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Abstract

Motivated by the problem of robust factorization of a low-rank tensor, we study
the question of sparse and low-rank tensor decomposition. We present an efficient
computational algorithm that modifies Leurgans’ algoirthm for tensor factoriza-
tion. Our method relies on a reduction of the problem to sparse and low-rank ma-
trix decomposition via the notion of tensor contraction. We use well-understood
convex techniques for solving the reduced matrix sub-problem which then allows
us to perform the full decomposition of the tensor. We delineate situations where
the problem is recoverable and provide theoretical guarantees for our algorithm.
We validate our algorithm with numerical experiments.

1 Introduction

Tensors are useful representational objects to model a variety of problems such as graphical models
with latent variables [1], audio classification [20], psychometrics [8], and neuroscience [3]. One
concrete example proposed in [1] involves topic modeling in an exchangeable bag-of-words model
wherein given a corpus of documents one wishes to estimate parameters related to the different top-
ics of the different documents (each document has a unique topic associated to it). By computing
the empirical moments associated to (exchangeable) bi-grams and tri-grams of words in the docu-
ments, [1] shows that this problem reduces to that of a (low rank) tensor decomposition. A number of
other machine learning tasks, such as Independent Component Analysis [11], and learning Gaussian
mixtures [2] are reducible to that of tensor decomposition. While most tensor problems are com-
putationally intractable [12] there has been renewed interest in developing tractable and principled
approaches for the same [4, 5, 12, 15, 19, 21, 24–27].

In this paper we consider the problem of performing tensor decompositions when a subset of the
entries of a low-rank tensor X are corrupted adversarially, so that the tensor observed is Z = X+Y
where Y is the corruption. One may view this problem as the tensor version of a sparse and low-rank
matrix decomposition problem as studied in [6, 9, 10, 13]. We develop an algorithm for performing
such a decomopsition and provide theoretical guarantees as to when such decomposition is possible.
Our work draws on two sets of tools: (a) The line of work addressing the Robust PCA problem in
the matrix case [6, 9], and (b) Application of Leaurgans’ algorithm for tensor decomposition and
tensor inverse problems [4, 17, 24].

Our algorithm is computationally efficient and scalable, it relies on the key notion of tensor con-
traction which effectively reduces a tensor problem of dimension n × n × n to four decompostion
problems for matrices of size n×n. One can then apply convex methods for sparse and low-rank ma-
trix decomposition followed by certain linear algebraic operations to recover the constituent tensors.
Our algorithm not only produces the correct decomposition of Z into X and Y , but also produces
the low rank factorization of X . We are able to avoid tensor unfolding based approaches [14,21,26]
which are expensive and would lead to solving convex problems that are larger by orders of mag-
nitude; in the 3rd order case the unfolded matrix would be n2 × n. Furthermore, our method is
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conceptually simple, to impelement as well as to analyze theoretically. Finally our method is also
modular – it can be extended to the higher order case as well as to settings where the corrupted
tensor Z has missing entries, as described in Section 5.

1.1 Problem Setup

In this paper, vectors are denoted using lower case characters (e.g. x, y, a, b, etc.), matrices by upper-
case characters (e.g. X,Y, etc,) and tensors by upper-case bold characters (e.g. X,T ,A etc.). We
will work with tensors of third order (representationally to be thought of as three-way arrays), and
the term mode refers to one of the axes of the tensor. A slice of a tensor refers to a two dimensional
matrix generated from the tensor by varying indices along two modes while keeping the third mode
fixed. For a tensor X we will refer to the indices of the ith mode-1 slice (i.e., the slice corresponding
to the indices {i} × [n2]× [n3]) by S(1)

i , where [n2] = {1, 2, . . . , n2} and [n3] is defined similarly.
We denote the matrix corresponding to S(1)

i by X1
i . Similarly the indices of the kth mode-3 slice

will be denoted by S(3)
k and the matrix by X3

k .

Given a tensor of interest X , consider its decomposition into rank one tensors

X =

r∑
i=1

λiui ⊗ vi ⊗ wi, (1)

where {ui}i=1,...,r ⊆ Rn1 , {vi}i=1,...,r ⊆ Rn2 , and {wi}i=1,...,r ⊆ Rn3 are unit vectors. Here
⊗ denotes the tensor product, so that X ∈ Rn1×n2×n3 is a tensor of order 3 and dimension n1 ×
n2 × n3. Without loss of generality, throughout this paper we assume that n1 ≤ n2 ≤ n3. We
will present our results for third order tensors, and analogous results for higher orders follow in
a transparent manner. We will be dealing with low-rank tensors, i.e. those tensors with r ≤ n1.
Tensors can have rank larger than the dimension, indeed r ≥ n3 is an interesting regime, but far
more challenging and is a topic left for future work.

Kruskal’s Theorem [16] guarantees that tensors satisfying Assumption 1.1 below have a unique
minimal decomposition into rank one terms of the form (1). The number of terms is called the
(Kruskal) rank.
Assumption 1.1. {ui}i=1,...,r ⊆ Rn1 , {vi}i=1,...,r ⊆ Rn2 , and {wi}i=1,...,r ⊆ Rn3 are sets of
linearly independent vectors.

While rank decomposition of tensors in the worst case is known to be computationally intractable
[12], it is known that the (mild) assumption stated in Assumption 1.1 above suffices for an algorithm
known as Leurgans’ algorithm [4, 18] to correctly identify the factors in this unique decomposition.
In this paper, we will make this assumption about our tensor X throughout. This assumption may
be viewed as a “genericity” or “smoothness” assumption [4].

In (1), r is the rank, λi ∈ R are scalars, and ui ∈ Rn1 , vi ∈ Rn2 , wi ∈ Rn3 are the tensor factors. Let
U ∈ Rn1×r denote the matrix whose columns are ui, and correspondingly define V ∈ Rn2×r and
W ∈ Rn3×r. Let Y ∈ Rn1×n2×n3 be a sparse tensor to be viewed as a “corruption” or adversarial
noise added to X , so that one observes:

Z = X + Y .

The problem of interest is that of decomposition, i.e. recovering Xand Y from Z.

For a tensor X , we define its mode-3 contraction with respect to a contraction vector a ∈ Rn3 ,
denoted by X3

a ∈ Rn1×n2 , as the following matrix:[
X3
a

]
ij

=

n3∑
k=1

Xijkak, (2)

so that the resulting n1 × n2 matrix is a weighted sum of the mode-3 slices of the tensor X . Un-
der this notation, the kth mode-3 slice matrix X3

k is a mode-3 contraction with respect to the kth
canonical basis vector. We similarly define the mode-1 contraction with respect to a vector c ∈ Rn1

as [
X1
c

]
jk

=

n1∑
i=1

Xijkci. (3)
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In the subsequent discussion we will also use the following notation. For a matrix M , ‖M‖ refers
to the spectral norm, ‖M‖∗ the nuclear norm, ‖M‖1 :=

∑
i,j |Mij | the elementwise `1 norm, and

‖M‖∞ := maxi,j |Mi,j | the elementwise `∞ norm.

1.2 Incoherence

The problem of sparse and low-rank decomposition for matrices has been studied in [6, 9, 13, 22],
and it is well understood that exact decomposition is not always possible. In order for the problem to
be identifiable, two situations must be avoided: (a) the low-rank component X must not be sparse,
and (b) the sparse component Y must not be low-rank. In fact, something stronger is both necessary
and sufficient: the tangent spaces of the low-rank matrix (with respect to the rank variety) and the
sparse matrix (with respect to the variety of sparse matrices) must have a transverse intersection [9].

For the problem to be amenable to recovery using comptationally tractable (convex) methods, some-
what stronger, incoherence assumptions are standard in the matrix case [6,7,9]. We will make similar
assumptions for the tensor case, which we now describe.

Given the decomposition (1) of X we define the following subspaces of matrices:

TU,V =
{
UAT +BV T : A ∈ Rn2×r, B ∈ Rn1×r

}
TV,W =

{
V CT +DWT : C ∈ Rn3×r, D ∈ Rn2×r

}
.

(4)

Thus TU,V is the set of rank r matrices whose column spaces are contained in span(U) or row spaces
are contained in span(V ) respectively, and a similar definition holds for TV,W and matrices V,W . If
Q is a rank r matrix with column space span(U) and row space span(V ), TU,V is the tangent space
at Q with respect to the variety of rank r matrices.

For a tensor Y , the support of Y refers to the indices corresponding to the non-zero entries of Y .
Let Ω ⊆ [n1]× [n2]× [n3] denote the support of Y . Further, for a slice Y 3

i , let Ω
(3)
i ⊆ [n1]× [n2]

denote the corresponding sparsity pattern of the slice Y 3
i (more generally Ω

(k)
i can be defined as

the sparsity of the matrix resulting from the ith mode k slice). When a tensor contraction of Y is
computed along mode k, the sparsity of the resulting matrix is the union of the sparsity patterns of
each (matrix) slice, i.e. Ω(k) =

⋃nk

i=1 Ω
(k)
i . Let S

(
Ω(k)

)
denote the set of (sparse) matrices with

support Ω(k). We define the following incoherence parameters:

ζ (U, V ) := max
M∈TU,V :‖M‖≤1

‖M‖∞ ζ (V,W ) := max
M∈TV,W :‖M‖≤1

‖M‖∞

µ
(

Ω(k)
)

:= max
N∈S(Ω(k)):‖N‖∞≤1

‖N‖.

The quantities ζ (U, V ) and ζ (V,W ) being small implies that for contractions of the tensor Z, all
matrices in the tangent space of those contractions with respect to the variety of rank r matrices
are “diffuse”, i.e. do not have sparse elements [9]. Similarly, µ

(
Ω(k)

)
being small implies that

all matrices with the contracted sparsity pattern Ω(k) are such that their spectrum is “diffuse”, i.e.
they do not have low rank. We will see specific settings where these forms of incoherence hold for
tensors in Section 3.

2 Algorithm for Sparse and Low Rank Tensor Decomposition

We now introduce our algorithm to perform sparse and low rank tensor decompositions. We begin
with a Lemma:
Lemma 2.1. Let X ∈ Rn1×n2×n3 , with n1 ≤ n2 ≤ n3 be a tensor of rank r ≤ n1. Then the rank
of X3

a is at most r. Similarly the rank of X1
c is at most r.

Proof. Consider a tensor X =
∑r
i=1 λi ui ⊗ vi ⊗ wi. The reader may verify in a straightforward

manner that X3
a enjoys the decomposition:

X3
a =

r∑
i=1

λi〈wi, a〉uivTi . (5)
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The proof for the rank of X1
c is analogous.

Note that while (5) is a matrix decomposition of the contraction, it is not a singular value decom-
position (the components need not be orthogonal, for instance). Recovering the factors needs an
application of simultaneous diagonalization, which we describe next.
Lemma 2.2. [4, 18] Suppose we are given an order 3 tensor X =

∑r
i=1 λi ui ⊗ vi ⊗ wi of size

n1 × n2 × n3 satisfying the conditions of Assumption 1.1. Suppose the contractions X3
a and X3

b
are computed with respect to unit vectors a, b ∈ Rn3 distributed independently and uniformly on the
unit sphere Sn3−1 and consider the matrices M1 and M2 formed as:

M1 = X3
a(X3

b )† M2 = (X3
b )†X3

a .

Then the eigenvectors of M1 (corresponding to the non-zero eigenvalues) are {ui}i=1,...,r, and the
eigenvectors of MT

2 are {vi}i=1,...,r.

Remark Note that while the eigenvectors {ui} , {vj} are thus determined, a source of ambiguity
remains. For a fixed ordering of {ui} one needs to determine the order in which {vj} are to be
arranged. This can be (generically) achieved by using the (common) eigenvalues of M1 and M2 for
pairing i(f the contractionsX3

a , X
3
b are computed with respect to random vectors a, b the eigenvalues

are distinct almost surely). Since the eigenvalues of M1, M2 are distinct they can be used to pair
the columns of U and V .

Lemma 2.2 is essentially a simultaneous diagonalization result [17] that facilitates tensor decompo-
sition [4]. Given a tensor T , one can compute two contractions for mode 1 and apply simultaneous
diagonalization as described in Lemma 2.2 - this would yield the factors vi, wi (up to sign and re-
ordering). One can then repeat the same process with mode 3 contractions to obtain ui, vi. In the
final step one can then obtain λi by solving a system of linear equations. The full algorithm is
described in Algorithm 2 in the supplementary material.

For a contraction Zkv of a tensor Z with respect to a vector v along mode k, consider solving the
convex problem:

minimize
X ,Y

‖X‖∗ + νk‖Y‖1 subject to Zkv = X + Y. (6)

Our algorithm, stated in Algorithm 1, proceeds as follows: Given a tensor Z = X +Y , we perform
two random contractions (w.r.t. vectors a, b) of the tensor along mode 3 to obtain matrices Z(3)

a , Z
(3)
b

. Since Z is a sum of sparse and low-rank components, by Lemma 2.1 so are the matrices Z(3)
a , Z

(3)
b .

We thus use (6) to decompose them into constituent sparse and low-rank components, which are the
contractions of the matrices X(3)

a , X
(3)
b , Y (3)

a , Y
(3)
b . We then use X(3)

a , X
(3)
b and Lemma 2.2 to

obtain the factors U, V . We perform the same operations along mode 1 to obtain factors V,W . In
the last step, we solve for the scale factors λi (a system of linear equations).

Algorithm 2 in the supplementary material, which we adopt for our decomposition problem in Algo-
rithm 1, essentially relies on the idea of simultaneous diagonalization of matrices sharing common
row and column spaces [17]. In this paper we do not analyze the situation where random noise is
added to all the entries, but only the sparse adversarial noise setting. We note, however, that the key
algorithmic insight of using contractions to perform tensor recovery is numerically stable and robust
with respect to noise, as has been studied in [4, 11, 17].

Parameters that need to be picked to implement our algorithm are the regularization coefficients
ν1, ν3. In the theoretical guarantees we will see that this can be picked in a stable manner, and that
a range of values guarantee exact decomposition when the suitable incoherence conditions hold. In
practice these coefficents would need to be determined by a cross-validation method. Note also that
under suitable random sparsity assumptions [6], the regularization coefficient may be picked to be
the inverse of the square-root of the dimension.

2.1 Computational Complexity

The computational complexity of our algorithm is dominated by the complexity of perfoming the
sparse and low-rank matrix decomposition of the contractions via (6). For simplicity, let us consider
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Algorithm 1 Algorithm for sparse and low rank tensor decomposition

1: Input: Tensor Z, parameters ν1, ν3.
2: Generate contraction vectors a, b ∈ Rn3 independently and uniformly distributed on unit sphere.
3: Compute mode 3 contractions Z3

a and Z3
b respectively.

4: Solve the convex problem (6) with v = a, k = 3. Call the resulting solution matrices X3
a , Y

3
a ,

and regularization parameter ν1.
5: Solve the convex problem (6) with v = b, k = 3. Call the resulting solution matrices X3

b , Y
3
b

and regularization parameter ν3.
6: Compute eigen-decomposition of M1 := X3

a(X3
b )† and M2 := (X3

b )†X3
a . Let U and V denote

the matrices whose columns are the eigenvectors of M1 and MT
2 respectively corresponding to

the non-zero eigenvalues, in sorted order. (Let r be the (common) rank of M1 and M2.) The
eigenvectors, thus arranged are denoted as {ui}i=1,...,r and {vi}i=1,...,r.

7: Generate contraction vectors c, d ∈ Rn1 independently and uniformly distributed on unit sphere.
8: Solve the convex problem (6) with v = c, k = 1. Call the resulting solution matrices X1

c , Y
1
c

and regularization parameter ν3.
9: Solve the convex problem (6) with v = d, k = 1. Call the resulting solution matrices X1

d , Y
1
d

and regularization parameter ν4.
10: Compute eigen-decomposition ofM3 := X1

c (X1
d)† andM4 := (X1

c )†X1
d . Let Ṽ and W̃ denote

the matrices whose columns are the eigenvectors of M3 and MT
4 respectively corresponding to

the non-zero eigenvalues, in sorted order. (Let r be the (common) rank of M3 and M4.)
11: Simultaneously reorder the columns of Ṽ , W̃ , also performing simultaneous sign reversals as

necessary so that the columns of V and Ṽ are equal, call the resulting matrix W with columns
{wi}i=1,...,r.

12: Solve for λi in the linear system

X3
a =

r∑
i=1

λiuiv
T
i 〈wi, a〉.

13: Output: Decomposition X̂ :=
∑r
i=1 λi ui ⊗ vi ⊗ wi, Ŷ := Z − X̂ .

the case where the target tensor Z ∈ Rn×n×n has equal dimensions in different modes. Using
a standard first order method, the solution of (6) has a per iteration complexity of O(n3), and to
achieve an accuracy of ε, O

(
1
ε

)
iterations are required [22]. Since only four such steps need be

performed, the complexity of the method is O
(
n3

ε

)
where ε is the accuracy to which (6) is solved.

Another alternative is to reformulate (6) such that it is amenable to greedy atomic approaches [23],
which yields an order of magnitude improvement. We note that in contrast, a tensor unfolding for
this problem [14,21,26] results in the need to solve much larger convex programs. For instance, for
Z ∈ Rn×n×n, the resulting flattened matrix would be of size n2 × n and the resulting convex prob-
lem would then have a complexity of O

(
n4

ε

)
. For higher order tensors, the gap in computational

complexity would increase by further orders of n.

2.2 Numerical Experiments

We now present numerical results to validate our approach. We perform experiments for tensors
of size 50 × 50 × 50 (non-symmetric). A tensor Z is generated as the sum of a low rank tensor
X and a sparse tensor Y . The low-rank component is generated as follows: Three sets of r unit
vecots ui, vi, wi ∈ R50 are generated randomly, independently and uniformly distributed on the
unit sphere. Also a random positive scale factor (uniformly distributed on [0, 1] is chosen and the
tensor X =

∑r
i=1 λi ui⊗ vi×wi. The tensor Y is generated by (Bernoulli) randomly sampling its

entries with probability p. For each such p, we perform 10 trials and apply our algorithm. In all our
experiments, the regularization parameter was picked to be ν = 1√

n
. The optimization problem (6)

is solved using CVX in MATLAB. We report success if the MSE is smaller than 10−5, separately
for both the X and Y components. We plot the empirical probability of success as a function of
p in Fig. 1 (a), (b), for multiple values of the true rank r. In Fig. 1 (c), (d) we test the scalability
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(d) Sparse Component

Figure 1: Recovery of the low rank and sparse components from our proposed methods. In figures
(a) and (b) we see that the probability of recovery is high when both the rank and sparsity are low.
In figures (c) and (d) we study the recovery error for a tensor of dimensions 300 × 300 × 300 and
rank 50.

of our method, by generating a random 300 × 300 × 300 tensor of rank 50, and corrupting it with
a sparse tensor of varying sparsity level. We run 5 independent trials and see that for low levels of
corruption, both the low rank and sparse components are accurately recovered by our method.

3 Main Results

We now present the main rigorous guarantees related to the performance of our algorithm. Due to
space constraints, the proofs are deferred to the supplementary materials.
Theorem 3.1. Suppose Z = X + Y , where X =

∑r
i=1 λiui ⊗ vi ⊗ wi, has rank r ≤ n1 and

such that the factors satisfy Assumption 1.1. Suppose Y has support Ω and the following condition
is satisfied:

µ
(

Ω(3)
)
ζ (U, V ) ≤ 1

6
µ
(

Ω(1)
)
ζ (V,W ) <

1

6
.

Then Algoritm 1 succeeds in exactly recovering the component tensors, i.e. (X,Y ) =

(X̂, Ŷ ) whenever νk are picked so that ν3 ∈
(

ζ(U,V )

1−4ζ(U,V )µ(Ω(3))
,

1−3ζ(U,V )µ(Ω(3))
µ(Ω(3))

)
and

ν1 ∈
(

ζ(V,W )

1−4ζ(V,W )µ(Ω(1))
,

1−3ζ(V,W )µ(Ω(1))
µ(Ω(1))

)
. Specifically, choice of ν3 = (3ζ(U,V ))p

(µ(Ω(3)))
1−p and

ν1 = (3ζ(V,W ))p

(µ(Ω(1)))
1−p for any p ∈ [0, 1] in these respective intervals guarantees exact recovery.

For a matrix M , the degree of M , denoted by deg(M), is the maximum number of non-zeros in any
row or column of M . For a tensor Y , we define the degree along mode k, denoted by degk(Y ) to
be the maximum number of non-zero entries in any row or column of a matrix supported on Ω(k)

(defined in Section 1.2). The degree of Y is denoted by deg(Y ) := maxk∈{1,2,3} degk(Y ).
Lemma 3.2. We have:

µ
(

Ω(k)
)
≤ deg(Y ), for all k.

For a subspace S ⊆ Rn, let us define the incoherence of the subspace as:

β(S) := max
i
‖PSei‖2,

where PS denotes the projection operator onto S, ei is a standard unit vector and ‖ · ‖2 is the
Euclidean norm of a vector. Let us define:

inc(X) := max {β (span(U)) , β (span(V )) , β (span(W ))}
inc3(X) := max {β (span(U)) , β (span(V ))}
inc1(X) := max {β (span(V )) , β (span(W ))} .
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Note that inc(X) < 1, always. For many random ensembles of interest, we have that the incoherence

scales gracefully with the dimension n, i.e.: inc(X) ≤ K
√

max{r,log n}
n .

Lemma 3.3. We have
ζ (U, V ) ≤ 2 inc(X) ζ (V,W ) ≤ 2 inc(X).

Corollary 3.4. Let Z = X + Y , with X =
∑r
i=1 λiui ⊗ vi ⊗ wi and rank r ≤ n1, the factors

satisfy Assumption 1.1 and incoherence inc(X). Suppose Y is sparse and has degree deg(Y ). If
the condition

inc(X)deg(Y ) <
1

12
holds then Algorithm 1 successfully recovers the true solution, i.e. . (X,Y ) = (X̂, Ŷ ) when the
parameters

ν3 ∈
(

2inc3(X)

1− 8deg3(Y )inc3(X)
,

1− 6deg3(Y )inc3(X)

deg3(Y )

)
ν1 ∈

(
2inc1(X)

1− 8deg1(Y )inc1(X)
,

1− 6deg1(Y )inc1(X)

deg1(Y )

)
.

Specifically, a choice of ν3 = (6inc3(X))p

(2deg3(Y ))1−p , ν1 = (6inc1(X))p

(2deg1(Y ))1−p for any p ∈ [0, 1] is a valid choice
that guarantees exact recovery.

Remark Note that Corollary 3.4 presents a deterministic guarantee on the recoverability of a sparse
corruption of a low rank tensor, and can be viewed as a tensor extension of [9, Corollary 3].

We now consider, for the sake of simplicity, tensors of uniform dimension, i.e. X,Y ,Z ∈ Rn×n×n.
We show that when the low-rank and sparse components are suitably random, the approach outlined
in Algorithm 1 achieves exact recovery.

We define the random sparsity model to be one where each entry of the tensor Y is non-zero in-
dependently and with identical probability ρ. We make no assumption about the mangitude of the
entries of Y , only that its non-zero entries are thus sampled.
Lemma 3.5. Let X =

∑r
i=1 λiui ⊗ vi ⊗ wi, where ui, vi, wi ∈ Rn are uniformly randomly

distributed on the unit sphere Sn−1. Then the incoherence of the tensor X satisifies:

inc(X) ≤ c1

√
max {r, log n}

n

with probability exceeding 1− c2n−3 log n for some constants c1, c2.
Lemma 3.6. Suppose the entries of Y are sampled according to the random sparsity model, and

ρ = O

((
n

3
2 max(log n, r)

)−1
)
. Then the tensor Y satisfies: deg(Y ) ≤

√
n

12c1 max(logn,r) with

probability exceeding 1− exp
(
−c3

√
n

max(logn,r)

)
for some constant c3 > 0.

Corollary 3.7. Let Z = X + Y where X is low rank with random factors as per the conditions
of Lemma 3.5 and Y is sparse with random support as per the conditions in Lemma 3.6. Provided
r ∼ o

(
n

1
2

)
, Algorithm 1 successfully recovers the correct decomposition, i.e. (X̂, Ŷ ) = (X,Y )

with probability exceeding 1− n−α for some α > 0.

Remarks 1) Under this sampling model, the cardinality of the support of Y is allowed to be as large
as m = O(n

3
2 log−1 n) when the rank r is constant (independent of n).

2) We could equivalently have looked at a uniformly random sampling model, i.e. one where a
support set of size m is chosen uniformly randomly from the set of all possible support sets of
cardinality at most m, and our results for exact recovery would have gone through. This follows
from the equivalence principle for successful recovery between Bernoulli sampling and uniform
sampling, see [6, Appendix 7.1].

3) Note that for the random sparsity ensemble, [6] shows that a choice of ν = 1√
n

ensures exact
recovery (an additional condition regarding the magnitudes of the factors is needed, however). By
extension, the same choice can be shown to work for our setting.
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4 Extensions

The approach described in Algorithm 1 and the analysis is quite modular and can be adapted to
various settings to account for different forms of measurements and robustness models. We do not
present an analysis of these situations due to space constraints, but outline how these extensions
follow from the current development in a straightforward manner.

1) Higher Order Tensors: Algorithm 1 can be extended naturally to the higher order setting. Re-
call that in the third order case, one needs to recover two contractions along the third mode to
discover factors U, V and then two contractions along the first mode to discover factors V,W .
For an order K tensor of the form Z ∈ Rn1×...×nK which is the sum of a low rank component
X =

∑r
i=1 λi

⊗K
l=1 u

(l)
i and a sparse component Y , one needs to compute higher order contrac-

tions of Z along K − 1 different modes. For each of these K − 1 modes the resulting contraction is
the sum of a sparse and low-rank matrix, and thus pairs of matrix problems of the form (6) reveal the
sparse and low-rank components of the contractions. The low-rank factors can then be recovered via
application of Lemma 2.2 and the full decomposition can thus be recovered. The same guarantees
as in Theorem 3.1 and Corollary 3.4 hold verbatim (the notions of incoherence inc(X) and degree
deg(Y ) of tensors need to be extended to the higher order case in the natural way)

2) Block sparsity: Situations where entire slices of the tensor are corrupted may happen in recom-
mender systems with adversarial ratings [10]. A natural approach in this case is to use a convex
relaxation of the form

minimize
M1,M2

νk‖M1‖∗ + ‖M2‖1,2

subject to Zkv = M1 +M2

in place of (6) in Algorithm 1. In the above, ‖M‖1,2 :=
∑
i ‖Mi‖2, where Mi is the ith column of

M . Since exact recovery of the block-sparse and low-rank components of the contractions are guar-
anteed via this relaxation under suitable assumptions [10], the algorithm would inherit associated
provable guarantees.

3) Tensor completion: In applications such as recommendation systems, it may be desirable to
perform tensor completion in the presence of sparse corruptions. In [24], an adaptation of Leurgans’
algorithm was presented for performing completion from measurements restricted to only four slices
of the tensor with near-optimal sample complexity (under suitable genericity assumptions about
the tensor). We note that it is straightforward to blend Algorithm 1 with this method to achieve
completion with sparse corruptions. Recalling that Z = X + Y and therefore Z3

k = X3
k + Y 3

k (i.e.
the kth mode 3 slice of Z is a sum of sparse and low rank slices of X and Y ), if only a subset of
elements of Z3

k (say PΛ

(
Z3
k

)
) is observed for some index set Λ, we can replace (6) in Algorithm 1

with

minimize
M1,M2

νk‖M1‖∗ + ‖M2‖1 subject to PΛ

(
Zkv
)

= PΛ (M1 +M2) .

Under suitable incoherence assumptions [6, Theorem 1.2], the above will achieve exact recovery of
the slices. Once four slices are accurately recovered, one can then use Leurgans’ algorithm to recover
the full tensor [24, Theorem 3.6]. Indeed the above idea can be extended more generally to the
concept of deconvolving a sum of sparse and low-rank tensors from separable measurements [24].

4) Non-convex approaches: A basic primitive for sparse and low-rank tensor decomposition used
in this paper is that of using (6) for matrix decomposition. More efficient non-convex approaches
such as the ones described in [22] may be used instead to speed up Algorithm 1. These alternative
nonconvex methods [22] requre O(rn2) steps per iterations, and O

(
log 1

ε

)
iterations resulting in a

total complexity of O
(
rn2 log 1

ε

)
for solving the decomposition of the contractions to an accuracy

of ε.
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