
Supplementary Material.
Learning with Group Invariant Features: A Kernel

Perspective.

Youssef Mroueh
Multimodal Algorithms and Engines Group
IBM Watson,Yorktown Heights, NY 10598

mroueh@us.ibm.com

Stephen Voinea Tomaso Poggio
Center for Brain Minds Machines.

MIT
voinea@mit.edu, tp@ai.mit.edu

A Proofs of Theorems 1 and 2

Proof of Theorem 1. 1)

Ks(x, z) = Et
∫ s

−s
Eg
[
1I〈x,gt〉≤τ

]
Eg′
[
1I〈z,g′t〉≤τ

]
dτ

= Et
∫
dµ(g)dµ(g′)

∫ s

−s
1I〈x,gt〉≤τ1I〈x,g′t〉≤τdτ

=

∫
dµ(g)dµ(g′)Et (s−max(〈x, gt〉 , 〈z, g′t〉)) .

where the second equality is by Fubini theorem and the last one holds since for a, b ∈ [−s, s] :∫ s

−s
1Ia≤τ1Ib≤τdτ = s−max(a, b).

Recall that the sampling of t is the following for ε ∈ (0, 1) let :

t = n ∼ N
(

0,
1

d
Id

)
, if ‖n‖22 < 1 + ε, t =⊥ else ,

since our group is unitary, x being norm one, and by virtue of this sampling the dot product
|〈x, gt〉| ≤ ‖n‖2 ≤

√
1 + ε ≤ 1 + ε . Hence 〈x, gt〉 ∈ [−(1 + ε), 1 + ε], and we can choose

s = 1 + ε. Using again the fact the group is unitary and compact we have:

Ks(x, z) =

∫
dµ(g)dµ(g′)Et(s−max

(〈
g−1x, t

〉
,
〈
g
′,−1z, t

〉)
.

Now using this particular sampling of templates we have:

Ks(x, z) =

∫
G

∫
G

dµ(g)dµ(g′)En
(

1I‖n‖22<1+ε

[
1 + ε−max

(〈
g−1x, n

〉
,
〈
g′−1z, n

〉)])
.

Let

Zx,z(n, g, g
′) = max

(〈
g−1x, n

〉
,
〈
g′−1z, n

〉)
,
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It follows that:

Ks(x, z) =

∫
G

∫
G

dµ(g)dµ(g′)En
(

1I‖n‖22<1+ε [1 + ε− Zx,z(n, g, g′)]
)

= (1 + ε)P(‖n‖22 < 1 + ε)−
∫
G

∫
G

dµ(g)dµ(g′)En
(

1I‖n‖22<1+εZx,z(n, g, g
′)
)

= (1 + ε)P(‖n‖22 < 1 + ε)−
∫
G

∫
G

dµ(g)dµ(g′)En
(

(1− 1I‖n‖22≥1+ε)Zx,z(n, g, g
′)
)

= (1 + ε)P(‖n‖22 < 1 + ε)−
∫
G

∫
G

dµ(g)dµ(g′)EnZx,z(n, g, g′)

+

∫
G

∫
G

dµ(g)dµ(g′)En
(

1I‖n‖22≥1+εZx,z(n, g, g
′)
)

(1)

We are left with evaluating or bounding two expectations: I1 = EnZx,z(n, g, g′), and I2 =

En
(

1I‖n‖22≥1+εZx,z(n, g, g
′)
)
, that involve the maximum of correlated gaussian variables as we

will see in the following.

By rotation invariance of Gaussians we have that
〈
g−1x, n

〉
, and

〈
g′−1z, n

〉
are two correlated

random gaussian variables with correllation coefficient that we note by cos(θg,g′) =
〈
g−1x, g,−1z

〉
.

Hence by a change of a basis we can write:〈
g−1x, n

〉
=

1√
d
u,
〈
g′−1z, n

〉
=

1√
d

cos(θg,g′)u+
1√
d

√
1− cos2(θg,g′)v

where cos(θg,g′) =
〈
g−1x, g′−1z

〉
, and u, v ∼ N (0, 1) iids.

Hence,

I1 =
1√
d
Eu,v max

(
u, cos(θg,g′)u+

√
1− cos2(θg,g′)v

)
.

The following Lemma from [26] gives the expectation and the variance of the maximum of two
gaussians with correllation coefficient ρ.

Lemma 1 (Mean and Variance of Maximum of Correlated Gaussians [26] ). Let X ∼ N (µX , σ
2
X)

and Y ∼ N (µY , σ
2
Y ), two correlated gaussians with correllation coefficient ρ. Define φN (x) =

1√
2π

exp(−x2/2), and ΦN (y) =
∫ y
−∞ φN (x)dx. Let a =

√
σ2
X + σ2

Y − 2ρσXσY , and α =
µX−µY

a .
The mean µZ and variance σ2

Z of Z = max(X,Y ) are expressed analytically as follows:
µZ = µXΦN (α) + µY ΦN (−α) + aφN (α). (2)

σ2
Z =

(
σ2
X + µ2

X

)
ΦN (α) +

(
σ2
Y + µ2

Y

)
ΦN (−α) + (µX + µY ) aφN (α)︸ ︷︷ ︸

EZ2

−µ2
Z . (3)

Applying Lemma 2 to our case (µX = µY = 0, σX = σY = 1, ρ = cos(θg,g′)). We have:
a =

√
2(1− cos(θg,g′)) and α = 0.

I1 =
1√
d
aφN (0)

=
1√
2πd

√
2(1− cos(θg,g′))

=
1√
2πd

∥∥g−1x− g′−1z∥∥
2
. (4)

We turn now to I2 that we bound using Cauchy-Schwarz inequality:

|I2| =
∣∣∣En (1I‖n‖22≥1+εZx,z(n, g, g

′)
)∣∣∣

≤
√
E(1I‖n‖22≥1+ε)

√
E(Z2

x,z(n, g, g
′))

=

√
P
(
‖n‖22 ≥ 1 + ε

)√
E(Z2

x,z(n, g, g
′)). (5)
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On the first hand, applying again Lemma 2 (for EZ2) we have:

E(Z2
x,z(n, g, g

′) =
1

d
Eu,v

(
max

(
u, cos(θg,g′)u+

√
1− cos2(θg,g′)v

))2

=
1

d
(2ΦN (0))

=
1

d
. (6)

On the other hand, note that ‖n‖22 has a (normalized) chi squared distribution with d degree of
freedom χ2

d , with mean 1 . The following Lemma gives upper bounds for the upper and lower tails
of a chi square distribution.

Lemma 2 (χ2 tail bounds). Let X ∼ χ2
k, a chi squared random variable with k degree of freedom.

The following hold true for any ε ∈ (0, 1):

• Upper Bound for the upper tail [27]: P
(
1
kX ≥ 1 + ε

)
≤ e−kε2/8.

• Upper Bound for the lower tail [28]: For all k ≥ 2, u ≥ k − 1 we have:

P (X < u) ≤ 1− 1

2
exp

(
−1

2
(u− k − (k − 2) log(u/k) + log(k))

)
.

More specifically for u = k(1 + ε) we have:

P
(

1

k
X < 1 + ε

)
≤ 1− 1

2

e−εk/2 (1 + ε)
k−2
2

√
k

.

Applying Lemma 3, for ‖n‖22. We have ‖n‖22 = 1
dX , where X ∼ χ2

d, hence:

P
(
‖n‖22 ≥ 1 + ε

)
≤ e−dε

2/8, (7)

Putting together Equations (14),(16), (15) we have finally:

|I2| ≤
e−dε

2/16

√
d

. (8)

Putting together Equations (10), (13), and (17), and using upper and lower bounds for P(‖n‖22 <
1 + ε) from Lemma 3:

Ks(x, z) ≤ (1 + ε)P(‖n‖22 < 1 + ε)− 1√
2πd

∫
G

∫
G

∥∥g−1x− g′−1z∥∥
2
dµ(g)dµ(g′) +

e−dε
2/16

√
d

≤ (1 + ε)

(
1− 1

2

e−εd/2 (1 + ε)
d−2
2

√
d

)
− 1√

2πd

∫
G

∫
G

∥∥g−1x− g′−1z∥∥
2
dµ(g)dµ(g′)

+
e−dε

2/16

√
d

.

Ks(x, z) ≥ (1 + ε)P(‖n‖22 < 1 + ε)− 1√
2πd

∫
G

∫
G

∥∥g−1x− g′−1z∥∥
2
dµ(g)dµ(g′)− e−dε

2/16

√
d

≥ (1 + ε)
(

1− e−dε
2/8
)
− 1√

2πd

∫
G

∫
G

∥∥g−1x− g′−1z∥∥
2
dµ(g)dµ(g′)− e−dε

2/16

√
d

.

Noting by dG the integral and using that the group is compact and unitary:

dG(x, z) =
1√
2πd

∫
G

∫
G

∥∥g−1x− g′−1z∥∥
2
dµ(g)dµ(g′)

=
1√
2πd

∫
G

∫
G

‖gx− g′z‖2 dµ(g)dµ(g′).
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We finally have:

−e
−dε2/16
√
d
−(1+ε)e−dε

2/8+ε ≤ Ks(x, z)−(1− dG(x, z)) ≤ e−dε
2/16

√
d
− 1

2

e−εd/2 (1 + ε)
d
2

√
d

+ε.

(9)
For any ε ∈ (0, 1) , as the dimension d→∞, we have asymptotically:

Ks(x, z)→ 1− dG(x, z) + ε = s− dG(x, z).

2) The symmetry of K is obvious. Let p(t) be the distribution of the templates t. Define the
following weighted dot product: 〈f(x, ., .), g(z, ., .)〉 =

∫
t
p(t)

∫ s
−s dτf(x, t, τ)g(z, t, τ). Recall

that:

Ks(x, z) =

∫
p(t)dt

∫ s

−s
ψ(x, t, τ)ψ(z, t, τ)dτ

= 〈ψ(x, ., .), ψ(z, ., .)〉 .

Hence K is symmetric and positive semidefinite.

Proof of Theorem 2. In the following we fix two points x and z in X and a random template t. Let
Xj =

∫ s
−s P(〈gtj , x〉 ≤ τ)P(〈gtj , z〉 ≤ τ)dτ , we have 0 ≤ Xj ≤ 2s, where s = 1 + ε. Recall that

Ks(x, z) = 1
mEt(

∑m
j=1Xj). By Hoeffding’s inequality we have:

Pt


∣∣∣∣∣∣ 1

m

m∑
j=1

Xj −Ks(x, z)

∣∣∣∣∣∣ > ε

 ≤ 2 exp

(
−2mε2

(2s)2

)

Turning now to the CDF ψ(x, t, τ) = P(〈gt, x〉 ≤ τ), and the empirical CDF ψ̂(x, t, τ) =
1
|G|
∑|G|
i=1 1I〈git,x〉≤τ . By the theorem on convergence of the empirical CDF [29] (Theorem 4 given

in Appendix D ) we have, for γ > 0:

Pg
{

sup
τ

∣∣∣ψ̂(x, t, τ)− ψ(x, t, τ)
∣∣∣ > γ

}
≤ 2 exp(−2|G|γ2)

Hence we have ∀τ ∈ [−s, s]:∣∣∣ψ̂(x, t, τ)− ψ(x, t, τ)
∣∣∣ ≤ γ and

∣∣∣ψ̂(x, t, τ)− ψ(z, t, τ)
∣∣∣ ≤ γ

with a probability at least 1− 4 exp(−2|G|γ2).
Define X =

∫ s
−s ψ(x, t, τ)ψ(z, t, τ)dτ , X̂ =

∫ s
−s ψ̂(x, t, τ)ψ̂(z, t, τ)dτ , and X̃ =

(2s)
n

∑n
k=−n ψ̂(x, t, ksn )ψ̂(z, t, ksn ), choose 0 < γ < 1:

|X̂ −X| =

∣∣∣∣∫ s

−s

(
ψ̂(x, t, τ)ψ̂(z, t, τ)− ψ(x, t, τ)ψ(z, t, τ)

)
dτ

∣∣∣∣
=

∣∣∣∣∫ s

−s

(
ψ̂(x, t, τ)− ψ(x, t, τ) + ψ(x, t, τ)

)(
ψ̂(z, t, τ)− ψ(z, t, τ) + ψ(z, t, τ)

)
− ψ(x, t, τ)ψ(z, t, τ)dτ

∣∣∣∣
≤ (2γ + γ2)2s

≤ 6sγ,

with probability 1 − 4 exp(−2|G|γ2). Define Xj =
∫ s
−s ψ(x, tj , τ)ψ(z, tj , τ)dτ , X̂j =∫ s

−s ψ̂(x, tj , τ)ψ̂(z, tj , τ)dτ , and X̃j = (2s)
n

∑n
k=−n ψ̂(x, tj ,

ks
n )ψ̂(z, tj ,

ks
n ), Then for all j =

1 . . .m, we have
|X̂j −Xj | ≤ 6sγ

with probability 1− 4m exp(−2|G|γ2)− 2 exp
(
−2mε2
(2s)2

)
.
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Now we turn to the numerical approximation of the integra by a Riemann sum, we have for all
j = 1 . . .m : ∣∣∣X̂j − X̃j

∣∣∣ ≤ s

n
.

Hence the error decomposes in the following way:

|〈Φ(x),Φ(z)〉 −Ks(x, z)| =

∣∣∣∣∣∣ 1

m

m∑
j=1

X̃j −Ks(x, z)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
 1

m

m∑
j=1

X̃j −
1

m

m∑
j=1

X̂j

+

 1

m

m∑
j=1

X̂j −
1

m

m∑
j=1

Xj

+

 1

m

m∑
j=1

Xj −Ks(x, z)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

m

m∑
j=1

X̃j −
1

m

m∑
j=1

X̂j

∣∣∣∣∣∣︸ ︷︷ ︸
Numerical Binning Error

+

∣∣∣∣∣∣ 1

m

m∑
j=1

X̂j −
1

m

m∑
j=1

Xj

∣∣∣∣∣∣︸ ︷︷ ︸
Group CDF Approximation Error

+

∣∣∣∣∣∣ 1

m

m∑
j=1

Xj −Ks(x, z)

∣∣∣∣∣∣︸ ︷︷ ︸
Templates Concentration Error

≤ s

n
+ 6sγ + ε.

with probability 1− 4m exp(−2|G|γ2)− 2 exp
(
−2mε2
(2s)2

)
. For this to hold on all pairs of points in

a set of cardinality N we have:

|〈Φ(xi),Φ(xj)〉 −K(xi, xj)| ≤
s

n
+ 6sγ + ε, i = 1 . . . N, j = 1 . . . N,

with probability 1− 4mN(N − 1) exp(−2|G|γ2)− 2N(N − 1) exp
(
−mε2
2(s)2

)
.

Hence we have for numerical constants C1, and C2, 0 < δ1, δ2 < 1, and 0 < ε0, ε1, ε2 < 1, for
n ≥ s

ε0
, m ≥ C1

ε21
log(Nδ1 ),|G| ≥ C2

ε22
log(Nmδ2 ), :

|〈Φ(xi),Φ(xj)〉 −Ks(xi, xj)| ≤ ε0 + ε1 + ε2, i = 1 . . . N, j = 1 . . . N,

with probability 1− δ1 − δ2.

B Proof of Theorem 3

Proof of Lemma 1. Our proof parallels similar proofs in [16]. Note that functions of the form (9)
are dense inHK . f(x) =

∑
i αiKs(x, xi) =

∑
i αi

∫ ∫ s
−s ψ(x, t, τ)ψ(xi, t, τ)p(t)dtdτ

=
∫ ∫ s
−s (p(t)

∑
i αiψ(xi, t, τ))ψ(x, t, τ)dtdτ. Let β(t, τ) = p(t)

∑
i αiψ(xi, t, τ), since 0 ≤

ψ(x, t, τ) ≤ 1, ∀x, t, τ , we have |β(t,τ)|p(t) ≤
∑
i |αi| < ∞, since αi are finite. Hence f can be

written in the form:

f(x) =

∫ ∫ s

−s
β(t, τ)ψ(x, t, τ)dtdτ, sup

τ,t

|β(t, τ)|
p(t)

<∞,

and f ∈ Fp.

In order to prove Theorem 3, we need some preliminary lemmas. The following Lemma assess the
approximation of any function f ∈ Fp, by a certain f̃ ∈ F̃ .

Lemma 3 (F̃ Approximation of Fp). Let f be a function in Fp. Then for δ1, δ2 > 0, there exists a
function f̃ ∈ F̃ such that:∥∥∥f̃ − f∥∥∥

L2(X ,ρX )
≤ 2sC√

m

(
1 +

√
2 log

(
1

δ1

))
+

2sC√
|G|

(
1 +

√
2 log

(
m

δ2

))
+

2sC

n
,

with probability at least 1− δ1 − δ2.
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Proof of Lemma 4. Let f ∈ Fp, f(x) =
∫ ∫ s
−s w(t, τ)ψ(x, t, τ)dτdt.

Let fj(x) =
∫ s
−s

w(tj ,τ)
p(tj)

ψ(x, tj , τ)dτ, f̂j(x) =
∫ s
−s

w(tj ,τ)
p(tj)

ψ̂(x, tj , τ)dτ, and f̃j(x) =

s
n

∑n
k=−n

w(tj ,
ks
n )

p(tj)
ψ̂(x, tj ,

ks
n ). We have the following: Et(fj) = f , and 1

mEt(
∑m
j=1 fj) = f .

Consider the Hilbert space L2(X , ρX ), with dot product: 〈f, g〉L2(X ,ρX ) =
∫
X f(x)g(x)dρX (x).

Note that :
∫ s
−s g(τ)dτ ≤

√
2s
√∫ s
−s g

2(τ)dτ

||fj ||L2(X ,ρX ) =

√∫
X

(∫ s

−s

w(tj , τ)

p(tj)
ψ(x, tj , τ)dτ

)2

dρX (x) ≤ (2sC),

Fix δ1 > 0, applying Lemma 7 we have therefore with probability 1− δ1:∥∥∥∥∥∥ 1

m

m∑
j=1

fj − f

∥∥∥∥∥∥
L2(X ,ρX )

≤ 2sC√
m

(
1 +

√
2 log

(
1

δ1

))
, (10)

Now turn to: ∥∥∥∥∥∥ 1

m

m∑
j=1

(f̂j − fj)

∥∥∥∥∥∥
L2(X ,ρX )

≤ 1

m

m∑
j=1

∥∥∥f̂j − fj∥∥∥
L2(X ,ρX )

,

∥∥∥f̂j − fj∥∥∥2
L2(X ,ρX )

=

∫
X

(∫ s

−s

w(tj , τ)

p(tj)
(ψ(x, tj , τ)− ψ̂(x, tj , τ))dτ

)2

dρX (x)

≤ 2s

∫
X

∫ s

−s

w2(tj , τ)

p2(tj)
(ψ(x, tj , τ)− ψ̂(x, tj , τ))2dτdρX (x)

≤ 2sC2

∫
X

∫ s

−s
(ψ̂(x, tj , τ)− ψ(x, tj , τ))2dτdρX (x)

= 2sC2

∫ s

−s

∫
X

(ψ̂(x, tj , τ)− ψ(x, tj , τ))2dρX (x)dτ

= 2sC2

∫ s

−s

∥∥∥ψ̂(., tj , τ)− ψ(., tj , τ)
∥∥∥2
L2(X ,ρX )

dτ

≤ (2sC)2 sup
τ,j=1...m

∥∥∥ψ̂(., tj , τ)− ψ(., tj , τ)
∥∥∥2
L2(X ,ρX )

.

Recall that: ψ̂(x, t, τ) = 1
|G|
∑|G|
i=1 1I〈git,x〉≤τ , and ψ(x, t, τ) = Egψ̂(x, t, τ).

Clearly
∥∥1I〈.,gt〉≤τ

∥∥
L2(X ,ρX )

≤ 1, hence applying again Lemma 7, for δ2 > 0 we have with proba-
bility 1− δ2:

∥∥∥ψ̂(., tj , τ)− ψ(., tj , τ)
∥∥∥2
L2(X ,ρX )

≤ 1

|G|

(
1 +

√
2 log

(
1

δ2

))2

,

It follows that: ∀j = 1 . . .m,
∥∥∥f̂j − fj∥∥∥ ≤ 2Cs√

|G|

(
1 +

√
2 log

(
1
δ2

))
, with probability 1 −mδ2.

Hence with probability 1−mδ2, we have:∥∥∥∥∥∥ 1

m

m∑
j=1

(f̂j − fj)

∥∥∥∥∥∥
L2(X ,ρX )

≤ 2Cs√
|G|

(
1 +

√
2 log

(
1

δ2

))
. (11)

and by the approximation of a Riemann sum we have that:∥∥∥∥∥∥ 1

m

m∑
j=1

(f̂j − f̃j)

∥∥∥∥∥∥
L2(X ,ρX )

≤ 2sC

n
. (12)
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It is clear that f̃ = 1
m

∑m
j=1 f̃j ∈ F̃ , hence, putting together equations (19),(20), and (21) we finally

have:∥∥∥∥∥∥ 1

m

m∑
j=1

f̃j − f

∥∥∥∥∥∥
L2(X ,ρX )

≤

∥∥∥∥∥∥ 1

m

m∑
j=1

(f̃j − f̂j)

∥∥∥∥∥∥
L2(X ,ρX )

+

∥∥∥∥∥∥ 1

m

m∑
j=1

(f̂j − fj)

∥∥∥∥∥∥
L2(X ,ρX )

+

∥∥∥∥∥∥ 1

m

m∑
j=1

fj − f

∥∥∥∥∥∥
L2(X ,ρX )

≤ 2sC

n
+

2Cs√
|G|

(
1 +

√
2 log

(
1

δ2

))
+

2sC√
m

(
1 +

√
2 log

(
1

δ1

))
with probability 1− δ1 −mδ2.

The following Lemma shows how the approximation of functions inFp, by functions in F̃ , translates
to the expected Risk:
Lemma 4 (Bound on the Approximation Error). Let f ∈ Fp, fix δ1, δ2 > 0. There exists a function
f̃ ∈ F̃ , such that:

EV (f̃) ≤ EV (f) +
2sLC√
m

(
1 +

√
2 log

(
1

δ1

))
+ L

(
2sC√
|G|

(
1 +

√
2 log

(
m

δ2

))
+

2sC

n

)
,

with probability at least 1− δ1 − δ2.

Proof of Lemma 5. EV (f̃) − EV (f) ≤
∫
X

∣∣∣V (yf̃(x))− V (yf(x))
∣∣∣ dρX (x) ≤ L

∫
X |f̃(x) −

f(x)|dρX (x) ≤ L
√∫
X (f̃(x)− f(x))2dρX (x) = L

∥∥∥f̃ − f∥∥∥
L2(X ,ρX )

, where we used the Lips-

chitz condition and Jensen inequality. The rest of the proof follows from Lemma 4.

The following Lemma gives a bound on the estimation of the expected Risk with finite training
samples:
Lemma 5 (Bound on the Estimation Error). Fix δ > 0, then

sup
f∈F̃

∣∣∣EV (f)− ÊV (f)
∣∣∣ ≤ 1√

N

(
4LsC + 2V (0) + LC

√
1

2
log

(
1

δ

))
,

with probability 1− δ.

Proof. The proof follows from Theorem 5 given in Appendix D. It is sufficient to bound the
Rademacher complexity of the class F̃ :

RN (F̃) = Ex,σ

[
sup
f∈F̃

∣∣∣∣∣ 1

N

N∑
i=1

σif(xi)

∣∣∣∣∣
]

= Ex,σ

sup
f∈F̃

∣∣∣∣∣∣ sNn
N∑
i=1

σi

 m∑
j=1

n∑
k=−n

wj,kψ̂

(
xi, tj ,

sk

n

)∣∣∣∣∣∣


= Ex,σ

sup
f∈F̃

∣∣∣∣∣∣ sNn
m∑
j=1

n∑
k=−n

wj,k

N∑
i=1

σiψ̂

(
xi, tj ,

sk

n

)∣∣∣∣∣∣


≤ Ex,σ
sC

mNn

m∑
j=1

n∑
k=−n

∣∣∣∣∣
N∑
i=1

σiψ̂

(
xi, tj ,

sk

n

)∣∣∣∣∣ By Holder inequality: 〈a, b〉 ≤ ‖a‖∞ ‖b‖1

≤ sC

mNn
Ex

m∑
j=1

n∑
k=−n

√√√√Eσ

(
N∑
i=1

σiψ̂

(
xi, tj ,

sk

n

))2

Jensen inequality, concavity of square root

Note that E(σiσj) = 0, for i 6= j it follows that:

Eσ
(∑N

i=1 σiψ̂
(
xi, tj ,

sk
n

))2
= Eσ

∑N
i=1

∑N
`=1 σiσ`ψ̂

(
xi, tj ,

sk
n

)
ψ̂
(
x`, tj ,

sk
n

)
=∑N

i=1 ψ̂
2
(
xi, tj ,

sk
n

)
≤ N , since ψ̂(., ., .) ≤ 1. Finally:

Rm(F̃) ≤ Cs√
N
.
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We are now ready to prove Theorem 3:

Proof of Theorem 3. Let f∗N = arg minf∈F̃ ÊV (f), f̃ = arg minf∈F̃ EV (f), fp =

arg minf∈Fp
EV (f).

EV (f∗N )− min
f∈Fp

EV (f) =
(
EV (f∗N )− EV (f̃)

)
︸ ︷︷ ︸

Statistical Error

+
(
EV (f̃)− EV (fp)

)
︸ ︷︷ ︸

Approximation Error

The first term is the usual estimation or statistical error than we can bound using Lemma 6, we have:

EV (f∗N )− EV (f̃) =
(
EV (f∗N )− ÊV (f∗N )

)
+
(
ÊV (f∗N )− ÊV (f̃)

)
︸ ︷︷ ︸
≤0,by optimality of f∗N

+
(
ÊV (f̃)− EV (f̃)

)

≤ 2 sup
f∈F̃

∣∣∣EV (f)− ÊV (f)
∣∣∣

≤ 2
1√
N

(
4LsC + 2V (0) + LC

√
1

2
log

(
1

δ

))
,

with probability 1 − δ over the training samples. Let f̃p, the function defined in Lemma 4, that
approximates fp in F̃ . By Lemma 5 we know that:

EV (f̃p) ≤ EV (fp) +
2sLC√
m

(
1 +

√
2 log

(
1

δ1

))
+ L

(
2sC√
|G|

(
1 +

√
2 log

(
m

δ2

))
+

2sC

n

)
,

with probability 1 − δ1 − δ2, on the choice of the templates and the sampled group elements. By
optimality of f̃ ∈ F̃ , we have

EV (f̃) ≤ EV (f̃p) ≤ EV (fp)+
2sLC√
m

(
1 +

√
2 log

(
1

δ1

))
+L

(
2sC√
|G|

(
1 +

√
2 log

(
m

δ2

))
+

2sC

n

)
Hence by a union bound with probability 1− δ− δ1 − δ2, on the training set , the templates and the
group elements we have:

EV (f∗N )− min
f∈Fp

EV (f) ≤ 2
1√
N

(
4LsC + 2V (0) + LC

√
1

2
log

(
1

δ

))

+
2sLC√
m

(
1 +

√
2 log

(
1

δ1

))
+ L

(
2sC√
|G|

(
1 +

√
2 log

(
m

δ2

))
+

2sC

n

)
.

C Technical tools

Theorem 1. [29] Let X1, X2, ..., Xm be i.i.d. random variables with cumulative distribution func-
tion F , and let F̂m be the associated empirical cumulative density function F̂m = 1

m

∑m
i=1 1IXi≤τ .

Then for any γ > 0

P
{

sup
τ

∣∣∣F̂m(τ)− F (τ)
∣∣∣ > γ

}
≤ 2 exp

(
−2mγ2

)
.

Lemma 6 ([15],Concentration of the mean of bounded random variables in a Hilbert Space). Let
(H, 〈., .〉H) be a Hilbert space. Let Xj , j = 1 . . .K, be iid random, such that ||Xj ||H ≤ M . Then
for any δ > 0, with probability 1− δ,∥∥∥∥∥∥ 1

K

K∑
j=1

Xj −
1

K
E

K∑
j=1

Xj

∥∥∥∥∥∥
H

≤ M√
K

(
1 +

√
2 log

(
1

δ

))
.
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Theorem 2 ([15]). Let F be a bounded class of function, supx∈X |f(x)| ≤ C for all f ∈ F .
Let V be an L-Lipschitz loss. Then with probability 1 − δ, with respect to training samples
{xi, yi}i=1...N ,every f satisfies:

EV (f) ≤ ÊV (f) + 4LRN (F) +
2V (0)√
N

+ LC

√
1

2N
log

1

δ
,

whereRN (F) is the Rademacher complexity of the class F:

RN (F) = Ex,σ

[
sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

σif(xi)

∣∣∣∣∣
]
,

the variables σi are iid symmetric Bernoulli random variables taking value in {−1, 1}, with equal
probability and are independent form xi.

D Numerical Evaluation

D.1 Permutation Invariance Experiment

For our first experiment, we created an artificial dataset which was designed to exploit permutation
invariance, providing us with a finite group to which we had complete access. The dataset Xperm

consists of all sequences of length L = 5, where each element of the sequence is taken from an
alphabet A of 8 characters, giving us a total of 32,768 data points. Two characters c1, c2 ∈ A were
randomly chosen and designated as targets, so that a sequence x ∈ Xperm is labeled positive if
it contains both c1 and c2, where the position of these characters in the sequence does not matter.
Likewise, any sequence that does not contain both characters is labeled negative. This provides us
with a binary classification problem (positive sequences vs. negative sequences), for which the label
is preserved by permutations of the sequence indices, i.e. two sequences will belong to the same
orbit if and only if they are permuted versions of one another.
The ith character in A is encoded as an 8-dimensional vector which is 0 in every position but the ith,
where it is 1. Each sequence x ∈ Xperm is formed by concatenating the 5 such vectors representing
its characters, resulting in a binary vector of length 40. To build the permutation-invariant represen-
tation, we project a binary sequences onto an equal-length sequence consisting of standard-normal
gaussian vectors, as well as all of its permutations, and then pool over the projections with a CDF.
As a baseline, we also used a bag-of-words representation, where each x ∈ Xperm was encoded
with an 8-dimensional vector with ith element equal to the count of how many times character i ap-
pears in x. Note that this representation is also invariant to permutations, and so should share many
of the benefits of our feature map.
For all classification results, 4000 points were randomly chosen fromXperm to form the training set,
with an even split of 2000 positive points and 2000 negative points. The remaining 28,768 points
formed the test set.
We know from Theorem 3 that the expected risk is dependent on the number of templates used to
encode our data and on the number of bins used in the CDF-pooling step. The right panel of Figure
1 shows RLS classification accuracy on Xperm for different numbers of templates and bins. We see
that, for a fixed number of templates, increasing the number of bins will improve accuracy, and for a
fixed number of bins, adding more templates will improve accuracy. We also know there is a further
dependence on the number of transformation samples from the group G. The left panel of figure
1 shows how classification accuracy, for a fixed number of training points, bins, and templates, de-
pends on the number of transformation we have access to. We see the curve is rather flat, and there
is a very graceful degradation in performance.
In Figure 2, we include the sample complexity plot (for RLS) with the error bars added.

D.2 TIDIGITS Experiment

Here, we add plots showing performance as a function of number of templates and bins for some
other splits of the TIDIGITS data.
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Figure 1: Left) Classification accuracy of random invariant features as function of the number of
sampled group elements on Xperm. Right) Classification accuracy of random invariant features as
function of the number of templates and bin sizes on Xperm.
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Figure 2: Classification accuracy as a function of training set size. Φ = CDF(n,m) refers to a ran-
dom feature map with n bins and m templates. For each training set size, the accuracy is averaged
over 100 random training samples. With enough templates/bins, the random feature map outper-
forms the raw features as well as a bag-of-words representation (also invariant to permutation). We
also train an RLS classifier with a haar-invariant kernel, which naturally gives the best performance.
However, by increasing the number of templates, we come close to matching this performance with
random feature maps.
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Figure 3: Mean classification accuracy as a function of number of templates, m, and bins, n. Ac-
curacy is averaged over 30 random template samples for each m and error bars are displayed. In
the “Utterance” dataset, we train and test on the same speakers, but the test set contains new utter-
ances of each digit. This is the easiest dataset, representing only intraspeaker variability, and the
performance is quite good even for a small number of bins.
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Figure 4: Mean classification accuracy as a function of number of templates, m, and bins, n. Accu-
racy is averaged over 30 random template samples for each m and error bars are displayed. In the
“Age (Women)” dataset, we train on adult women and test on children, giving us an age mismatch.
Despite this mismatch, performance remains strong.
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