + ∆2W (`), (8)

where δ is the 2-D Dirac distribution and where (W (`))` are i.i.d. 2-D Gaussian field with distribu-
tion N (0,ΣW ), and (I

(`0−1)
0 , I

(`0−1)
0 ) can be arbitrary initialized.

One can show that when `0 → −∞ (to allow for a long enough “warmup” phase to reach approx-
imate time-stationarity) and ∆ → 0, then I∆

0 defined by interpolating I∆
0 (·,∆`) = I(`) converges

(in the sense of finite dimensional distributions) toward a solution I0 of the sPDE (3). We refer
to [9] for a similar result in the 1-D case (stochastic ODE). We implemented the recursion (8) by
computing the 2-D convolutions with FFT’s on a GPU, which allows us to generate high resolution
videos in real time, without the need to explicitly store the synthesized video.

3 Experimental Likelihood vs. the MC Model

In our paper, we propose to directly fit the likelihood PM |V,Z(m|v, z) from the experimental psy-
chophysical curve. While this makes sense from a data-analysis point of view, this required strong
modeling hypothesis, in particular, that the likelihood is Gaussian with a variance σ2

z independent
of the parameter v to be estimated by the observer.

In this section, we direct a likelihood model directly from the stimuli, by making another (of course
questionnable) hypothesis, that the observer uses a standard motion estimation process, based on the
motion energy concept [1], that we adapt here to the MC distribution. In this setting, this corresponds
to using a MLE estimator, and making use of the sPDE formulation of MC.

3.1 MLE Speed Estimator

We first show how to compute this MLE estimator. To be able to achieve this, the following propo-
sition derive the sPDE satisfied by a motion cloud with a non-zero speed.

Proposition 3. A MC I with speed v0 can be defined as a stationary solution of the sPDE

D(I) + 〈G(I), v0〉+ 〈H(I)v0, v0〉 =
∂W

∂t
(9)

where D is defined in (3), ∂2
xI is the hessian of I (second order spatial derivative), where

G(I)
def.
= α ?∇xI + 2∂t∇xI and H(I)

def.
= (∂2

xI)

and (α, β,ΣW ) are defined in Proposition 1.

Proof. This follows by derivating in time the warping equation (2), denoting y def.
= x+ v0t

∂tI0(x, t) = ∂tI(y, t) + 〈∇I(y, t), v0〉,
∂2
t I0(x, t) = ∂2

t I(y, t) + 2〈∂t∇I(y, t), v0〉+ 〈∂2
xI(y, t)v0, v0〉

and plugging this into (3) after remarking that the distribution of ∂W∂t (x, t) is the same as the distri-
bution of ∂W∂t (x− v0t, t).

Equation (9) is useful from a Bayesian modeling perspective, because, informally, it can be inter-
preted as the fact that the Gaussian distribution of MC as the following appealing form, for any
function I : R2 × R→ R

PI(I) =
1

ZI
exp(−||D(I) + 〈G(I), v0〉+ 〈H(I)v0, v0〉||2Σ−1

W

)

where ZI is a normalization constant which is independent of v0 and

||I||2
Σ−1
W

def.
= 〈I, I〉Σ−1

W
and 〈I1, I2〉Σ−1

W

def.
=

∫ ∫ Î1(ξ, t)Î2(ξ, t)∗

σ̂2
W (ξ)

dξdt

6



where σ̂W is defined in (5).

This convenient formulation allows to re-write the MLE estimator of the horizontal speed v param-
eter of a MC as

v̂MLE(I)
def.
= argmax

v
PI(I) where v0 = (v, 0) ∈ R2

used to analyse psychophysical experiments as
v̂MLE(I) = argmin

v
||D(I) + v〈G(I), (1, 0)〉+ v2〈H(I)(1, 0), (1, 0)〉||2

Σ−1
W

(10)

where we used the fact that the normalizing constant ZI is independent of v0. Expanding the squares
shows that (10) is the optimization of a fourth order polynomial, whose solution can be computed
in closed form as one of the roots of the derivative of this polynomial, which is hence a third order
polynomial.

3.2 MLE Modeling of the Likelihood

In our paper, following several previous works such as [7, 6], we assumed the existence of an in-
ternal representation parameter m, which was assumed to be a scalar, with a Gaussian distribution
conditioned on (v, z). We explore here the possibility that this internal representation could be di-
rectly obtained from the stimuli by the usage by the observer of an “optimal” speed detector (an
MLE estimate).

Denoting Iv,z a MC, which is a random Gaussian field of power spectrum (1), with central speeds
v0 = (v, 0) and central spacial frequency z (the other parameters being fixed as explained in the
experimental section of the paper), this means that we consider the internal representation as being
the following scalar random variable

Mv,z
def.
= v̂MLE

z (Iv,z) where v̂MLE
z (I)

def.
= argmax

v
PM |V,Z(I|v, z), (11)

As detailed in (10) it can be efficiently computed numerically.

As shown in Figure 3(a), we observed that Mv,z is well approximated by a Gaussian random vari-
able. Its mean is nearly constant and very close to v, and Figure 3(b) shows the evolution of its
variance. Our main finding is that this optimal estimation model (using an MLE) is not consistent
with the experimental finding because the estimated standard deviations of observers don’t show a
decreasing behavior as in Figure 3(b).
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Figure 3: Estimates of Mv,z defined by (11) and its standard deviation as a function of z.

3.3 Prior slope and Likelihood width fitting

In Section 3 we use equations

σ2
z = λ2

z,z? −
1

2
λ2
z?,z? and az = az?

σ2
z?

σ2
z

− µz,z?

σ2
z
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to determine az and σz . The slopes az are noisy due to the quotient σ
2
z?

σ2
z

therefore we only show
some of the best fit in Figure 4 when the approximation σ2

z constant holds.
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Figure 4: Example of decreasing az . The unknown az? choosen so that
∑
z a

2
z is minimum.

4 Proofs

4.1 Proof of Proposition 2

We recall the expression of the covariance

∀ (x, t) ∈ R3, γ(x, t) =

∫ ∫
R2

cg(ϕa(x− νt))PV (ν)PA(a)dνda (12)

We denote (θ, ϕ, z, r) ∈ Γ = [−π, π)2 × R2
+ the set of parameters. According to Proposition 1, the

covariance of I is γ defined by (12). Denoting h(x, t) = cg(zRθ(x− νt)), one has, in the sense of
distributions (taking the Fourier transform with respect to (x, t))

ĥ(ξ, τ) = z−2ĝ(z−1Rθ(ξ))
2δQ(ν) where Q =

{
ν ∈ R2 ; τ + 〈ξ, ν〉 = 0

}
.

Taking the Fourier transform of (12) and using this computation, one has

γ̂(ξ, τ)=

∫
Γ

1

z2
|ĝ
(
z−1Rθ(ξ)

)
|2δQ(v0 + r(cos(ϕ), sin(ϕ)))PΘ(θ)PZ(z)P||V−v0||(r) dθ dz dr dϕ.

In the special case of g being a grating, i.e. |ĝ|2 = δξ0 , one has in the sense of distributions

z−2|ĝ
(
z−1Rθ(ξ)

)
|2 = δB(θ, z) where B =

{
(θ, z) ; z−1Rθ(ξ) = ξ0

}
.

Observing that δQ(ν)δB(θ, z) = δC(θ, z, r) where

C =

{
(θ, z, r) ; z = ||ξ||, θ = ∠ξ, r = − τ

||ξ|| cos(∠ξ − ϕ)
− ||v0|| cos(∠ξ − ∠v0)

cos(∠ξ − ϕ)

}
one obtains the desired formula.

4.2 Proof of Proposition 3

One has the closed form expression for the MAP estimator

v̂z(m) = m− azσ2
z ,

and hence, denoting N (µ, σ2) the Gaussian distribution of mean µ and variance σ2,

v̂z(Mv,z) ∼ N (v − azσ2
z , σ

2
z)

where ∼ means equality of distributions. One thus has

v̂z?(Mv,z?)− v̂z(Mv?,z) ∼ N (v − v? − az?σ2
z? + azσ

2
z , σ

2
z? + σ2

z),

which leads to the results by taking expectation.
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