
Appendix A Supplementary experimental results

The Wikipedia dataset is built by crawling all documents in all subcategories within 3 layers below
the science category. The Enron dataset is from the Enron email corpus [17]. After usual cleaning
steps, the Wikipedia dataset has 114, 274 documents with an average 512 words per document; the
Enron dataset has 186, 501 emails with average 91 words per email.

Table 5: Squared residual norm on top 10 recovered eigenvectors of 1000d tensors and running time (excluding
I/O and sketch building time) for plan (exact) and sketched robust tensor power methods. Two vectors are
considered mismatched (wrong) if ‖v − v̂‖22 > 0.1.

Residual norm No. of wrong vectors Running time (min.)
log2(b): 12 13 14 15 16 12 13 14 15 16 12 13 14 15 16

σ
=
.0

1 B = 20 .40 .19 .10 .09 .08 8 6 3 0 0 .85 1.6 3.5 7.4 16.6
B = 30 .26 .10 .09 .08 .07 7 5 2 0 0 1.3 2.4 5.3 11.3 24.6
B = 40 .17 .10 .08 .08 .07 7 4 0 0 0 1.8 3.3 7.3 15.2 33.0
Exact .07 0 293.5

σ
=
.1

B = 20 .52 3.1 .21 .18 .17 8 7 4 0 0 .84 1.6 3.5 7.5 16.8
B = 30 4.0 .24 .19 .17 .16 7 5 3 0 0 1.3 2.5 5.4 11.6 26.2
B = 40 .30 .22 .18 .17 .16 7 4 0 0 0 1.8 3.3 7.3 15.5 33.5
Exact .16 0 271.8

Table 6: Selected negative log-likelihood and running time (min) for fast and exact spectral methods on
Wikipedia (top) and Enron (bottom) datasets.

k = 50 k = 100 k = 200
Fast RB RB ALS Fast RB RB ALS Fast RB RB ALS

W
ik

i. like. 8.01 7.94 8.16 7.90 7.81 7.93 7.86 7.77 7.89
time 2.2 97.7 2.4 6.8 135 29.3 57.3 423 677

log2 b 10 - - 12 - - 14 - -

E
nr

on like. 8.31 8.28 8.22 8.18 8.09 8.30 8.26 8.18 8.27
time 2.4 45.8 5.2 3.7 93.9 40.6 6.4 219 660

log2 b 11 - - 11 - - 11 - -

Appendix B Fast tensor power method via symmetric sketching

In this section we show how to do fast tensor power method using symmetric tensor sketches. More
specifically, we explain how to approximately compute T(u,u,u) and T(I,u,u) when colliding
hashes are used.

For symmetric tensors A and B, their inner product can be approximated by
〈A,B〉 ≈ 〈s̃A, s̃B̃〉, (10)

where B̃ is an “upper-triangular” tensor defined as

B̃i,j,k =

{
Bi,j,k, if i ≤ j ≤ k;
0, otherwise. (11)

Note that in Eq. (10) only the matrix B is “truncated”. We show this gives consistent estimates of
〈A,B〉 in Appendix E.2.

Recall that T(u,u,u) = 〈T,X〉 where X = u ⊗ u ⊗ u. The symmetric tensor sketch s̃X̃ can be
computed as

s̃X̃ =
1

6
s̃⊗3
u +

1

2
s̃2,u◦u ∗ s̃u +

1

3
s̃3,u◦u◦u, (12)

where s̃2,u◦u(t) =
∑

2h(i)=t σ(i)2u2
i and s̃3,u◦u◦u(t) =

∑
3h(i)=t σ(i)3u3

i . As a result,

T(u,u,u) ≈ 1

6
〈F(s̃T),F(s̃u)◦F(s̃u)◦F(s̃u)〉+1

2
〈F(s̃T),F(s̃2,u◦u)◦F(s̃u)〉+1

3
〈s̃T, s̃3,u◦u◦u〉.

(13)

10

Algorithm 2 Fast ALS method

1: Input: T ∈ Rn×n×n, target rank k, T , B, b.
2: Initialize: B independent index hash functions h(1), · · · , h(B) and σ(1), · · · , σ(B); random

matrices A,B,C ∈ Rn×k; {λi}ki=1.
3: For m = 1, · · · , B compute s(m)

T ∈ Cb.
4: for t = 1 to T do
5: Compute count sketches sbi , sci for i = 1, · · · , k. For each i = 1, · · · , k;m = 1, · · · , b

compute v(m)
i ≈ T(I, bi, ci).

6: v̄ij ← med(<(v
(1)
ij),<(v

(2)
ij), · · · ,<(v

(B)
ij)).

7: Set Â = {v̄}ij and λ̂i = ‖âi‖; afterwards, normalize each column of A.
8: Update B and C similarly.
9: Output: eigenvalues {λi}ki=1; solutions A,B,C.

For T(I,u,u) recall that [T(I,u,u)]i = 〈T,Yi〉 where Yi = ei ⊗ u⊗ u. We first symmetrize it
by defining Zi = ei ⊗ u⊗ u+ u⊗ ei ⊗ u+ u⊗ u⊗ ei. 5 The sketch of Z̃i can be subsequently
computed as

s̃Z̃i =
1

2
s̃u ∗ s̃u ∗ s̃ei +

1

2
s̃2,u◦u ∗ s̃ei + s̃2,ei◦u ∗ s̃u + s̃3,ei◦u◦u. (14)

Consequently,

T(I,u,u) ≈
〈
F−1

(
F(s̃T) ◦ F(s̃u)

)
, s̃2,ei◦u

〉
+

1

6

〈
F−1

(
F(s̃T) ◦ F(s̃u) ◦ F(s̃u)

)
, s̃ei

〉

+
1

6

〈
F−1

(
F(s̃T) ◦ F(s̃2,u◦u)

)
, s̃ei

〉
+ 〈s̃T, s̃3,ei◦u◦u〉. (15)

Note that all of s̃ei , s̃2,ei◦u and s̃3,ei◦u◦u have exactly one nonzero entries. So we can pre-compute
all terms on the left sides of inner products in Eq. (15) and then read off the values for each entry in
T(I,u,u).

Appendix C Fast ALS: method and simulation result

In this section we describe how to use tensor sketching to accelerate the Alternating Least Squares
(ALS) method for tensor CP decomposition. We also provide experimental results on synthetic data
and compare our fast ALS implementation with the Matlab tensor toolbox [32, 33], which is widely
considered to be the state-of-the-art for tensor decomposition.

C.1 Alternating Least Squares

Alternating Least Squares (ALS) is a popular method for tensor CP decompositions [19]. The
algorithm maintains λ ∈ Rk, A,B,C ∈ Rn×k and iteratively perform the following update steps:

Â = T(1)(C�B)(C>C ◦B>B)†. (16)

B̂ = T(1)(Â�C)(Â>Â ◦C>C)†;

Ĉ = T(1)(B̂� Â)(B̂>B̂ ◦ Â>Â)†.

After each update, λ̂r is set to ‖ar‖2 (or ‖br‖2, ‖cr‖2) for r = 1, · · · , k and the matrix A (or B,C)
is normalized so that each column has unit norm. The final low-rank approximation is obtained by∑k
i=1 λ̂iâi ⊗ b̂i ⊗ ĉi.

There is no guarantee that ALS converges or gives a good tensor decomposition. Nevertheless, it
works reasonably well in most applications [19]. In general ALS requires O(T (n3k + k3)) compu-
tations and O(n3) storage, where T is the number of iterations.

11

Table 7: Squared residual norm on top 10 recovered eigenvectors of 1000d tensors and running time (excluding
I/O and sketch building time) for plain (exact) and sketched ALS algorithms. Two vectors are considered
mismatched (wrong) if ‖v − v̂‖22 > 0.1.

Residual norm No. of wrong vectors Running time (min.)
log2(b): 12 13 14 15 16 12 13 14 15 16 12 13 14 15 16

σ
=
.0

1 B = 20 .71 .41 .25 .17 .12 10 9 7 6 4 .11 .22 .49 1.1 2.4
B = 30 .50 .34 .21 .14 .11 9 8 7 5 3 .17 .33 .75 1.6 3.5
B = 40 .46 .28 .17 .10 .07 9 8 6 5 1 .23 .45 1.0 2.2 4.7
Exact† .07 1 22.8

σ
=
.1

B = 20 .88 .50 .35 .28 .23 10 8 7 6 6 .13 .32 .78 1.5 3.2
B = 30 .78 .44 .30 .24 .21 9 8 7 5 6 .21 .50 1.1 2.2 4.7
B = 40 .56 .38 .28 .19 .16 9 8 6 4 2 .29 .69 1.5 3.5 6.3
Exact† .17 2 32.3

†Calling cp als in Matlab tensor toolbox. It is run for exactly T = 30 iterations.

C.2 Accelerated ALS via sketching

Similar to robust tensor power method, the ALS algorithm can be significantly accelerated by using
the idea of sketching as shown in this work. However, for ALS we cannot use colliding hashes
because though the input tensor T is symmetric, its CP decomposition is not since we maintain
three different solution matrices A,B and C. As a result, we roll back to asymmetric tensor sketches
defined in Eq. (1). Recall that given A,B,C ∈ Rn×k we want to compute

Â = T(1)(C�B)(C>C ◦B>B)†. (17)
When k is much smaller than the ambient tensor dimension n the computational bottleneck of Eq.
(17) is T(1)(C � B), which requires O(n3k) operations. Below we show how to use sketching to
speed up this computation.

Let x ∈ Rn2

be one row in T(1) and consider (C�B)>x. It can be shown that [15]
[
(C�B)>x

]
i

= b>i Xci, ∀i = 1, · · · , k, (18)

where X ∈ Rn×n is the reshape of vector x. Subsequently, the product T(1)(C � B) can be
re-written as

T(1)(C�B) = [T(I, b1, c1); · · · ; T(I, bk, ck)]. (19)

Using Proposition 1 we can compute each of T(I, bi, ci) in O(n + b log b) iterations. Note that
in general bi 6= ci, but Proposition 1 still holds by replacing one of the two su sketches. As a
result, T(1)(C � B) can be computed in O(k(n + b log b)) operations once sT is computed. The
pseudocode of fast ALS is listed in Algorithm 2. Its time complexity and space complexity are
O(T (k(n+Bb log b) + k3)) (excluding the time for building sT) and O(Bb), respectively.

C.3 Simulation results

We compare the performance of fast ALS with a brute-force implementation under various hash
length settings on synthetic datasets in Table 7. Settings for generating the synthetic dataset is
exactly the same as in Section 5.1. We use the cp als routine in Matlab tensor toolbox as the
reference brute-force implementation of ALS. For fair comparison, exactly T = 30 iterations are
performed for both plain and accelerated ALS algorithms. Table 7 shows that when sketch length
b is not too small, fast ALS achieves comparable accuracy with exact methods while being much
faster in terms of running time.

Appendix D Spectral LDA and fast spectral LDA

Latent Dirichlet Allocation (LDA, [3]) is a powerful tool in topic modeling. In this section we first
review the LDA model and introduce the tensor decomposition method for learning LDA models,
which was proposed in [1]. We then provide full details of our proposed fast spectral LDA algorithm.
Pseudocode for fast spectral LDA is listed in Algorithm 3.

5As long as A is symmetric, we have 〈A,Yi〉 = 〈A,Zi〉/3.

12

Algorithm 3 Fast spectral LDA

1: Input: Unlabeled documents, V , K, α0, B, b.
2: Compute empirical moments M̂1 and M̂2 defined in Eq. (20,21).
3: [U,S,V]← truncatedSVD(M̂2, k); Wik ← Uik√

σk
.

4: Build B tensor sketches of M̂3(W,W,W).
5: Find CP decomposition {λi}ki=1,A = B = C = {vi}ki=1 of M̂3(W,W,W) using either fast

tensor power method or fast ALS method.
6: Output: estimates of prior parameters α̂i = 4α0(α0+1)

(α0+2)2λ2
i

and topic distributions µ̂i =
α0+2

2 λi(W
†)>vi.

D.1 LDA and spectral LDA

LDA models a collection of documents by a topic dictionary Φ ∈ RV×K and a Dirichlet prior
α ∈ Rk, where V is the vocabulary size and k is the number of topics. Each column in Φ is
a probability distribution (i.e., non-negative and sum to one) representing the word distribution of
a particular topic. For each document d, a topic mixing vector hd ∈ Rk is first sampled from a
Dirichlet distribution parameterized by α. Afterwards, words in document d i.i.d. sampled from a
categorical distribution parameterized by Φhd.

A spectral method for LDA based on 3rd-order robust tensor decomposition was proposed in [1]
to provably learn LDA model parameters from a polynomial number of training documents. Let
x ∈ RV represent a single word; that is, for word w we have xw = 1 and xw′ = 0 for all w′ 6= w.
Define first, second and third order moments M1,M2 and M3 as follows:
M1 = E[x1]; (20)

M2 = E[x1 ⊗ x2]− α0

α0 + 1
M1 ⊗M1; (21)

M3 = E[x1 ⊗ x2 ⊗ x3]− α0

α0 + 2
(E[x1 ⊗ x2 ⊗M1] + E[x1 ⊗M1 ⊗ x2] + E[M1 ⊗ x1 ⊗ x2])

+
2α2

0

(α0 + 1)(α0 + 2)
M1 ⊗M1 ⊗M1. (22)

Here α0 =
∑
k αk is assumed to be a known quantity. Using elementary algebra it can be shown

that

M2 =
1

α0(α0 + 1)

k∑

i=1

αiµiµ
>
i ; (23)

M3 =
2

α0(α0 + 1)(α0 + 2)

k∑

i=1

αiµi ⊗ µi ⊗ µi. (24)

To extract topic vectors {µi}ki=1 from M2 and M3, a simultaneous diagonalization procedure is
carried out. More specifically, the algorithm first finds a whitening matrix W ∈ RV×K with or-
thonormal columns such that W>M2W = IK×K . In practice, this step can be completed by
performing a truncated SVD on M2, M2 = UKΣKVK , and set Wik = Uik/

√
Σkk. Afterwards,

tensor CP decomposition is performed on the whitened third order moment M3(W,W,W) 6 to
obtain a set of eigenvectors {vk}Kk=1. The topic vectors {µk}Kk=1 can be subsequently obtained
by multiplying {vk}Kk=1 with the pseudoinverse of W. Note that Eq. (20,21,22) are defined in
exact word moments. In practice we use empirical moments (e.g., word frequency vector and co-
occurrence matrix) to approximate these exact moments.

6For a tensor T ∈ RV×V×V and a matrix W ∈ RV×k, the product Q = T(W,W,W) ∈ Rk×k×k is
defined as Qi1,i2,i3 =

∑V
j1,j2,j3=1 Tj1,j2,j3Wj1,i1Wj2,i2Wj3,i3 .

13

D.2 Fast spectral LDA

To further accelerate the spectral method mentioned in the previous section, it helps to first iden-
tify computational bottlenecks of spectral LDA. In general, the computation of M̂1, M̂2 and the
whitening step are not the computational bottleneck when V is not too large and each document is
not too long. The bottleneck comes from the computation of (the sketch of) M̂3(W,W,W) and
its tensor decomposition. By Eq. (22), the computation of M̂3(W,W,W) reduces to comput-
ing M̂⊗3

1 (W,W,W), Ê[x1 ⊗ x2 ⊗ M̂1](W,W,W), 7 and Ê[x1 ⊗ x2 ⊗ x3](W,W,W). The
first term M̂⊗3

1 (W,W,W) poses no particular challenge as it can be written as (W>M̂1)⊗3. Its
sketch can then be efficiently obtained by applying techniques in Section 3.1. In the remainder of
this section we focus on efficient computation of the sketch of the other two terms mentioned above.

We first show how to efficiently sketching Ê[x1⊗x2⊗x3](W,W,W) given the whitening matrix
W and D training documents. Let TÊ[x1 ⊗ x2 ⊗ x3](W,W,W) denote the whitened k × k × k
tensor to be sketched and write T =

∑D
d=1 Td, where Td is the contribution of the dth training

document to T. By definition, Td can be expressed as Td = Nd(W,W,W), where W is the
V × k whitening matrix and Nd is the V × V × V empirical moment tensor computed on the dth
document. More specifically, for i, j, k ∈ {1, · · · , V } we have

Nd,ijk =
1

md(md − 1)(md − 2)

ndi(ndj − 1)(ndk − 2), i = j = k;
ndi(ndi − 1)ndk, i = j, j 6= k;
ndindj(ndj − 1) j = k, i 6= j;
ndi(ndi − 1)ndj , i = k, i 6= j;
ndindjndk, otherwise.

Heremd is the length (i.e., number of words) of document d andnd ∈ RV is the corresponding word
count vector. Previous straightforward implementation require at leastO(k3 +mdk

2) operations per
document to build the tensor T and O(k4LT) to decompose it [30, 29], which is prohibitively slow
for real-world applications. In section 3 we discussed how to decompose a tensor efficiently once
we have its sketch. We now show how to build the sketch of T efficiently from document word
counts {nd}Dd=1.

By definition, Td can be decomposed as

Td = p⊗3 −
V∑

i=1

ni(wi ⊗wi ⊗ p+wi ⊗ p⊗wi+p⊗wi ⊗wi) +
V∑

i=1

2niw
⊗3
i , (25)

where p = Wn and wi ∈ Rk is the ith row of the whitening matrix W. A direct implementation
is to sketch each of the low-rank components in Eq. (25) and compute their sum. Since there are
O(md) tensors, building the sketch of Td requires O(md) FFTs, which is unsatisfactory. However,
note that {wi}Vi=1 are fixed and shared across documents. So when scanning the documents we
maintain the sum of ni and nip and add the incremental after all documents are scanned. In this
way, we only need O(1) FFT per document with an additional O(V) FFTs. Since the total number
of documents D is usually much larger than V , this provides significant speed-ups over the naive
method that sketches each term in Eq. (25) independently. As a result, the sketch of T can be
computed in O(k(

∑
dmd) + (D + V)b log b) operations, which is much more efficient than the

O(k2(
∑
dmd) +Dk3) brute-force computation.

We next turn to the term Ê[x1 ⊗ x2 ⊗ M̂1](W,W,W). Fix a document d and let p = Wnd.
Define q = WM̂1. By definition, the whitened empirical moment can be decomposed as

Ê[x1 ⊗ x2 ⊗ M̂1](W,W,W) =

V∑

i=1

nip⊗ p⊗ q, (26)

Note that Eq. (26) is very similar to Eq. (25). Consequently, we can apply the same trick (i.e.,
adding p and nip up before doing sketching or FFT) to compute Eq. (26) efficiently.

7and also Ê[x1 ⊗ M̂1 ⊗ x2](W,W,W), Ê[M̂1 ⊗ x1 ⊗ x2](W,W,W) by symmetry.

14

Appendix E Proofs

E.1 Proofs of some technical propositions

Proof of Proposition 2. We prove the proposition for the case q = 2 (i.e., H̃ is 2-wise independent).
This suffices for our purpose in this paper and generalization to q > 2 cases is straightforward. For
notational simplicity we omit all modulo operators. Consider two p-tuples l = (l1, · · · , lp) and
l′ = (l′1, · · · , l′p) such that l 6= l′. Since H̃ is permutation invariant, we assume without loss of
generality that for some s < p and 1 ≤ i ≤ s we have li = l′i. Fix t, t′ ∈ [b]. We then have

Pr[H̃(l) = t ∧ H̃(l′) = t′] =
∑

a

∑

h(l1)+···+h(ls)=a

Pr[h(l1) + · · ·+ h(ls) = a]

·
∑

rs+1+···+rp=t−a
r′s+1+···+r′p=t′−a

Pr[h(ls+1) = r1 ∧ · · · ∧ h(lp) = rp ∧ h(l′s+1) = r′1 ∧ · · · ∧ h(l′p) = r′p]. (27)

Since h is 2p-wise independent, we have

Pr[h(l1) + · · ·+ h(ls) = a] =
∑

r1+···+rs=a
Pr[h(l1) = r1 ∧ · · ·h(ls) = rs] = bs−1 · 1

bs
=

1

b
;

∑

rs+1+···+rp=t−a
r′s+1+···+r′p=t−a

Pr[h(ls+1) = r1 ∧ · · · ∧ h(lp) = rp ∧ h(l′s+1) = r′1 ∧ · · · ∧ h(l′p) = r′p]

= b2(p−s−1) · 1

b2(p−s) =
1

b2
.

Summing everything up we get Pr[H̃(l) = t∧H̃(l′) = t′] = 1/b2, which is to be demonstrated.

Proof of Proposition 1. Since both FFT and inverse FFT preserve inner products, we have
〈sT, s1,u ∗ s2,u ∗ s3,ei〉 = 〈F(sT),F(s1,u) ◦ F(s2,u) ◦ F(s3,ei)〉

= 〈F(sT) ◦ F(s1,u) ◦ F(s2,u),F(s3,ei)〉
= 〈F−1(F(sT) ◦ F(s1,u) ◦ F(s2,u)), s3,ei〉.

E.2 Analysis of tensor sketch approximation error

Proofs of Theorem 1 is based on the following two key lemmas, which states that 〈s̃A, s̃B̃〉 is a
consistent estimator of the true inner product 〈A,B〉; furthermore, the variance of the estimator
decays linearly with the hash length b. The lemmas are interesting in their own right, providing
useful tools for proving approximation accuracy in a wide range of applications when colliding hash
and symmetric sketches are used.
Lemma 1. Suppose A,B ∈ ⊗pRn are two symmetric real tensors and let s̃A, s̃B̃ ∈ Cb be the
symmetric tensor sketches of A and B̃. That is,

s̃A(t) =
∑

H̃(i1,··· ,ip)=t

σi1 · · ·σipAi1,··· ,ip ; (28)

s̃B̃(t) =
∑

H̃(i1,··· ,ip)=t
i1≤···≤ip

σi1 · · ·σipBi1,··· ,ip . (29)

Assume H̃(i1, · · · , ip) = (h(i1) + · · ·+ h(ip)) mod b are drawn from a 2-wise independent hash
family. Then the following holds:

Eh,σ
[
〈s̃A, s̃B̃〉

]
= 〈A,B〉, (30)

Vh,σ
[
〈s̃A, s̃B̃〉

]
≤ 4p‖A‖2F ‖B‖2F

b
. (31)

15

Lemma 2. Following notations and assumptions in Lemma 1. Let {Ai}mi=1 and {Bi}mi=1 be sym-
metric real n× n× n tensors and fix real vector w ∈ Rm. Then we have

E

∑

i,j

wiwj〈s̃Ai
, s̃B̃j 〉

 =

∑

i,j

wiwj〈Ai,Bj〉; (32)

V

∑

i,j

wiwj〈s̃Ai
, s̃B̃j 〉

 ≤ 4p‖w‖4(maxi ‖Ai‖2F)(maxi ‖Bi‖2F)

b
. (33)

Proof of Lemma 1. We first define some notations. Let l = (l1, · · · , lp) ∈ [d]p be a p-tuple denoting
a multi-index. Define Al := Al1,··· ,lp and σ(l) := σl1 · · ·σlp . For l, l′ ∈ [n]p, define δ(l, l′) = 1

if h(l1) + · · · + h(lp) ≡ h(l′1) + · · · + h(l′p)(mod b) and δ(l, l′) = 0 otherwise. For a p-tuple
l ∈ [n]p, let L(l) ∈ [n]p denote the p-tuple obtained by re-ordering indices in l in ascending
order. LetM(l) ∈ Nb denote the “expanded version” of l. That is, [M(l)]i denote the number of
occurrences of the index i in l. By definition, ‖M(l)‖1 = p. Finally, by definition B̃l′ = Bl′ if
l′ = L(l′) and B̃l′ = 0 otherwise.

Eq. (30) is easy to prove. By definition and linearity of expectation we have

E[〈s̃A, s̃B̃〉] =
∑

l,l′

δ(l, l′)σ(l)Alσ̄(l′)B̃l′ . (34)

Note that δ and σ are independent and

Eσ[σ(l)σ(l′)] =

{
1, if L(l) = L(l′);
0, otherwise. (35)

Also δ(l, l′) = 1 with probability 1 whenever L(l) = L(l′). Note that B̃l′ = 0 whenever l′ 6= L(l′).
Consequently,

E[〈s̃A, s̃B̃〉] =
∑

l∈[n]p

AlB̃L(l) = 〈A,B〉. (36)

For the variance, we have the following expression for E[〈s̃A, s̃B̃〉2]:

E[〈s̃A, s̃B̃〉2] =
∑

l,l′,r,r′

E[δ(l, l′)δ(r, r′)] · E[σ(l)σ̄(l′)σ̄(r)σ(r′)] ·AlArB̃l′B̃r′ (37)

=:
∑

l,l′,r,r′

E[t(l, l′, r, r′)]. (38)

We remark that E[σ(l)σ̄(l′)σ̄(r)σ(r′)] = 0 ifM(l)−M(l′) 6=M(r)−M(r′). In the remainder
of the proof we will assume thatM(l)−M(l′) =M(r)−M(r′). This can be further categorized
into two cases:

Case 1: l′ = L(l) and r′ = L(r). By definition E[σ(l)σ̄(l′)σ(r)σ̄(r′)] = 1 and
E[δ(l, l′)δ(r, r′)] = 1. Subsequently E[t(l, l′, r, r′)] = AlArB̃l′B̃r′ and hence∑

l,r,l′=L(l),r′=L(r)

E[t(l, l′, r, r′)] =
∑

l,r

AlArBlBr = 〈A,B〉2. (39)

Case 2: l′ 6= L(l) or r′ 6= L(r). Since M(l) − M(l′) = M(r) − M(r′) 6= 0 we
have E[δ(l, l′)δ(r, r′)] = 1/b because h is a 2-wise independent hash function. In addition,
E[|σ(l)σ̄(l′)σ(r)σ̄(r′)|] ≤ 1.

To enumerate all (l, l′, r, r′) tuples that satisfy the colliding conditionM(l) −M(l′) = M(r) −
M(r′) 6= 0, we fix 8 ‖M(l) −M(l′)‖1 = 2q and fix q positions each in l and r (for l′ and r′ the
positions of these indices are automatically fixed because indices in l′ and r′ must be in ascending

8Note that sum(M(l)) = sum(M(l′)) and hence ‖M(l)−M(l′)‖1 must be even. Furthermore, the sum
of positive entries in (M(l)−M(l′)) equals the sum of negative entries.

16

order). Without loss of generality assume the fixed q positions for both l and r are the first q indices.
The 4-tuple (l, r, l′, r′) with ‖M(l)−M(l′)‖1 = 2q can then be enumerated as follows:∑

l,r,l′,r′

M(l)−M(l′)=M(r)−M(r′)
‖M(l)−M(l′)‖1=2q

t(l, l′, r, r′)

=
∑

i∈[n]q

∑

j∈[n]q

∑

l∈[n]p−q

r∈[n]p−q

t(i ◦ l,L(j ◦ l), i ◦ r,L(j ◦ r))

≤ 1

b

∑

i,j∈[n]q

l,r∈[n]p−q

Ai◦lAi◦rBj◦lBj◦r

=
1

b

∑

i,j∈[n]q

〈A(ei1 , · · · , eiq , I, · · · , I),B(ej1 , · · · , ejq , I, · · · , I)〉2

≤ 1

b

∑

i,j∈[n]q

‖A(ei1 , · · · , eiq , I, · · · , I)‖2F ‖B(ej1 , · · · , ejq , I, · · · , I)‖2F

=
‖A‖2F ‖B‖2F

b
. (40)

Here ◦ denotes concatenation, that is, i ◦ l = (i1, · · · , iq, l1, · · · , lp−q) ∈ [n]p. The fourth equation
is Cauchy-Schwartz inequality. Finally note that there are no more than 4p ways of assigning q
positions to l and l′ each. Combining Eq. (39) and (40) we get

V[〈s̃A, s̃B̃〉] = E[〈s̃A, s̃B̃〉2]− 〈A,B〉2 ≤ 4p‖A‖2F ‖B‖2F
b

,

which completes the proof.

Proof of Lemma 2. Eq. (32) immediately follows Eq. (28) by adding everything together. For the
variance bound we cannot use the same argument because in general the m2 random variables are
neither independent nor uncorrelated. Instead, we compute the variance by definition. First we
compute the expected square term as follows:

E

∑

i,j

wiwj〈s̃Ai
, s̃B̃j 〉

2

=
∑

i,j,i′,j′

l,l′,r,r′

wiwjwi′wj′ · E[δ(l, l′)δ(r, r′)] · E[σ(l)σ̄(l′)σ̄(r)σ(r′)] · [Ai]l[Ai′]r[B̃j]l′ [B̃j′]r′ .

(41)
Define X =

∑
i wiAi and Y =

∑
i wiBi. The above equation can then be simplified as

E

∑

i,j

wiwj〈s̃Ai , s̃B̃j 〉

2

 =

∑

l,l′,r,r′

E[δ(l, l′)δ(r, r′)] · E[σ(l)σ̄(l′)σ̄(r)σ(r′)] ·XlXrỸl′Ỹr′ .

(42)
Applying Lemma 1 we have

V

∑

i,j

wiwj〈s̃Ai
, s̃B̃j 〉

 ≤ 4p‖X‖2F ‖Y‖2F

b
. (43)

Finally, note that

‖X‖2F =
∑

i,j

wiwj〈Ai,Aj〉 ≤
∑

i,j

wiwj‖Ai‖F ‖Aj‖F ≤ ‖w‖2 max
i
‖Ai‖2F . (44)

17

With Lemma 1 and 2, we can easily prove Theorem 1.

Proof of Theorem 1. First we prove the ε1(u) bound. Let A = T and B = u⊗3. Note that ‖A‖F =
‖T‖F and ‖B‖F = ‖u‖2 = 1. Note that [T(I,u,u)]i = T(ei,u,u). Next we consider ε2(u) and
let A = T, B = ei ⊗ u⊗ u. Again we have ‖A‖F = ‖T‖F and ‖B‖F = 1. A union bound over
all i = 1, · · · , n yields the result. For the inequality involving w we apply Lemma 2.

E.3 Analysis of fast robust tensor power method

In this section, we prove Theorem 3, a more refined version of Theorem 2 in Section 4.2. We struc-
ture the section by first demonstrating the convergence behavior of noisy tensor power method, and
then show how error accumulates with deflation. Finally, the overall bound is derived by combining
these two parts.

E.3.1 Recovering the principal eigenvector

Define the angle between two vectors v and u to be θ (v,u) . First, in Lemma 3 we show that if
the initialization vector u0 is randomly chosen from the unit sphere, then the angle θ between the
iteratively updated vector ut and the largest eigenvector of tensor T, v1, will decrease to a point
that tan θ (v1,ut) < 1. Afterwards, in Lemma 4, we use a similar approach as in [35] to prove that
the error between the final estimation and the ground truth is bounded.

Suppose T is the exact low-rank ground truth tensor and Each noisy tensor update can then be
written as

ũt+1 = T(I,ut,ut) + ε̃(ut), (45)

where ε̃(ut) = E(I,ut,ut) + ε2,T (ut) is the noise coming from statistical and tensor sketch
approximation error.

Before presenting key lemmas, we first define γ-separation, a concept introduced in [1].

Definition 1 (γ-separation, [1]). Fix i∗ ∈ [k], u ∈ Rn and γ > 0. u is γ-separated with respect to
vi∗ if the following holds:

λi∗〈u,vi∗〉 − max
i∈[k]\{i∗}

λi〈u,vi〉 ≥ γλi∗〈u,vi∗〉. (46)

Lemma 3 analyzes the first phase of the noisy tensor power algorithm. It shows that if the initializa-
tion vector u0 is γ-separated with respect to v1 and the magnitude of noise ε̃(ut) is small at each
iteration t, then after a short number of iterations we will have inner product between ut and v1 at
least a constant.

Lemma 3. Let {v1,v2, · · · ,vk} and {λ1, λ2, · · · , λk} be eigenvectors and eigenvalues of tensor
T ∈ Rn×n×n, where λ1 |〈v1,u0〉| = max

i∈[k]
λi |〈vi,u0〉| . Denote V = (v1, · · · ,vk) ∈ Rn×k as the

matrix for eigenvectors. Suppose that for every iteration t the noise satisfies∣∣〈vi, ε̃(ut)〉
∣∣ ≤ ε1 ∀ i ∈ [n] and

∥∥V>ε̃(ut)
∥∥ ≤ ε2; (47)

suppose also the initialization u0 is γ-separated with respect to v1 for some γ ∈ (0.5, 1). If
tan θ (v1,u0) > 1, and

ε1 ≤ min

(
1

4
maxi∈[k] λi

λ1
+ 2

,
1− (1 + α)/2

2

)
λ1 〈v1,u0〉2 and ε2 ≤

1− (1 + α)/2

2
√

2(1 + α)
λ1 |〈v1,u0〉|

(48)
for some α > 0, then for a small constant ρ > 0, there exists a T > log1+α (1 + ρ) tan θ (v1,u0)

such that after T iteration, we have tan θ (v1,uT) < 1
1+ρ ,

18

Proof. Let ũt+1 = T (I,ut,ut) + ε̃(ut) and ut+1 = ũt+1/ ‖ũt+1‖ . For α ∈ (0, 1), we try to
prove that there exists a T such that for t > T

1

tan θ (v1,ut+1)
=

|〈v1,ut+1〉|(
1− 〈v1,ut+1〉2

)1/2
=

|〈v1, ũt+1〉|(
n∑
i=2

〈vi, ũt+1〉2
)1/2

≥ 1. (49)

First we examine the numerator. Using the assumption
∣∣〈vi, ε̃(ut)〉

∣∣ ≤ ε1 and the fact that
〈vi, ũt+1〉 = λi 〈vi,ut〉2 + 〈vi, ε̃(ut)〉, we have

|〈vi, ũt+1〉| ≥ λi 〈vi,ut〉2 − ε1 ≥ |〈vi,ut〉| (λi |〈vi,ut〉| − ε1/ |〈vi,ut〉|) . (50)
For the denominator, by Hölder’s inequality we have
(

n∑

i=2

〈vi, ũt+1〉2
)1/2

=

(
n∑

i=2

(
λi 〈vi,ut〉2 + 〈vi, ε̃(ut)〉

)1/2
)

(51)

≤
(

n∑

i=2

λ2
i 〈vi,ut〉4

)1/2

+

(
n∑

i=2

〈vi, ε̃(ut)〉2
)1/2

(52)

≤ max
i 6=1

λi |〈vi,ut〉|
(

n∑

i=2

〈vi,ut〉2
)1/2

+ ε2 (53)

≤
(

1− 〈v1,ut〉2
)1/2

(
max
i 6=1

λi |〈vi,ut〉|+ ε2/
(

1− 〈v1,ut〉2
)1/2

)

(54)
Equation (50) and (51) yield

1

tan θ (v1,ut+1)
≥ |〈v1,ut〉|(

1− 〈v1,ut〉2
)1/2

λ1 |〈v1,ut〉| − ε1/ |〈v1,ut〉|

max
i6=1

λi |〈vi,ut〉|+ ε2/
(

1− 〈v1,ut〉2
)1/2

(55)

=
1

tan θ (v1,ut)

λ1 |〈v1,ut〉| − ε1/ |〈v1,ut〉|

max
i 6=1

λi |〈vi,ut〉|+ ε2/
(

1− 〈v1,ut〉2
)1/2

(56)

To prove that the second term is larger than 1 + α, we first show that when t = 0, the inequality
holds. Since the initialization vector is a γ−separated vector, we have

λ1 |〈v1,u0〉| −max
i∈[k]

λi |〈vi,u0〉| ≥ γλ1 |〈v1,u0〉| , (57)

max
i∈[k]

λi |〈vi,u0〉| ≤ (1− γ)λ1 |〈v1,u0〉| ≤ 0.5λ1 |〈v1,u0〉| , (58)

the last inequality holds since γ > 0.5. Note that we assume tan θ (v1,u0) > 1 and hence
〈v1,u0〉2 < 0.5. Therefore,

ε2 ≤
1− (1 + α)/2

2
√

2(1 + α)
λ1 |〈v1,u0〉| ≤

(
1− 〈v1,u0〉2

)1/2

(1− (1 + α)/2)

2(1 + α)
λ1 |〈v1,u0〉| . (59)

Thus, for t = 0, using the condition for ε1 and ε2 we have
λ1 |〈vi,u0〉| − ε1/ |〈vi,u0〉|

max
i 6=1

λi |〈vi,u0〉|+ ε2/
(

1− 〈v1,u0〉2
)1/2

≥ λ1 |〈vi,u0〉| − ε1/ |〈vi,u0〉|

0.5λ1 |〈v1,u0〉|+ ε2/
(

1− 〈v1,u0〉2
)1/2

≥ 1 + α.

(60)
The result yields 1/ tan θ (v1,u1) > (1 + α)/ tan θ (v1,u0) . This also indicates that |〈v1,u1〉| >
|〈v1,u0〉| , which implies that

ε1 ≤ min

(
1

4
maxi∈[k] λi

λ1
+ 2

,
1− (1 + α)/2

2

)
λ1 〈v1,ut〉2 and ε2 ≤

1− (1 + α)/2

2
√

2(1 + α)
λ1 |〈v1,ut〉|

(61)

19

also holds for t = 1. Next we need to make sure that for t ≥ 0

max
i 6=1

λi |〈vi,ut〉| ≤ 0.5λ1 |〈v1,ut〉| . (62)

In other words, we need to show that λ1|〈v1,ut〉|
max
i6=1

λi|〈vi,ut〉| ≥ 2. From Equation (58), for t = 0,

λ1|〈v1,ut〉|
max
i6=1

λi|〈vi,ut〉| ≥
1

1−γ ≥ 2. For every i ∈ [k],

|〈vi, ũt+1〉| ≤ λi |〈vi,ut〉|2 + ε1 ≤ |〈vi,ut〉| (λi |〈vi,ut〉|+ ε1/ |〈vi,ut〉|) . (63)
With equation (50), we have

λ1 |〈v1,ut+1〉|
λi |〈vi,ut+1〉|

=
λ1 |〈v1, ũt+1〉|
λi |〈vi, ũt+1〉|

≥
λ1 |〈v1,ut〉|

(
λ1 |〈v1,ut〉| − ε1

|〈v1,ut〉|

)

λi |〈vi,ut〉|
(
λi |〈vi,ut〉| − ε1

|〈vi,ut〉|

) (64)

=

(
λ1 |〈v1,ut〉|
λi |〈vi,ut〉|

)2 1− ε1
λ1〈v1,ut〉2

1 + λi
λ1

ε1
λ1〈v1,ut〉2

(
λ1|〈v1,ut〉|
λi|〈vi,ut〉|

)2 (65)

≥
(
λ1 |〈v1,ut〉|
λi |〈vi,ut〉|

)2 1− ε1
λ1〈v1,ut〉2

1 +
max
i∈[k]

λi

λ1

ε1
λ1〈v1,ut〉2

(
λ1|〈v1,ut〉|
λi|〈vi,ut〉|

)2

(66)

=
1− ε1

λ1〈v1,ut〉2

1(
λ1|〈v1,ut〉|
λi|〈vi,ut〉|

)2 +
maxi∈[k] λi

λ1

ε1
λ1〈v1,ut〉2

. (67)

Let κ =
maxi∈[k] λi

λ1
. For t = 0, with conditions on ε1 the following holds:

λ1 |〈v1,u1〉|
λi |〈vi,u1〉|

≥
1− ε1

λ1〈v1,u0〉2

1(
λ1|〈v1,u0〉|
λi|〈vi,u0〉|

)2 +
maxi∈[k] λi

λ1

ε1
λ1〈v1,u0〉2

. (68)

≥
1− 1

4κ+2
1
4 + κ

4κ+2

= 2 (69)

With the two conditions stated in Equation (61), following the same step in (60), we have
1

tan θ(v1,u2) ≥ (1 + α) 1
tan θ(v1,u1) . By induction, 1

tan θ(v1,ut+1) ≥ (1 + α) 1
tan θ(v1,t)

. for t ≥ 0.
Subsequently,

1

tan θ (v1, uT)
≥ (1 + α)T

1

tan θ (v1,u0)
. (70)

Finally, we complete the proof by setting T > log1+α (1 + ρ) tan θ (v1,u0).

Next, we present Lemma 4, which analyzes the second phase of the noisy tensor power method. The
second phase starts with tan θ(v1,u0) < 1, that is, the inner product of v1 and u0 is lower bounded
by 1/2.

Lemma 4. Let v1 be the principal eigenvector of a tensor T and let u0 be an arbitrary vector in
Rd that satisfies tan θ(v1,u0) < 1. Suppose at every iteration t the noise satisfies

4‖ε̃(ut)‖ ≤ ε (λ1 − λ2) and 4
∣∣〈v1, ε̃(ut)〉

∣∣ ≤ (λ1 − λ2) cos2 θ (v1,u0) (71)

for some ε < 1. Then with high probability there exists T = O
(

λ1

λ1−λ2
log(1/ε)

)
such that after T

iteration we have tan θ (v1,uT) ≤ ε.

Proof. Define ∆ := λ1−λ2

4 and X := v⊥1 . We have the following chain of inequalities:

tan θ (v1,T (I,u,u) + ε̃(u)) ≤
∥∥XT (T (I,u,u) + ε̃(u))

∥∥
∥∥vT1 (T (I,u,u) + ε̃(u))

∥∥ (72)

20

≤
∥∥XTT (I,u,u)

∥∥+
∥∥VT ε̃(u)

∥∥
∥∥vT1 T (I,u,u)

∥∥−
∥∥vT1 ε̃(u)

∥∥ (73)

≤ λ2

∥∥XTu
∥∥2

+ ‖ε̃(u)‖
λ1

∣∣vT1 u
∣∣2 −

∣∣v>1 ε̃(u)
∣∣ (74)

=

∥∥XTu
∥∥2

∣∣vT1 u
∣∣2

λ2

λ1 − |
v>1 ε̃(u)|
|v>1 u|2

+

‖ε̃(u)‖
|v>1 u|2

λ1 −
∣∣v>1 ε̃(u)

∣∣
|v>1 u|2

(75)

≤ tan2 θ(v1,u)
λ2

λ2 + 3∆
+

∆ε
(
1 + tan2 θ (v1,u)

)

λ2 + 3∆
(76)

≤ max

(
ε,
λ2 + ∆ε

λ2 + 2∆
tan2 θ (v1,u)

)
(77)

≤ max

(
ε,
λ2 + ∆ε

λ2 + 2∆
tan θ (v1,u)

)
(78)

The second step follows by triangle inequality. For u = u0, using the condition tan (v1,u0) < 1
we obtain

tan θ (v1,u1) ≤ max

(
ε,
λ2 + ∆ε

λ2 + 2∆
tan2 θ (v1,u)

)
≤ max

(
ε,
λ2 + ∆ε

λ2 + 2∆
tan θ (v1,u)

)
(79)

Since λ2+∆ε
λ2+2∆ ≤ max

(
λ2

λ2+∆ , ε
)
≤ (λ2/λ1)

1/4
< 1, we have

tan θ (v1,u1) = tan θ (v1,T (I,u0,u0) + ε̃(ut)) ≤ max
(
ε, (λ2/λ1)1/4 tan θ (v1,u0)

)
< 1.

(80)
By induction,

tan θ (v1,ut+1) = tan θ (v1,T (I,ut,ut) + ε̃(ut)) ≤ max
(
ε, (λ2/λ1)1/4 tan θ (v1,ut)

)
< 1.

for every t. Eq. (78) then yields

tan θ (v1,uT) ≤ max
(
ε,max ε, (λ2/λ1)

L/4
tan θ (v1,u0)

)
. (81)

Consequently, after T = log(λ2/λ1)−1/4(1/ε) iterations we have tan θ (v1,uT) ≤ ε.

Lemma 5. Suppose v1 is the principal eigenvector of a tensor T and let u0 ∈ Rn. For some
α, ρ > 0 and ε < 1, if at every step, the noise satisfies

‖ε̃(ut)‖ ≤ ε
λ1 − λ2

4
and

∣∣〈v1, ε̃(ut)〉
∣∣ ≤ min

(
1

4
maxi∈[k] λi

λ1
+ 2

λ1,
1− (1 + α)/2

2
√

2(1 + α)
λ1

)
1

τ2n
,

(82)

then with high probability there exists an T = O
(

log1+α (1 + ρ) τ
√
n+ λ1

λ1−λ2
log(1/ε)

)
such

that after T iterations we have
∥∥(I − uTuTT

)
v1

∥∥ ≤ ε.

Proof. By Lemma 2.5 in [35], for any fixed orthonormal matrix V and a random vector u, we
have maxi∈[K] tan θ(vi,u) ≤ τ

√
n with all but O(τ−1 + e−Ω(d)) probability. Using the fact that

cos θ (v1,u0) ≥ 1/(1 + tan θ (v1,u0)) ≥ 1
τ
√
n
, the following bounds on the noise level imply the

conditions in Lemma 3:
∥∥VT ε̃(ut)

∥∥ ≤ 1− (1 + α)/2

2
√

2(1 + α)τ
√
n

and
∣∣〈v1, ε̃(ut)〉

∣∣

≤ min

(
1

4
maxi∈[k] λi

λ1
+ 2

λ1,
1− (1 + α)/2

2
λ1

)
1

τ2n
, ∀t.

21

Note that
∣∣〈v1, ε̃(ut)〉

∣∣ ≤ 1−(1+α)/2

2
√

2(1+α)
λ1

1
τ2n implies the first bound in Eq. (83). In Lemma 4, we

assume tan θ (v1,u0) < 1 and prove that for every ut, tan θ (v1,ut) < 1, which is equivalent
to saying that at every step, cos θ (v1,ut) >

1√
2
. By plugging the inequality into the second con-

dition in Lemma 4, we have |〈v1, ε̃(ut)〉| ≤ (λ1−λ2)
8 . The lemma then follows by the fact that∥∥(I − uTuT T

)
v1

∥∥ = sin θ (uT ,v1) ≤ tan θ (uT ,v1) ≤ ε.

E.3.2 Deflation

In previous sections we have upper bounded the Euclidean distance between the estimated and the
true principal eigenvector of an input tensor T. In this section, we show that error introduced from
previous tensor power updates can also be bounded. As a result, we obtain error bounds between
the entire set of base vectors {vi}ki=1 and their estimation {v̂i}ki=1.

Lemma 6. Let {v1,v2, · · · ,vk} and {λ1, λ2, · · · , λk} be orthonormal eigenvectors and eigenval-
ues of an input tensor T . Define λmax := maxi∈[k] λi. Suppose {v̂i}ki=1 and {λ̂i}ki=1 are estimated
eigenvector/eigenvalue pairs. Fix ε ≥ 0 and any t ∈ [k]. If∣∣λ̂i − λi

∣∣ ≤ λiε/2, and ‖ûi − ui‖ ≤ ε (83)
for all i ∈ [t], then for any unit vector u the following holds:
∥∥∥∥∥

t∑

i=1

[
λv⊗3

i − λ̂iv̂⊗3
i

]
(I,u,u)

∥∥∥∥∥

2

≤4 (2.5λmax + (λmax + 1.5)ε)
2
ε2 + 9(1 + ε/2)2λ2

maxε
4

(84)

+ 8(1 + ε/2)2λ2
maxε

2 (85)

≤50λ2
maxε

2. (86)

Proof. Following similar approaches in [1], Lemma B.5, we define v̂⊥ = v̂i − (v>i v̂i)vi and

Di =
[
λv⊗3

i − λ̂iv̂⊗3
i

]
. Di(I,u,u) can then be written as the sum of scaled vi and v>i products

as follows:
Di (I,u,u) =λi(u

>vi)
2vi − λ̂i(u>v̂i)2v̂i (87)

=λi(u
>vi)

2vi − λ̂i(u>
(
v̂⊥i + (v>i v̂i)vi

)
)2
(
v̂⊥ + (v>i v̂i)vi

)
(88)

=
((
λi − λ̂i(v>i v̂i)3

)
(u>vi)

2 − 2λ̂i(u
>v̂⊥i)(v>i v̂i)

2(u>vi)− λ̂i(v>i v̂i)(u>v̂⊥)
)
vi

− λ̂i
∥∥∥v̂⊥i

∥∥∥
(

(u>vi)(v
>
i v̂i) + u>v̂⊥i

)(
v̂⊥i /

∥∥∥v̂⊥i
∥∥∥
)

(89)

Suppose Ai and Bi are coefficients of vi and
(
v̂⊥i /

∥∥∥v̂⊥i
∥∥∥
)

, respectively. The summation of Di can
be bounded as ∥∥∥∥∥

t∑

i=1

Di (I,u,u)

∥∥∥∥∥

2

=

∥∥∥∥∥
t∑

i=1

Aivi −
t∑

i=1

Bi

(
v̂⊥i /

∥∥∥v̂⊥i
∥∥∥
)∥∥∥∥∥

2

2

≤2

∥∥∥∥∥
t∑

i=1

Aivi

∥∥∥∥∥

2

+ 2

∥∥∥∥∥
t∑

i=1

Bi

(
v̂⊥i /

∥∥∥v̂⊥i
∥∥∥
)∥∥∥∥∥

2

≤
t∑

i=1

A2
i + 2

(
t∑

i=1

|Bi|
)2

We then try to upper bound |Ai|.
|Ai| ≤

∣∣∣
(
λi − λ̂i(v>i v̂i)3

)
(u>vi)

2 − 2λ̂i(u
>v̂⊥i)(v>i v̂i)

2(u>vi)− λ̂i(v>i v̂i)(u>v̂⊥)
∣∣∣ (90)

≤
(
λi
∣∣1− (v>i v̂i)

3
∣∣+
∣∣∣λi − λ̂i

∣∣∣ (v>i v̂i)3
)

(u>vi)
2 + 2

(
λi +

∣∣∣λi − λ̂i
∣∣∣
)
‖v̂i − vi‖

∣∣u>vi
∣∣

+
(
λi +

∣∣∣λi − λ̂i
∣∣∣
)
‖v̂i − vi‖2 (91)

22

≤
(

1.5 ‖vi − v̂i‖2 +
∣∣∣λi − λ̂i

∣∣∣+ 2
(
λi +

∣∣∣λi − λ̂i
∣∣∣
)
‖vi − v̂i‖

) ∣∣u>vi
∣∣

+
(
λi +

∣∣∣λi − λ̂i
∣∣∣
)
‖v̂i − vi‖2 (92)

≤ (2.5λi + (λi + 1.5)ε) ε
∣∣u>vi

∣∣+ (1 + ε/2)λiε
2 (93)

Next, we bound |Bi| in a similar manner.

|Bi| =
∣∣∣λ̂i
∥∥∥v̂⊥i

∥∥∥
(

(u>vi)(v
>
i v̂i) + u>v̂⊥i

)∣∣∣ (94)

≤2
(
λi +

∣∣∣λi − λ̂i
∣∣∣
) ∥∥∥v̂⊥i

∥∥∥
(

(u>vi)
2 +

∥∥∥v̂⊥i
∥∥∥

2
)

(95)

≤2(1 + ε/2)λiε(u
>vi)

2 + 2(1 + ε/2)λiε
3 (96)

Combining everything together we have
∥∥∥∥∥

t∑

i=1

Di (I,u,u)

∥∥∥∥∥

2

≤2
t∑

i=1

A2
i + 2

(
t∑

i=1

|Bi|
)2

(97)

≤
t∑

i=1

4 (5λi + (λi + 1.5))
2
ε2
∣∣u>vi

∣∣2 + 4(1 + ε/2)2λ2
i ε

4

+ 2

(
t∑

i=1

2(1 + ε/2)λiε(u
>vi)

2 + 2(1 + ε/2)λiε
3

)2

(98)

≤4 (2.5λmax + (λmax + 1.5)ε)
2
ε2

t∑

i=1

∣∣u>vi
∣∣2 + 4(1 + ε/2)2λ2

maxε
4

+ 2

(
2(1 + ε/2)λmaxε

t∑

i=1

(u>vi)
2 + 2(1 + ε/2)λmaxε

3

)2

(99)

≤4 (2.5λmax + (λmax + 1.5)ε)
2
ε2 + 9(1 + ε/2)2λ2

maxε
4 + 8(1 + ε/2)2λ2

maxε
2.

(100)

E.3.3 Main Theorem

In this section we present and prove the main theorem that bounds the reconstruction error of fast
robust tensor power method under appropriate settings of the hash length b and number of indepen-
dent hashes B. The theorem presented below is a more detailed version of Theorem 2 presented in
Section 4.2.

Theorem 3. Let T̄ = T + E ∈ Rn×n×n, where T =
∑k
i=1 λiv

⊗3
i and {vi}ki=1 is an orthonormal

basis. Suppose (v̂1, λ̂1), (v̂1, λ̂1), · · · (v̂k, λ̂k) is the sequence of estimated eigenvector/eigenvalue
pairs obtained using the fast robust tensor power method. Assume ‖E‖ = ε. There exists constant
C1, C2, C3, α, ρ, τ ≥ 0 such that the following holds: if

ε ≤ C1
1

nλmax
, and T = C2

(
log1+α (1 + ρ) τ

√
n+

λ1

λ1 − λ2
log(1/ε)

)
, (101)

and√
ln(L/ log2(k/η))

ln(k)
·
(

1− ln (lnL/ log2(k/η)) + C3

4 ln (L/ log2(k/η))
−
√

ln(8)

ln(L/ log2(k/η))

)
≥ 1.02

(
1 +

√
ln(4)

ln(k)

)
.

(102)

23

Suppose the tensor sketch randomness is independent among all tensor product evaluations. If
B = Ω(log(n/τ)) and the hash length b is set to

b ≥

‖T‖2F τ4n2

min
(

1
4 maxi∈[k](λi/λ1)+2λ1,

1−(1+α)/2

2
√

2(1+α)
λ1

)2 ,
16ε−2‖T‖2F

mini∈[k] (λi − λi−1)2
, ε−2 ‖T‖2F

(103)

with probability at least 1− (η + τ−1 + e−n), there exists a permutation π on k such that

∥∥vπ(j) − v̂i
∥∥ ≤ ε,

∣∣∣λπ(j) − λ̂j
∣∣∣ ≤

λπ(j)ε

2
, and

∥∥∥∥∥∥
T−

k∑

j=1

λ̂j v̂
⊗3
j

∥∥∥∥∥∥
≤ cε, (104)

for some absolute constant c.

Proof. We prove that at the end of each iteration i ∈ [k], the following conditions hold

• 1. For all j ≤ i,
∣∣vπ(j) − v̂j

∣∣ ≤ ε and
∣∣∣λπ(j) − λ̂j

∣∣∣ ≤ λiε
2

• 2. The tensor error satisfies∥∥∥∥∥∥

T̃−

∑

j≤i
λ̂j v̂

⊗3
j

−

∑

j≥i+1

λπ(j)v
⊗3
π(j)

 (I,u,u)

∥∥∥∥∥∥
≤ 56ε (105)

First, we check the case when i = 0. For the tensor error, we have∥∥∥∥∥∥

T̃−

K∑

j=1

λπ(j)v
⊗3
π(j)

 (I,u,u)

∥∥∥∥∥∥
= ‖ε(u)‖ ≤ ‖ε2,T (u)‖+ ‖E (I,u,u)‖ ≤ ε+ ε = 2ε. (106)

The last inequality follows Theorem 1 with the condition for b. Next, Using Lemma 5, we have that∥∥vπ(1) − v̂1

∥∥ ≤ ε. (107)
In addition, conditions for hash length b and Theorem 1 yield
∣∣∣λπ(1) − λ̂1

∣∣∣ ≤ ‖ε1,T (v1)‖+ ‖T(v̂1 − v1, v̂1 − u, v̂1 − v1)‖ ≤ ελi − λi−1

4
+ ε3 ‖T‖F ≤

ελi
2

(108)
Thus, we have proved that for i = 1 both conditions hold. Assume the conditions hold up to i = t−1
by induction. For the tth iteration, the following holds:
∥∥∥∥∥∥

T̃−

∑

j≤t
λ̂j v̂

⊗3
j

−

∑

j≥t+1

λπ(j)v
⊗3
π(j)

 (I,u,u)

∥∥∥∥∥∥

≤

∥∥∥∥∥∥

T̃−

K∑

j=1

λπ(j)v
⊗3
π(j)

 (I,u,u)

∥∥∥∥∥∥
+

∥∥∥∥∥∥

t∑

j=1

λ̂j v̂
⊗3
j − λπ(j)v

⊗3
π(j)

∥∥∥∥∥∥
≤ ε+

√
50λmaxε.

For the last inequality we apply Lemma 6. Since the condition is satisfied, Lemma 5 yields∥∥vπ(t+1) − v̂t+1

∥∥ ≤ ε. (109)
Finally, conditions for hash length b and Theorem 1 yield
∣∣∣λπ(t+1) − λ̂t+1

∣∣∣ ≤ ‖ε1,T (v1)‖+ ‖T(v̂t − v1, v̂1 − u, v̂1 − v1)‖

≤ ελi − λi−1

4
+ ε3 ‖T‖F ≤

ελi
2

(110)

24

Appendix F Summary of notations for matrix/vector products

We assume vectors a, b ∈ Cn are indexed starting from 0; that is, a = (a0, a1, · · · , an−1) and
b = (b0, b1, · · · , bn−1). Matrices A,B and tensors T are still indexed starting from 1.

Element-wise product For a, b ∈ Cn, the element-wise product (Hadamard product) a ◦ b ∈ Rn
is defined as

a ◦ b = (a0b0, a1b1, · · · , an−1bn−1). (111)

Convolution For a, b ∈ Cn, their convolution a ∗ b ∈ Cn is defined as

a ∗ b =

 ∑

(i+j) mod n=0

aibj ,
∑

(i+j) mod n=1

aibj , · · · ,
∑

(i+j) mod n=n−1

aibj

 . (112)

Inner product For a, b ∈ Cn, their inner product is defined as

〈a, b〉 =

n∑

i=1

aibi, (113)

where bi denotes the complex conjugate of bi. For tensors A,B ∈ Cn×n×n, their inner product is
defined similarly as

〈A,B〉 =

n∑

i,j,k=1

Ai,j,kBi,j,k. (114)

Tensor product For a, b ∈ Cn, the tensor product a⊗ b can be either an n×n matrix or a vector
of length n2. For the former case, we have

a⊗ b =

a0b0 a0b1 · · · a0bn−1

a1b0 a1b1 · · · a1bn−1

...
...

. . .
...

an−1b0 an−1b1 · · · an−1bn−1

 . (115)

If a⊗ b is a vector, it is defined as the expansion of the output matrix. That is,
a⊗ b = (a0b0, a0b1, · · · , a0bn−1, a1b0, a1b1, · · · , an−1bn−1). (116)

Suppose T is an n × n × n tensor and matrices A ∈ Rn×m1 , B ∈ Rn×m2 and C ∈ Rn×m3 . The
tensor product T(A,B,C) is an m1 ×m2 ×m3 tensor defined by

[T(A,B,C)]i,j,k =
n∑

i′,j′,k′=1

Ti′,j′,k′Ai′,iBj′,jCk′,k. (117)

Khatri-Rao product For A,B ∈ Cn×m, their Khatri-Rao product A � B ∈ Cn2×m is defined
as

A�B = (A(1) ⊗B(1),A(2) ⊗B(2), · · · ,A(m) ⊗B(m)), (118)

where A(i) and B(i) denote the ith rows of A and B.

Mode expansion For a tensor T of dimension n× n× n, its first mode expansion T(1) ∈ Rn×n
is defined as

T(1) =

T1,1,1 T1,1,2 · · · T1,1,n T1,2,1 · · · T1,n,n

T2,1,1 T2,1,2 · · · T2,1,n T2,2,1 · · · T2,n,n

...
...

...
...

...
...

...
Tn,1,1 Tn,1,2 · · · Tn,1,n Tn,2,1 · · · Tn,n,n

 . (119)

The mode expansions T(2) and T(3) can be similarly defined.

25

References

[31] A. Anandkumar, R. Ge, D. Hsu, S. Kakade, and M. Telgarsky. Tensor decompositions for
learning latent variable models. Journal of Machine Learning Research, 15:2773–2832, 2014.

[32] B. Bader, T. Kolda, et al. MATLAB tensor toolbox version 2.5. Available online, 2012.
[33] B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB tensor classes for fast algorithm

prototyping. ACM Transactions on Mathematical Software, 32(4):635–653, 2006.
[34] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of machine Learning

research, 3:993–1022, 2003.
[35] M. Hardt and E. Price. The noisy power method: A meta algorithm with applications. In NIPS,

2014.
[36] T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–500,

2009.
[37] C. Wang, X. Liu, Y. Song, and J. Han. Scalable moment-based inference for latent dirichlet

allocation. In ECML/PKDD, 2014.
[38] Y. Wang and J. Zhu. Spectral methods for supervised topic models. In NIPS, 2014.

26

