
Testing Closeness With Unequal Sized Samples: Supplementary
Material

This supplementary material is organized as follows. Section A describes the extension of Algo-
rithm 3 that obtains the optimal dependence on the error parameter ε (in addition to the optimal
dependence on n,m1, and m2. Our description is split into two parts, corresponding to the regime
in which m1 ≤ n1−γ for some positive constant γ, and the extreme regime where m1 ≈ n and
m2 ≈

√
n/ ε2 . We conclude Section A with a high level overview of the proof approach. Sec-

tions B, C, and D contain the formal proof of the analysis of the algorithms, proving the upper
bounds of Theorem 1. Finally, in Section E we prove our information theoretic lower bounds, estab-
lishing the optimality of our testing algorithms.

Throughout this supplementary material, in both the description and analysis of the algorithms, and
in the lower bound section, we work in the “Poissonized” setting, where we assume that we have
access to Pois(m1) samples from distribution p, and Pois(m2) samples drawn distribution q. This
assumption that the sample size is a random variable renders the number of occurrences of different
domain elements independent. Because Pois(λ) is tightly concentrated about its expectation, both
the upper and lower bounds on the sample complexities proved in this “Poissonized” setting also
hold (up to factors of 1± o(1)) in the setting in which one obtains samples of a fixed size.
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A Algorithms for `1 Testing

To get the optimal dependence on ε, Algorithm 1 needs to be slightly modified. Algorithm 3 below
gives the optimal sample complexity in the non-extreme case, for any ε ≥ n−

1
12 . In this case, a

separate check needs to done to handle elements in the “medium set” M defined below. Note that
when ε is a constant, the frequencies of the elements assigned to the medium set only differ by a
constant factor and we can absorb them in either B or H , hence recovering Algorithm 1.

Algorithm 3 Asymmetric Closeness Testing: Non-Extreme Case

Suppose m1 = O(
(
n/ε2

)1−γ
) ≤ n for some γ > 0. Let S1, S2 denote two independent sets of

Pois(m1) samples from p and let T1, T2 denote two independent sets of Pois(m2) samples drawn
from q. We wish to test p = q versus ||p− q||1 > ε.

• Let b = 256 logn
ε2m2

, and b′ = 256 logn
m2

, and let XS1
i denote the number of occurrences of i in

S1, and Y T1
i denote the number of occurrences of i in T1.

• Define the “heavy” set B = {i ∈ [n] :
X
S1
i

m1
> b} ∪ {i ∈ [n] :

Y
T1
i

m2
> b}.

• Define the “medium” set M =

{
i ∈ [n] : b′ ≤ max{X

S1
i

m1
,
Y
T1
i

m2
} ≤ b

}
.

• Define the “light” set H = [m] \ (B ∪M).

• Let Xi denote the number of occurrences of element i in S2, and Yi denote the number of
occurrences of element i in T2:

1. Check if

VB :=
∑
i∈B

Vi :=
∑
i∈B

∣∣∣∣Xi

m1
− Yi
m2

∣∣∣∣ ≤ ε/6. (6)

2. Check if

WM :=
∑
i∈M

Wi :=
∑
i∈M

(m2Xi −m1Yi)
2 − (m2

2Xi +m2
1Yi) ≤

ε2m2
1m2 log n

2
. (7)

3. Check if

ZH :=
∑
i∈H

Zi :=
∑
i∈H

(m2Xi −m1Yi)
2 − (m2

2Xi +m2
1Yi)

Xi + Yi
≤ Cγm3/2

1 m2, . (8)

Where Cγ is an appropriately chosen absolute constant, dependent on γ.
4. If (6), (7), and (8) hold, then ACCEPT. Otherwise, REJECT.

The following proposition characterizes the performance of this algorithm, establishing the upper
bounds of Theorem 1 in the non-extreme range of parameters with m1 < n1−γ . The proof is given
in Sections B and C.

Proposition 1. Suppose m1 = O(
(
n/ε2

)1−γ
) ≤ n for some γ > 0, and ε > n−1/12. Then

Algorithm 3 takes Θ(m1) samples from p and O(max{ n√
m1ε

2 ,
√
n
ε2 }) samples from q, and with

probability at least 2/3 distinguishes whether p = q versus ||p− q||1 ≥ ε.

As mentioned earlier, for the extreme case, that is, m1 ≈ n and m2 ≈
√
n, the re-weighted statistic

ZH may have an unacceptably large variance, necessitating a modification to the algorithm in this
extreme case. The statistic R introduced below (9) is tailored to deal with these cases.
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Algorithm 4 Asymmetric Closeness Testing: Extreme Case

Suppose m1 = Ω(
(
n/ε2

)8/9+γ
) for some γ > 0. Let S1, S2 denote two independent sets of

Pois(m1) samples from p and let T1, T2 denote two independent sets of Pois(m2) samples drawn
from q. We wish to test p = q versus ||p− q||1 > ε.

• Define b, b′, B,M,H as in Algorithm 3.
• Let Xi denote the number of occurrences of element i in S2, and Yi denote the number of

occurrences of element i in T2:

1. REJECT if there exists i ∈ [n] such that Yi ≥ 3 and Xi ≤ m1ε
2/3

10m2n1/3 .

2. Check if

RH :=
∑
i∈H

111{Yi = 2}
Xi + 1

≤ C1
m2

2

m1
, (9)

where C1 is an appropriately chosen absolute constant.
3. If step (1) is not rejected and (6), (7), (8), and (9) are satisfied, then ACCEPT. Otherwise,

REJECT.

The following proposition characterizes the performance of this algorithm, establishing the upper
bounds of Theorem 1 in the extreme range of parameters with m1 ≈ n. The proof is given in
Sections B and D.

Proposition 2. Suppose m1 = Ω(
(
n/ε2

)8/9+γ
) for some γ > 0 and ε > n−1/12. Then Algorithm

4 takes Θ(m1) samples from p and O(max{ n√
m1ε

2 ,
√
n
ε2 }) samples from q, and with probability at

least 2/3 distinguishes whether p = q versus ||p− q||1 ≥ ε.

A.1 Proof Overview

At a high level, the analysis of the algorithms proceeds as follows: We first establish that, with high
probability over the first set of samples, S1, T1, the sets B,M,H successfully partition the elements
in the “heavy”, “medium”, and “light” sets. This portion of the proof is completely standard and will
follow from a union bound over Chernoff bounds and bounds on the tails of the Poisson distribution.
The proofs of Propositions 1 and 2 will then proceed by arguing that, with high probability over the
randomness of the second set of samples, S2, T2, the algorithms will be successful, provided that the
sets B,M,H, were a reasonable partition. For this portion of the proofs, we need to ensure that the
likely range of values that the various statistics (V,W,Z, and R) take in the equality setting p = q
are essentially disjoint from the range of values that the statistics would take in the setting where
||p− q|| ≥ ε . This argument applies Chebyshev’s inequality, and its higher moment analogues. To
enable this analysis, in Section B we first establish various bounds on the moments of these statistics,
which we leverage throughout the remainder of the proof.

B Expectation and Variance Bounds

Before beginning the analysis of the above algorithms we need bounds on the expectation and vari-
ance of the different statistics used in the above algorithms. Throughout this section, fix any set
A ⊆ [n], and let Xi denote the number of occurrences of the i-th domain element in set S2—a set
of Pois(m1) samples from distribution p, and analogously let Yi denote the number of occurrences
of the i-th domain element in set T2—a set of Pois(m2) samples from distribution q. Throughout
this section, we bound the moments of the following statistics:

• VA =
∑
i∈A Vi =

∑
i∈A

∣∣∣Xim1
− Yi

m2

∣∣∣ .
• WA =

∑
i∈AWi =

∑
i∈A

(
(m2Xi −m1Yi)

2 − (m2
2Xi +m2

1Yi)
)
.

• ZA =
∑
i∈A Zi =

∑
i∈A

(m2Xi−m1Yi)
2−(m2

2Xi+m
2
1Yi)

Xi+Yi
.
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B.1 Expectation and Variance of VA

Lemma 1. For any fixed set A ⊆ [n]

∑
i∈A
|pi − qi| ≤ E[VA] ≤

∑
i∈A
|pi − qi|+

(
|A|
m1

+
|A|
m2

) 1
2

≤
∑
i∈A
|pi − qi|+

(
2|A|
m2

) 1
2

, (10)

and

Var[VA] ≤ 1

m1
+

1

m2
. (11)

Proof. For the lower bound on the expectation, note that E
[
|Xim1
− Yi

m2
|
]
≥
∣∣∣E [Xim1

− Yi
m2

]∣∣∣ =

|pi − qi|.
To prove the upper bound, observe that

E[V 2
i ] =

pi
m1

+
qi
m2

+ (pi − qi)2.

By the Cauchy-Schwarz inequality,

E

[∑
i∈A

Vi

]
≤
∑
i∈A

E[V 2
i ]

1
2 ≤

∑
i∈A
|pi − qi|+

∑
i∈A

(
pi
m1

+
qi
m2

) 1
2

≤
∑
i∈A
|pi − qi|+

(
|A|
m1

+
|A|
m2

) 1
2

. (12)

Finally, Var[VA] =
∑
i∈A(E[V 2

i ]− E[Vi]
2) ≤

∑
i∈A pi
m1

+
∑
i∈A qi
m2

≤ 1
m1

+ 1
m2

.

B.2 Expectation and Variance of WA

For A ⊆ [n], define WA =
∑
i∈AWi =

∑
i∈A(m2Xi − m1Yi)

2 − (m2
2Xi + m2

1Yi). Using the
facts that Xi ∼ Pois(m1pi) and Yi ∼ Pois(m2qi) and plugging in the expressions for the moments
of Poissons, the next lemma follows immediately:

Lemma 2. For any A ⊆ [n], WA/(m
2
1m

2
2) is an unbiased estimate of

∑
i∈A(pi − qi)2. Namely,

E[WA] = m2
1m

2
2

∑
i∈A

(pi − qi)2, (13)

Moreover,

Var[WA] = 2m2
1m

2
2

∑
i∈A

z2
i + 4m3

1m
3
2

∑
i∈A

zi(pi − qi)2, (14)

where zi = m2pi +m1qi.

B.3 Moments of ZA

Recall that

Zi :=
(m2Xi −m1Yi)

2 − (m2
2Xi +m2

1Yi)

Xi + Yi
,

and for A ⊆ [n], ZA :=
∑
i∈A Zi. We show that if p = q, then E[

∑
i∈A Zi] = 0, and otherwise, we

give a lower bound on the expectation of the sum:

Lemma 3. If p = q, then E[
∑
i∈A Zi] = 0, and otherwise, E[

∑
i∈A Zi] ≥

m2
1m

2
2(

∑
i∈A |pi−qi|)

2

4n+m1+m2
.
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Proof. Conditioned on the denominator,

Xi

∣∣∣Xi + Yi = σ ∼ Bin

(
σ,

m1pi
m1pi +m2qi

)
.

Set βi = m1pi
m1pi+m2qi

. Then using binomial moments we get,

E[(m2Xi −m1Yi)
2|Xi + Yi = σ] = σβi(1− βi)(m1 +m2)2 + σ2(m2βi −m1(1− βi))2

= (m1 +m2)2

(
σβi(1− βi) + σ2

(
m1

m1 +m2
− βi

)2
)
.(15)

Similarly,

E[m2
2Xi +m2

1Yi|Xi + Yi = σ] = m2
1σ + (m2

2 −m2
1)E[Xi|Xi + Yi = σ]

= m2
1σ + (m2

2 −m2
1)σβi

Therefore, the conditional expectation of the numerator is

E
[
m2Xi −m1Yi)

2 − (m2
2Xi +m2

1Yi)
∣∣∣Xi + Yi = σ

]
= (m1 +m2)2σ(σ − 1)

(
m1

m1 +m2
− βi

)2

= σ(σ − 1)

(
m1m2(qi − pi)
m1pi +m2qi

)2

. (16)

This implies

E

[∑
i∈A

Zi/m
2
1m

2
2

]
=
∑
i∈A

(qi − pi)2

zi

(
1− 1− e−zi

zi

)
,

where zi = m1pi +m2qi. This implies that the expectation of the sum is zero if p = q.

For the case p 6= q, let g(z) = z/(1 − 1−e−z
z ). Now, using the fact that g(z) ≤ 2 + z and the

Cauchy-Schwarz inequality, the result follows.

Lemma 4. For i ∈ [n] and p = q,

Var[Zi] ≤ 2m2
1m

2
2 Pr[Xi + Yi > 0], and hence Var[ZA] = O(m3

1m
2
2).

For pi ≥ qi, Var[Zi] ≤ O(m3
1m

2
2pi), and for pi < qi

Var[Zi] ≤ O(m3
1m

2
2) min

{
q2
i

pi
,m1q

2
i

}
. (17)

Proof. The variance of Zi can be computed by using the formula for conditional variance. Define,

Gi(σ) := Var[(m2Xi −m1Yi)
2 − (m2

2Xi +m2
1Yi)|Xi + Yi = σ].

Let βi = m1pi
m1pi+m2qi

. Using formulas for binomial moments the conditional variance

Gi(σ) = Fi(σ) + Li(σ),

where
Fi(σ) = 2β2

i (1− βi)2σ(σ − 1)(m1 +m2)4,

and

Li(σ) = 4βi(1− βi)σ(σ − 1)2(m1 +m2)4

(
m1

m1 +m2
− βi

)2

.

For pi = qi, βi = m1

m1+m2
and Li(σ) = 0. Also, from the proof of Lemma 4 it can be seen that

Var[E[Zi|Xi + Yi = σ]] = 0, when pi = qi. Therefore, for pi = qi,

Var[Zi] = E[Gi(σ)/σ2] = E[Fi(σ)/σ2] ≤ 2m2
1m

2
2 Pr[Xi + Yi > 0].
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Let zi = m1pi +m2qi. Then Pr[Xi + Yi > 0] = 1− e−zi ≤ zi, and Var[ZA] =
∑
i∈A Var[Zi] =

O(m3
1m

2
2).

To prove the bound in the case pi 6= qi, note that Fi(σ) = 0, for σ = 0, 1 and Fi(σ) ≤ 2β2
i (1 −

βi)
2σ2(m1 +m2)4, for σ ≥ 2. Therefore,

E
(
Fi(σ)

σ2

)
≤ 2(m1 +m2)4β2

i (1− βi)2 Pr[σ ≥ 2]

≤ 2(m1m2)2(m1 +m2)4

{
p2
i q

2
i (1− e−zi − zie−zi)

z4
i

}
≤ O(m6

1m
2
2)

{
p2
i q

2
i min{zi, z2

i }
z4
i

}
. (18)

Now, for pi ≥ qi, zi ≥ m1+m2

2 (pi + qi), and

E
(
Fi(σ)

σ2

)
≤ O(m6

1m
2
2)

{
p2
i q

2
i min{1, zi}

z3
i

}
≤ O(m3

1m
2
2)

{
p2
i q

2
i

(pi + qi)3

}
≤ O(m3

1m
2
2pi).

The remaining terms in the variance can be bounded similarly, and for pi ≥ qi, it follows that
Var[Zi] ≤ O(m3

1m
2
2pi).

For the case pi < qi, use the bound zi ≥ m1pi in (18) to get

E
[
Fi(σ)

σ2

]
≤ O(m3

1m
2
2) min

{
q2
i

pi
,m1q

2
i

}
. (19)

Similarly, Li(σ) = 0 for σ = 0, 1 and Li(σ) ≤ 4βi(1 − βi)σ
3(m1 + m2)4

(
m1

m1+m2
− βi

)2

.

Therefore, for the case pi < qi, using the bound z3
i ≥ m2

1m2p
2
i qi, for zi ≤ 1, and z2

i ≥ m1m2piqi,
for zi ≥ 1 we get

E
(
Li(σ)

σ2

)
≤ 4(m1 +m2)4βi(1− βi)

(
m1

m1 +m2
− βi

)2

E[σ111{σ ≥ 2}]

= 4m3
1m

3
2(m1 +m2)2 piqi(pi − qi)2zi(1− e−zi)

z4
i

≤ O(m5
1m

3
2)
piqi(pi − qi)2 min{1, zi}

z3
i

= O(m3
1m

2
2) min

{
q2
i

pi
,m1q

2
i

}
. (20)

Finally, from Lemma 3 when pi < qi

Var[E[Zi|Xi + Yi = σ]] = (m1 +m2)2 Var[σ]

(
m1

m1 +m2
− βi

)2

= m4
1m

4
2

(qi − pi)4

z3
i

≤ O(m3
1m

2
2) min

{
q2
i

pi
,m1q

2
i

}
. (21)

Combining (19), (20), and (21), the variance (17) follows.

For the analysis of the algorithms we also need bounds on the s-th moment of ZA corresponding to
a set A with the property that for all i ∈ A, pi ≤ 2b′ and qi ≤ 2b′, where b′ = 256 logn

m2
, as define in

Algorithm 3.
Lemma 5. For any s ∈ N, and set A ⊂ [n] such that for all i ∈ A, pi ≤ 2b′ and qi ≤ 2b′,

E[|ZA − E[ZA]|s] ≤ Õs(m2s
1 m2),

where Õs suppresses a factor of logO(s) n.
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Proof. Trivially, |Zi| ≤ 3m2
2Xi + 3m2

1Yi. Since E[Xs
i ] is a degree s polynomial in m1pi, E[Xs

i ] =
Os(max{ms

1p
s
i ,m1pi}). Similarly, for E[Y si ] = Os(max{ms

2q
s
i ,m2qi}). Therefore, for i ∈ A,

E[|Zi|s] = Os(m
2s
2 E[Xs

i ] +m2s
1 E[Y si ]) = Õs(m

2s
1 m2 max{pi, qi}). (22)

Similarly, E[|Zi|]s = Õs(m
2s
1 m2 max{pi, qi}), and

E[|ZA − E[ZA]|s] ≤ Os

(∑
i∈A

E[|Zi|s] + E[|Zi|]s
)
≤ Õs(m2s

1 m2). (23)

Combining (22) and (27) the lemma follows.

For the analysis of the algorithm in the extreme case, we will need bounds on the s-th moment of
ZA corresponding to a setA with the property that, for all i ∈ A, ε2/3

20m2n1/3 ≤ pi ≤ 2b′ and qi ≤ 2b′.
In this case, a more careful analysis gives a better bound on the moments of ZA.

Lemma 6. For any s ∈ N, and a set A ⊂ [n] such that for all i ∈ A, ε2/3

20m2n1/3 ≤ pi ≤ 2b′ and
qi ≤ 2b′,

E[|ZA − E[ZA]|s] ≤ Õ
(
ns/3ms

1m
s+1
2

ε2s/3

)
,

where Õs suppresses a factor of logO(s) n.

Proof. From the definition of Zi,

|Zi| ≤ O
(
m2

2X
2
i +m2

1Y
2
i

Xi + Yi

)
.

Conditioned on Xi + Yi = σ, Xi ∼ Bin(σ,m1pi/zi) and Yi ∼ Bin(σ,m2qi/zi), where zi =
m1pi +m2qi. Then, E[Xi] = σm2qi/zi := xi, and for any s ≥ 1,

E[Xs
i |Xi + Yi = σ] = O(max{xi, xsi}).

Similarly,

E[Y si |Xi + Yi = σ] = O(max{yi, ysi }) where E[Yi] = σm2qi/zi := yi.

Therefore, for σ > 0,

E[|Zi|s|Xi + Yi = σ] ≤ Os

(
max

{
m2s

1 m
2s
2 q

2s
i σ

s

z2s
i

,
m2s

1 m2qi

σs−1zs+1
i

})
≤ Os

(
max

{
m2s

1 m
2s
2 q

2s
i σ

s

z2s
i

,
m2s

1 m2qi

zs+1
i

})
. (24)

Note that E[σ] = zi and E[σs] = Os(z
s
i ) because zi ≥ 1 by assumption. Using qi ≤ 2b′ we get

Os

(
m2s

1 m
2s
2 q

2s
i

zsi

)
≤ Os

(
ms

1m
2s
2 q

2s
i

psi

)
≤ Os

(
ms

1m
2s
2 b
′2s−1qi

psi

)
= Õs

(
ms

1m2qi
psi

)
. (25)

Moreover, because m1pi ≥ 1,

Os

(
m2s

1 m2qi

zs+1
i

)
≤ Os

(
ms−1

1 m2qi

ps+1
i

)
≤ Os

(
ms

1m2qi
psi

)
. (26)

Combining (25) and (26) with (24) and using pi ≥ ε2/3

20m2n1/3 (since i ∈ A) gives

E[|Zi|s] ≤ Õs
(
ms

1m2qi
psi

)
≤ Õs

(
ns/3ms

1m
s+1
2 qi

ε2s/3

)
.

Similarly, it can be shown that E[|Zi|]s = Õs

(
ns/3ms1m

s+1
2 qi

ε2s/3

)
, and

E[|ZA − E[ZA]|s] ≤ Os

(∑
i∈A

E[|Zi|s] + E[|Zi|]s
)
≤ Õ

(
ns/3ms

1m
s+1
2

ε2s/3

)
. (27)

completing the proof of the lemma.
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C Proof of Proposition 1

We begin by establishing that, with high probability over the first set of samples, S1, T1, the sets
B,M,H successfully partition the elements in the “heavy”, “medium”, and “light” sets. The proof
follows from a union bound over Poisson tail bounds.

Definition 3. Let b, b′ be as defined in Algorithm 3. The set B is said to be faithful if for all i ∈ B,
pi > b/2 or qi > b/2. Similarly, M is said to be faithful if for all i ∈M , b′/2 ≤ max{pi, qi} ≤ 2b.
Finally, H is said to be faithful if pi < 2b′ and qi < 2b′, for all i ∈ H .

Lemma 7. With probability at least 1− o(1/n) over the randomness in the samples S1, T1, the sets
B,M, and H will be “faithful”.

Proof. We leverage the following Chernoff style bound for Poisson distributions: for any λ ≤ c,
and δ ∈ (0, 1),

Pr [|Pois(λ)− λ| > δc] ≤ 2e−δ
2c/3.

Let XS1
i denote the number of occurrences of i in the Pois(m1) samples, S1, drawn from p, and

Y T1
i denote the number of occurrences of i in the Pois(m2) samples from q that comprise T1. For

any domain element i with probability pi ≥ b′/2,

Pr

[
|XS1

i −m1pi| ≥
1

2
m1pi

]
≤ 2e−

1
4·3m1pi ≤ 2e−20 logn = o(1/n2).

Similarly, for any domain element i with probability qi ≥ b′/2,

Pr

[
|Y T1
i −m2qi| ≥

1

2
m2qi

]
≤ 2e−

1
4·3m2qi ≤ 2e−20 logn = o(1/n2).

So far, this ensures that common elements do not occur too infrequently. To ensure that none of the
rare elements occur too frequently, note that the same bound implies that for any domain element i
with probability pi ≤ b′/2,

Pr
[
XS1
i ≥ b

′m1

]
≤ Pr

[
|XS1

i −m1pi| ≥ b′m1/2
]
≤ 2e−b

′m1/6 ≤ 2e−20 logn = o(1/n2).

Analogously for any domain element i with probability qi ≤ b′/2,

Pr
[
Y T1
i ≥ b′m2

]
≤ Pr

[
|Y S1
i −m2qi| ≥ b′m2/2

]
≤ 2e−b

′m2/6 ≤ 2e−20 logn = o(1/n2).

Note that if, for all domain elements i with pi ≥ b′/2, |XS1
i −m1pi| < 1

2m1pi, and for all elements
i with pi ≤ b′/2, XS1

i ≤ b′m1, and the analogous statements hold for qi and Y T1
i , then the sets

B,M, and H will all be “faithful”. By our above bounds, and a union bound over the n elements,
with probability at least 1− o(1/n) this occurs.

We now prove the correctness of Algorithm (3) by establishing that in the case that p = q, the
algorithm will output ACCEPT with probability at least 2/3, and in the case that ||p− q||1 ≥ ε the
algorithm will output REJECT with probability at least 2/3. The analysis of these two cases is split
into Lemmas 8 and 12. Together with Lemma 7, this establishes Proposition 1:

C.1 ||p− q||1 = 0

We analyze the statistics of the algorithm in the case p = q, with respect to the randomness in the
samples S2, T2 under the assumption that the sets B,M,H are faithful.

Lemma 8. Given that the setsB,M, andH are “faithful” and that p = q, then with high probability
over the randomness in S2, T2, Algorithm 3 will output ACCEPT.
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Proof. C.1.1 The statistic VB:

By Lemma 1,

E[VB ] ≤
(

2|B|
m2

)1/2

+
∑
i∈B
|pi − qi| =

(
2|B|
m2

)1/2

.

From our definition of “faithful”, every element of i ∈ B must have pi+qi ≥ b/2 = 128 logn
ε2m2

, hence

|B| ≤ 2 ε2m2

128 logn <
ε2m2

64 logn , and

E[VB ] ≤
(

2|B|
m2

)1/2

≤ ε
√

2

8
√

log n
< ε /8, for n > 2.

From Lemma 1, Var[VB ] ≤ 1
m1

+ 1
m2
≤ ε2√

n
= o(ε2). Hence, by Chebyshev’s inequality, Pr[VB >

ε/6] ≤ o(1), and the first check of Algorithm 3 will pass.

C.1.2 The statistic WM :

From Lemma 2, E[WM ] = m2
1m

2
2

∑
i∈M (pi − qi)2 = 0. Additionally,

Var[WM ] = 2m2
1m

2
2

∑
i∈M

(m2pi +m1qi)
2 ≤ 2m2

1m
2
2 ·max

i
{m2pi +m1qi}

∑
i

(m2pi +m1qi).

From the fact that M is faithful, maxi{m2pi + m1qi} ≤ O(m1 logn
m2 ε2

), and hence we conclude that

Var[WM ] = O(
m4

1m2 logn
ε2 ).

By Chebyshev’s inequality, and the assumption that ε > 1/n1/12,

Pr

[
WM ≥

ε2m2
1m2 log n

2

]
= o(1),

and hence the second check of Algorithm 3 will pass.

C.1.3 The statistic ZH :

By Lemma 3, E[ZH ] = 0, and by Lemma 4, Var[ZH ] = O(m3
1m

2
2). Therefore, by Chebyshev’s

inequality Pr[ZH ≥ Cγm
3/2
1 m2] ≤ O( 1

C2
γ

), which can be made arbitrarily small for a sufficiently
large constant Cγ , and hence the third check of Algorithm 3 will pass.

C.2 ||p− q||1 ≥ ε

We now consider the execution of the algorithm when ||p− q||1 ≥ ε.
Lemma 9. Given that the sets B,M, and H are “faithful” and ||p − q||1 ≥ ε, then with high
probability over the randomness in S2, T2, Algorithm 3 will output REJECT.

Proof. The proof proceeds by considering the following three cases, at least one of which holds: 1)∑
i∈B |pi − qi| ≥ ε/3, 2)

∑
i∈M |pi − qi| ≥ ε/3, and 3)

∑
i∈H |pi − qi| ≥ ε/3.

C.2.1
∑
i∈B |pi − qi| ≥ ε/3

By Lemma 1, E[VB ] ≥
∑
i∈B |pi − qi| ≥ ε /3 and Var[VB ] ≤ 1

m1
+ 1

m2
≤ 2/

√
n Therefore by

Chebyshev’s inequality, Pr[VB < ε/6] = o(1), and hence the algorithm will output REJECT with
high probability.
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C.2.2
∑
i∈M |pi − qi| ≥ ε/3

From Lemma 2, E[WM ] = m2
1m

2
2

∑
i∈M (pi−qi)2. From the definition of “faithful”, it follows that

|M | ≤ 2
(

m2

128 logn

)
, and hence by Cauchy-Schwarz,

(m2
1m

2
2)
∑
i∈M

(pi−qi)2 ≥ (m2
1m

2
2)

(∑
i∈M |pi − qi|

)2
|M |

≥ (m2
1m

2
2)

128 ε2 log n

18m2
≥ 7 ε2m2

1m2 log n.

Furthermore, from Lemma 2,

Var[WM ] ≤ 2m2
1m

2
2

∑
i∈M

z2
i + 4m3

1m
3
2

∑
i∈M

zi(pi − qi)2,

where zi = m1qi + m2pi. As in the proof of Lemma 8, the first term is O(
m4

1m2 logn
ε2 ). For the

second term, noting that
∑
i zi ≤ m1 + m2, and (pi − qi)

2 ≤ O( log2 n
ε4m2

2
), we get the bound of

O(
m4

1m2 logn
ε4 ).

By Chebyshev’s inequality and the assumption that ε > 1/n1/12, with probability 1− o(1), WM >
ε2m2

1m2 log n, and the algorithm will output REJECT.

C.2.3
∑
i∈H |pi − qi| ≥ ε/3

From Lemma 3, E[ZH ] ≥ Ω(
m2

1m
2
2ε

2

n ). Using the assumption that m2 = Ω( n
ε2
√
m1

), we conclude
that

E[ZH ] = Ω(m
3/2
1 m2).

Using the moment bounds from Lemma 5 and the definition of “faithful”, for any integer s > 0,
E[|ZH − E[ZH ]|s] ≤ Õs(m2s

1 m2). By Markov’s inequality,

Pr[ZH ≤ Cγm3/2
1 m2] ≤ Pr

[
|ZH − E[ZH ]| ≥ Ω(m

3/2
1 m2)

]
= Pr

[
|ZH − E[ZH ]|s ≥ Ω(m

3s/2
1 ms

2)
]

≤ Õs

(
m2s

1 m2

m
3s/2
1 ms

2

)
= Õs

(
m

s
2
1

ms−1
2

)
.

As long as m1

m2
2
≤ 1/nc for some positive constant c, there will be some integer sc, dependent

on c for which this probability is o(1). Note that the stipulation in the proposition statement, that
m1 = O

(
(n/ ε2)1−γ) , for some constant γ > 0, ensures that m1

m2
2

= O(1/n−2γ), and hence the
algorithm will output REJECT with probability 1− o(1) in this case.

D Proof of Proposition 2

In this section we prove Proposition 2, showing that Algorithm 4 performs as claimed in the extreme
case where m1 ≈ n. The algorithm is a slight modification of Algorithm (3), tailored to handle the
imbalance between the sample sizes from p and q. We prove that this algorithm works whenever
m1 = Ω(

(
n/ε2

)8/9+γ
) for some γ > 0, and overlaps with the regime of parameters for which the

non-extreme algorithm, Algorithm 3, will succeed.

We begin the proof of the above proposition by considering the statistic RH .

Observation 1. Define RA =
∑
i∈A

111{Yi=2}
Xi+1 , for A ⊆ [n]. Then

E[RA] =

n∑
i=1

m2
2q

2
i (1− e−m1pi) e−m2qi

2m1pi
. (28)
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Proof. Since Xi ∼ Pois(m1pi), E[ 1
Xi+1 ] = 1−e−m1pi

m1pi
. Also, Yi ∼ Pois(m2qi) implies Pr[Yi =

2] = (m2qi)
2

2 e−m2qi . The expectation of RA now follows from linearity of expectation and the
independence of Xi and Yi.

As mentioned before, in the extreme case the statistic ZA can incur a variance of O(n4), which is at
the threshold of what can be tolerated. The statistic RA is tailored to deal with these cases. This is
formalized in the following lemmas: whenever the variance of ZA is at least the tolerance threshold
Ω(m3

1m
2
2), the expected values of RA in the case p = q is well separated from the likely values of

RA in case ||p− q||1 > ε.

Lemma 10. If p = q, E[RA] ≤ m2
2

2m1
. If p 6= q and maxi∈A qi ≤ 10

m2
and Var[ZA] = Ω(m3

1m
2
2),

then E[RA] ≥ Ω(m2
2/m1).

Proof. If p = q, then

E[RA] =
m2

2

2m1

∑
i∈A

q2
i (1− e−m1pi) e−m2qi

2pi
≤ m2

2

2m1

∑
i∈A

q2
i

2pi
≤ m2

2

2m1
.

Now, suppose p 6= q. Let
A0 := {i ∈ A : m1pi ≥ 1/2}.

Note that Var[ZA] ≥ Ω(m3
1m

2
2) implies that either

∑
i∈A0

q2i
pi
≥ C or m1

∑
i∈A\A0

q2
i ≥ C for

some constant C (since by Lemma 4, Var[ZA] ≤ O(m3
1m

2
2)
∑
i∈A min

{
q2i
pi
,m1q

2
i

}
). We consider

the two cases separately:

1 Suppose
∑
i∈A0

q2i
pi
≥ C. Since qi ≤ 10/m2 for all i ∈ A, it holds that for i ∈ A0, e

−m2qi ≥
e−10. Moreover, i ∈ A0 implies 1− e−m1pi ≥ 1− e−1/2. Therefore,∑

i∈A0

m2
2q

2
i (1− e−m1pi) e−m2qi

2m1pi
≥ e−12m2

2

m1

∑
i∈A0

q2
i

pi
≥ C · e−12m2

2

m1
.

2 Suppose m1

∑
i∈A\A0

q2
i ≥ C. Using the inequality 1− e−x ≥ x− x2/2,

∑
i∈A\A0

m2
2q

2
i (1− e−m1pi) e−m2qi

2m1pi
≥ e−10m2

2

2m1

∑
i∈A\A0

q2
i

(
m1pi − m2

1p
2
i

2

)
pi

=
e−10m2

2

2m1

∑
i∈A\A0

(m1q
2
i −m2

1q
2
i pi/2)

≥ e−10m2
2

2

∑
i∈A\A0

(q2
i − q2

i /4)

=
e−10m2

2

2

∑
i∈A\A0

3q2
i /4 ≥

C · 3e−10m2
2

8
,

where the second to last inequality uses that assumption that m1pi < 1/2 for i ∈ A \A0.

Combining the above cases it follows that E[RA] ≥ Ω(m2
2/m1).

From the proof of the above lemma it is clear that we can choose some absolute constant K such
that whenever p 6= q and

max
i∈A
|qi| ≤ 10/m2, Var[ZA] ≥ Km3

1m
2
2, (29)

then E[RA] ≥ 11m2
2/2m1. Hereafter, fix this constant K.
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D.1 p = q

Suppose, m1 = Ω((n/ε2)8/9+γ) for some γ > 0. We analyze the statistics in Algorithm 4 in the
case that p = q, with respect to the randomness in the samples S2, T2 under the assumption that the
sets B,M,H are faithful.

Lemma 11. Given that the sets B,M, and H are “faithful” and that p = q, then with high proba-
bility over the randomness in S2, T2, Algorithm 4 will output ACCEPT.

Proof. From calculations identical to those in case C.1.1, C.1.2, it follows that

Pr[VB ≥ ε/6] ≤ 1

100
, Pr[WM ≥

ε2m2
1m2 log n

2
] ≤ 1

100
, Pr[ZH ≥ C2m

3/2
1 m2] ≤ 1

100
,

when p = q. Therefore, the unknown distributions will pass the checks in Algorithm 4 that corre-
spond to the statistics VB , WM , and ZH .

It remains to verify the additional two checks in Algorithm 4.

D.1.1 Check (1) in Algorithm 4

To show that the first check in Algorithm 4 passes, we will show that when p = q,

Pr

[
there exists i ∈ [n] such that Yi ≥ 3 and Xi ≤

m1ε
2/3

10m2n1/3

]
< 1/50.

Denote λ = m1ε
2/3

10m2n1/3 = Ω

(
m

3/2
1 ε8/3

n4/3

)
= Ω(nγ), for some constant γ > 0, since by assumption,

m1 = Ω((n/ε2)8/9+γ) for some γ > 0.

If pi > 2λ
m1

. Then Pr [Xi ≤ λ] ≤ Pr[Pois(2λ) ≤ λ] = o(1/n2). On the other hand, if pi = qi ≤
2λ
m1
, then

Pr[Yi ≥ 3] ≤ Pr

[
Pois

(
2λm2

m1

)
≥ 3

]
= Pr

[
Pois

(
2 ε2/3

10n1/3

)
≥ 3

]
<

1

100n
.

Hence by a union bound over all i ∈ [n], check (1) in Algorithm 4 passes.

D.1.2 The statistic R

Recall that H = [n]\(B ∪M), where B and M are defined in (3). Note that by Lemma 10, when
p = q,

E[RH ] ≤ m2
2

2m1
.

By assumption, m2
2/m1 ≥ 1 and the second criteria for Algorithm 4 rejecting is RH > Cm2

2/m1,
for a large constant C. Since RH is a sum of independent random variables, each of which is in the
range (0, 1), a standard Chernoff bound applies, yielding that the probability the algorithm rejects
due to this RH is at most 1/100.

D.2 ||p− q||1 ≥ ε

Lemma 12. Given that the sets B,M, and H are “faithful” and that ||p− q||1 ≥ ε, then with high
probability over the randomness in S2, T2, Algorithm 3 will output REJECT.

Proof. The proof proceeds by considering the following three cases, at least one of which holds: 1)∑
i∈B |pi − qi| ≥ ε/3, 2)

∑
i∈M |pi − qi| ≥ ε/3, and 3)

∑
i∈H |pi − qi| ≥ ε/3. Now, if either∑

i∈B |pi−qi| ≥ ε/3 or
∑
i∈M |pi−qi| ≥ ε/3, then from calculations identical to those in Sections

C.2.1, C.2.2 it follows that the algorithm will output REJECT.

Therefore, assume that
∑
i∈H |pi − qi| ≥ ε/3. We begin the proof with the following observation:
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Observation 2. Suppose there exists j ∈ [n] such that qj ≥ 10
m2

and pj ≤ ε2/3

20m2n1/3 , then

Pr

[
∃i ∈ [n]s.t.Yi ≥ 3 and Xi ≤

m1ε
2/3

10m2n1/3

]
≥ 9

10
, (30)

that is, Algorithm 4 fails the first check and REJECTS.

Proof. Given j with qj ≥ 10
m2

and pj ≤ ε2/3

20m2n1/3 , Pr[Yj ≥ 3] > 0.99, and Pr
[
Xj <

m1ε
2/3

10m2n1/3

]
>

1− o(1).

Given this observation, we may continue under the assumption that for all i ∈ [n] such that qi ≥ 10
m2

,

pi ≥ ε2/3

20m2n1/3 . Now, define
S0 := {i ∈ [n] : qi ≤ 10/m2},

and consider the following cases:

Case 1
∑
i∈S0
|pi − qi| ≥ ε/6. To begin with suppose that Var[ZS0

] ≤ Km3
1m

2
2, with K as

defined in (29). Then by Chebyshev’s inequality Pr[ZH ≤ C2m
3/2
1 m2] ≤ 1

20 (since
E[ZS0 ] ≥ Ω(m

3/2
1 m2) by Lemma 3). Otherwise, Var[ZS0 ] ≥ Km3

1m
2
2, in which case, by

Lemma 10, E[RS0
] ≥ 11m2

2

2m1
; since RH ≥ RS0

is a sum of independent random variables,
with values between 0 and 1, a Chernoff bound yields that with probability at least 0.99,
RH will exceed the threshold and the second check of Algorithm 4 will fail.

Case 2 Finally, suppose that
∑
i∈H\S0

|pi − qi| ≥ ε/6. Since qi > 10/m2 for all i ∈ H \ S0,

it suffices to assume that pi ≥ ε2/3

20m2n1/3 by Observation 2. From Lemma 6, letting T =

H \ S0, we have that E[ZT ] ≥ O(ε2m2
1m

2
2/36n), and

E[|ZT − E[ZT ]|s] = O

(
ns/3ms

1m
s+1
2

ε2s/3

)
.

By Markov’s inequality,

Pr[ZT ≤ Cγm3/2
1 m2/2] ≤ Pr[|ZT − E[ZT ]| ≥ Ω(m

3/2
1 m2)]

≤ Õs

(
ns/3ms

1m
s+1
2

ε2s/3m
3s/2
1 ms

2

)

≤ Õs

(
ns/3m2

ε2s/3m
s/2
1

)
. (31)

If m2 = n√
m1ε

2 then (31) becomes Õs

(
(n/ε2)s/3+1

m
s/2+1/2
1

)
. Since m2 ≥ Ω((n/ε2)8/9), by

taking s > 5, we can make the probability in (31) o(1). Similarly, if m1 = n and m2 =
√
n/ε2, then with s = 6, (31) becomes Õs

(
1

ε8
√
n

)
= o(1) as ε ≥ n− 1

12 . Together with the
concentration of ZS0 from Chebyshev’s inequality, we get that in this case, the Z statistic
check fails and the algorithm will output REJECT with probability at least 0.99 in this case.

E Lower Bound for `1 Testing

In this section, we present lower bounds for the closeness testing problem under the `1 norm using
the machinery developed in Valiant [29, 30]. To this end, define the (k1, k2)-based momentsm(r, s)
of a distribution pair (p, q) as kr1k

s
2

∑n
i=1 p

r
i q
s
i . Valiant [30, Theorem 4.6.9] showed that if the
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distributions p+
1 , p

+
2 have probabilities at most 1/1000k1, and p−1 , p

−
2 have probabilities at most

1/1000k2, and ∑
r+s>1

|m+(r, s)−m−(r, s)|√
1 + max{m+(r, s),m−(r, s)}

<
1

1000
. (32)

then the distribution pair (p+
1 , p

+
2 ) cannot be distinguished with probability 13/24 from (p−1 , p

−
2 ) by

a tester that takes Pois(k1) samples from (p+
1 , p

+
2 ) and Pois(k2) samples from (p−1 , p

−
2 ).

Using this we prove the following proposition:

Proposition 3. Let n2/3/ε4/3 ≤ m1 ≤ n. Then there exists distributions p and q such that given
Θ(m1) samples from p requires Ω( n√

m1ε
2 ) samples from q to distinguish between p = q and ||p −

q||1 ≥ ε with high probability.

Proof. Fix δ = 1/4. Let b = 1/m1 and a = C/n, where C is an appropriately chosen constant. Let
A, B, and C be disjoint subsets of size (1− δ)/b, 1/a, 1/a, respectively. Consider two distributions

p = b1A + δa1B ,

and
q = b1A + δa(1 + εz)1B ,

where z is 1 or -1 depending on whether the index is even or odd (in such a way that
∑n
i=1 qi = 1).

Then clearly ||p− q||1 = δε = ε/4.

Define k1 = cm1 and k2 = cε−2n/
√
m1, where c is a sufficiently small constant. Then ||p||∞ =

b ≤ 1
1000k1

and ||p||∞ = b ≤ 1
1000k2

, whenever m1 ≥ n2/3/ε4/3 and b ≥ a.

Let (p, p) = (p+
1 , p

+
2 ) and (p, q) = (p−1 , p

−
2 ) and computing the (k1, k2)-based moments gives:

m+(r, s) = kr1k
s
2(1− δ)br+s−1 + kr1k

s
2δ
r+sar+s−1,

and

m−(r, s) = kr1k
s
2(1− δ)br+s−1 + kr1k

s
2δ
r+sar+s−1

(
(1 + ε)s + (1− ε)s

2

)
.

By Theorem 4.6.9 of Valiant [30], to show that (k1, k2) samples are not enough, it suffices to have
(32). Observe,

|m+(r, s)−m−(r, s)|√
1 + max{m+(r, s),m−(r, s)}

≤
kr1k

s
2δ
r+sar+s−1

(
1− 1

2 ((1 + ε)s + (1− ε)s)
)√

kr1k
s
2(1− δ)br+s−1

.

For any s ≥ 0, define h(ε, s) = 1− (1+ε)s+(1−ε)s
2 Observe that h(ε, 1) = 0, and |h(ε, s)| ≤ 1, for

s 6= 1. Note that m1 ≥ n2/3/ε4/3, implies that ε ≥ n−
1
4 . Therefore, for every fixed r ≥ 0 and

s 6= 1,

h(ε, s)k
r
2
1 k

s
2
2 b
−(r+s−1)/2ar+s−1 ≤ c

r+s
2

(m1

n

)r (m 1
2
1

ε2n

) s
2−1

≤ c
r+s
2

(m1

n

)r+ s
4 + 1

2

< c
r+s
2 ,

since m1 ≤ n by assumption. This shows (32) if c is chosen small enough.

The optimality of the `1 tester, establishing the lower bound in Theorem 1, follows from the above
proposition together with the lower bound of

√
n/ε2 for testing uniformity given in Paninski [21].
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