
Equilibrated adaptive learning rates for non-convex
optimization

Yann N. Dauphin1

Université de Montréal
dauphiya@iro.umontreal.ca

Harm de Vries1
Université de Montréal

devries@iro.umontreal.ca

Yoshua Bengio
Université de Montréal

yoshua.bengio@umontreal.ca

Abstract

Parameter-specific adaptive learning rate methods are computationally efficient
ways to reduce the ill-conditioning problems encountered when training large
deep networks. Following recent work that strongly suggests that most of the
critical points encountered when training such networks are saddle points, we find
how considering the presence of negative eigenvalues of the Hessian could help
us design better suited adaptive learning rate schemes. We show that the popular
Jacobi preconditioner has undesirable behavior in the presence of both positive
and negative curvature, and present theoretical and empirical evidence that the so-
called equilibration preconditioner is comparatively better suited to non-convex
problems. We introduce a novel adaptive learning rate scheme, called ESGD,
based on the equilibration preconditioner. Our experiments show that ESGD per-
forms as well or better than RMSProp in terms of convergence speed, always
clearly improving over plain stochastic gradient descent.

1 Introduction

One of the challenging aspects of deep learning is the optimization of the training criterion over mil-
lions of parameters: the difficulty comes from both the size of these neural networks and because the
training objective is non-convex in the parameters. Stochastic gradient descent (SGD) has remained
the method of choice for most practitioners of neural networks since the 80’s, in spite of a rich lit-
erature in numerical optimization. Although it is well-known that first-order methods considerably
slow down when the objective function is ill-conditioned, it remains unclear how to best exploit
second-order structure when training deep networks. Because of the large number of parameters,
storing the full Hessian or even a low-rank approximation is not practical, making parameter specific
learning rates, i.e diagonal preconditioners, one of the viable alternatives. One of the open questions
is how to set the learning rate for SGD adaptively, both over time and for different parameters, and
several methods have been proposed (see e.g. Schaul et al. (2013) and references therein).

On the other hand, recent work (Dauphin et al., 2014; Choromanska et al., 2014) has brought theo-
retical and empirical evidence suggesting that local minima are with high probability not the main
obstacle to optimizing large and deep neural networks, contrary to what was previously believed:
instead, saddle points are the most prevalent critical points on the optimization path (except when
we approach the value of the global minimum). These saddle points can considerably slow down
training, mostly because the objective function tends to be ill-conditioned in the neighborhood of

1Denotes first authors

1

(a) Original (b) Preconditioned

Figure 1: Contour lines of a saddle point (black point) problem for (a) original function and (b) trans-
formed function (by equilibration preconditioner). Gradient descent slowly escapes the saddle point
in (a) because it oscillates along the high positive curvature direction. For the better conditioned
function (b) these oscillations are reduced, and gradient descent makes faster progress.

these saddle points. This raises the question: can we take advantage of the saddle structure to design
good and computationally efficient preconditioners?

In this paper, we bring these threads together. We first study diagonal preconditioners for saddle
point problems, and find that the popular Jacobi preconditioner has unsuitable behavior in the pres-
ence of both positive and negative curvature. Instead, we propose to use the so-called equilibration
preconditioner and provide new theoretical justifications for its use in Section 4. We provide specific
arguments why equilibration is better suited to non-convex optimization problems than the Jacobi
preconditioner and empirically demonstrate this for small neural networks in Section 5. Using this
new insight, we propose a new adaptive learning rate schedule for SGD, called ESGD, that is based
on the equilibration preconditioner. In Section 7 we evaluate the proposed method on two deep au-
toencoder benchmarks. The results, presented in Section 8, confirm that ESGD performs as well or
better than RMSProp. In addition, we empirically find that the update direction of RMSProp is very
similar to equilibrated update directions, which might explain its success in training deep neural
networks.

2 Preconditioning

It is well-known that gradient descent makes slow progress when the curvature of the loss function
is very different in separate directions. The negative gradient will be mostly pointing in directions of
high curvature, and a small enough learning rate have to be chosen in order to avoid divergence in the
largest positive curvature direction. As a consequence, the gradient step makes very little progress in
small curvature directions, leading to the slow convergence often observed with first-order methods.

Preconditioning can be thought of as a geometric solution to the problem of pathological curvature.
It aims to locally transform the optimization landscape so that its curvature is equal in all directions.
This is illustrated in Figure 1 for a two-dimensional saddle point problem using the equilibration
preconditioner (Section 4). Gradient descent method slowly escapes the saddle point due to the
typical oscillations along the high positive curvature direction. By transforming the function to be
more equally curved, it is possible for gradient descent to move much faster.

More formally, we are interested in minimizing a function f with parameters θ ∈ RN. We introduce
preconditioning by a linear change of variables θ̂ = D

1
2 θ with a non-singular matrix D

1
2 . We use

this change of variables to define a new function f̂ , parameterized by θ̂, that is equivalent to the
original function f :

f̂(θ̂) = f(D−
1
2 θ̂) = f(θ) (1)

The gradient and the Hessian of this new function f̂ are (by the chain rule):

∇f̂(θ̂) = D−
1
2∇f(θ) (2)

∇2f̂(θ̂) = D−
1
2>HD−

1
2 with H = ∇2f(θ) (3)

2

A gradient descent iteration θ̂t = θ̂t−1 − η∇f̂(θ̂) for the transformed function corresponds to

θt = θt−1 − ηD−1∇f(θ) (4)

for the original parameter θ. In other words, by left-multiplying the original gradient with a positive
definite matrixD−1, we effectively apply gradient descent to the problem after a change of variables
θ̂ = D

1
2 θ. The curvature of this transformed function is given by the Hessian D−

1
2>HD−

1
2 , and

we aim to seek a preconditioning matrix D such that the new Hessian has equal curvature in all
directions. One way to assess the success of D in doing so is to compute the relative difference
between the biggest and smallest curvature direction, which is measured by the condition number of
the Hessian:

κ(H) =
σmax(H)
σmin(H)

(5)

where σmax(H), σmin(H) denote respectively the biggest and smallest singular values of H (which
are the absolute value of the eigenvalues). It is important to stress that the condition number is
defined for both definite and indefinite matrices.

The famous Newton step corresponds to a change of variables D
1
2 = H

1
2 which makes the new

Hessian perfectly conditioned. However, a change of variables only exists2 when the Hessian H is
positive semi-definite. This is a problem for non-convex loss surfaces where the Hessian might be
indefinite. In fact, recent studies (Dauphin et al., 2014; Choromanska et al., 2014) has shown that
saddle points are dominating the optimization landscape of deep neural networks, implying that the
Hessian is most likely indefinite. In such a setting, H−1 not a valid preconditioner and applying
Newton’s step without modification would make you move towards the saddle point. Nevertheless,
it is important to realize that the concept of preconditioning extends to non-convex problems, and
reducing ill-conditioning around saddle point will often speed up gradient descent.

At this point, it is natural to ask whether there exists a valid preconditioning matrix that always
perfectly conditions the new Hessian? The answer is yes, and the corresponding preconditioning
matrix is the inverse of the absolute Hessian

|H| =
∑
j

|λj |qjq>j , (6)

which is obtained by an eigendecomposition of H and taking the absolute values of the eigenvalues.
See Proposition 1 in Appendix A for a proof that |H|−1 is the only (up to a scalar3) symmetric
positive definite preconditioning matrix that perfectly reduces the condition number.

Practically, there are several computational drawbacks for using |H|−1 as a preconditioner. Neural
networks typically have millions of parameters, rendering it infeasible to store the Hessian (O(N2)),
perform an eigendecomposition (O(N3)) and invert the matrix (O(N3)). Except for the eigende-
composition, other full rank preconditioners are facing the same computational issues. We therefore
look for more computationally affordable preconditioners while maintaining its efficiency in reduc-
ing the condition number of indefinite matrices. In this paper, we focus on diagonal preconditioners
which can be stored, inverted and multiplied by a vector in linear time. When diagonal precondi-
tioners are applied in an online optimization setting (i.e. in conjunction with SGD), they are often
referred to as adaptive learning rates in the neural network literature.

3 Related work

The Jacobi preconditioner is one of the most well-known preconditioners. It is given by the diagonal
of the Hessian DJ = |diag(H)| where | · | is element-wise absolute value. LeCun et al. (1998)
proposes an efficient approximation of the Jacobi preconditioner using the Gauss-Newton matrix.
The Gauss-Newton has been shown to approximate the Hessian under certain conditions (Pascanu
& Bengio, 2014). The merit of this approach is that it is efficient but it is not clear what is lost
by the Gauss-Newton approximation. What’s more the Jacobi preconditioner has not be found to
be competitive for indefinite matrices (Bradley & Murray, 2011). This will be further explored for
neural networks in Section 5.

2A real square root H
1
2 only exists when H is positive semi-definite.

3can be incorporated into the learning rate

3

A recent revival of interest in adaptive learning rates has been started by AdaGrad (Duchi et al.,
2011). Adagrad collects information from the gradients across several parameter updates to tune the
learning rate. This gives us the diagonal preconditioning matrix DA = (

∑
t∇f2

(t))
−1/2 which relies

on the sum of gradients ∇f(t) at each timestep t. Duchi et al. (2011) relies strongly on convexity to
justify this method. This makes the application to neural networks difficult from a theoretical per-
spective. RMSProp (Tieleman & Hinton, 2012) and AdaDelta (Zeiler, 2012) were follow-up meth-
ods introduced to be practical adaptive learning methods to train large neural networks. Although
RMSProp has been shown to work very well (Schaul et al., 2013), there is not much understanding
for its success in practice. Preconditioning might be a good framework to get a better understanding
of such adaptive learning rate methods.

4 Equilibration

Equilibration is a preconditioning technique developed in the numerical mathematics commu-
nity (Sluis, 1969). When solving a linear system Ax = b with Gaussian Elimination, significant
round-off errors can be introduced when small numbers are added to big numbers (Datta, 2010).
To circumvent this issue, it is advised to properly scale the rows of the matrix before starting the
elimination process. This step is often referred to as row equilibration, which formally scales the
rows of A to unit magnitude in some p-norm. Throughout the following we consider 2-norm. Row
equilibration is equivalent to multiplying A from the left by the matrix D−1

ii = 1
‖Ai,·‖ 2

. Instead of

solving the original system, we now solve the equivalent left preconditioned system Âx = b̂ with
Â = D−1A and b̂ = D−1

i b.

In this paper, we apply the equilibration preconditioner in the context of large scale non-convex
optimization. However, it is not straightforward how to apply the preconditioner. By choosing the
preconditioning matrix

DE
ii = ‖Hi,·‖2, (7)

the Hessian of the transformed function (DE)−
1
2>H(DE)−

1
2 (see Section 2) does not have equi-

librated rows. Nevertheless, its spectrum (i.e. eigenvalues) is equal to the spectrum of the row
equilibrated Hessian (DE)−1H and column equilibrated Hessian H(DE)−1. Consequently, if row
equilibration succesfully reduces the condition number, then the condition number of the trans-
formed Hessian (DE)−

1
2>H(DE)−

1
2 will be reduced by the same amount. The proof is given by

Proposition 2.

From the above observation, it seems more natural to seek for a diagonal preconditioning matrix
D such that D−

1
2 HD−

1
2 is row and column equilibrated. In Bradley & Murray (2011) an iterative

stochastic procedure is proposed for finding such matrix. However, we did not find it to work very
well in an online optimization setting, and therefore stick to the original equilibration matrix DE.

Although the original motivation for row equilibration is to prevent round-off errors, our interest is
in how well it is able to reduce the condition number. Intuitively, ill-conditioning can be a result of
matrix elements that are of completely different order. Scaling the rows to have equal norm could
therefore significantly reduce the condition number. Although we are not aware of any proofs that
row equilibration improves the condition number, there are theoretical results that motivates its use.
In Sluis (1969) it is shown that the condition number of a row equilibrated matrix is at most a factor√
N worse than the diagonal preconditioning matrix that optimally reduces the condition number.

Note that the bound grows sublinear in the dimension of the matrix, and can be quite loose for the
extremely large matrices we consider. In this paper, we provide an alternative justification using the
following upper bound on the condition number from Guggenheimer et al. (1995):

κ(H) <
2

|det H|

(
‖H‖F√
N

)N
(8)

The proof in Guggenheimer et al. (1995) provides useful insight when we expect a tight upper bound
to be tight: if all singular values, except for the smallest, are roughly equal.

We prove by Proposition 4 that row equilibration improves this upper bound by a factor

det(DE)
(
‖H‖F√
N

)N
. It is easy see that the bound is more reduced when the norms of the rows

4

(a) convex (b) non-convex

Figure 2: Histogram of the condition number reduction (lower is better) for random Hessians in a
(a) convex and b) non-convex setting. Equilibration clearly outperforms the other methods in the
non-convex case.

are more varied. Note that the proof can be easily extended to column equilibration, and row and
column equilibration. In contrast, we can not prove that the Jacobi preconditioner improves the
upper bound, which provides another justification for using the equilibration preconditioner.

A deterministic implementation to calculate the 2-norm of all matrix rows needs to access all matrix
elements. This is prohibitive for very large Hessian’s that can not even be stored. We therefore resort
to a matrix-free estimator of the equilibration matrix that only uses matrix vector multiplications of
the form (Hv)2 where the square is element-wise and vi ∼ N (0, 1)4. As shown by Bradley &
Murray (2011), this estimator is unbiased, i.e.

‖Hi,·‖2 = E[(Hv)2]. (9)

Since multiplying the Hessian by a vector can be efficiently done without ever computing the Hes-
sian, this method can be efficiently used in the context of neural networks using the R-operator
Schraudolph (2002). The R-operator computation only uses gradient-like computations and costs
about the same as two backpropagations.

5 Equilibrated learning rates are well suited to non-convex problems

In this section, we demonstrate that equilibrated learning rates are well suited to non-convex opti-
mization, particularly compared to the Jacobi preconditioner. First, the diagonal equilibration matrix
can be seen as an approximation to diagonal of the absolute Hessian. Reformulating the equilibration
matrix as

DE
ii = ‖Hi,·‖2 =

√
diag(H2)i (10)

reveals an interesting connection. Changing the order of the square root and diagonal would give us
the diagonal of |H|. In other words, the equilibration preconditioner can be thought of as the Jacobi
preconditioner of the absolute Hessian.

Recall that the inverse of the absolute Hessian |H|−1 is the only symmetric positive definite ma-
trix that reduces the condition number to 1 (the proof of which can be be found in Proposition 1
in the Appendix). It can be considered as the gold standard, if we do not take computational costs
into account. For indefinite matrices, the diagonal of the Hessian H and the diagonal of the abso-
lute Hessian |H| will be very different, and therefore the behavior of the Jacobi and equilibration
preconditioner will also be very different.

In fact, we argue that the Jacobi preconditioner can cause divergence because it underestimates
curvature. We can measure the amount of curvature in a given direction with the Raleigh quotient

R(H,v) =
vTHv
vTv

. (11)

4Any random variable vi with zero mean and unit variance can be used.

5

Algorithm 1 Equilibrated Gradient Descent
Require: Function f(θ) to minimize, learning rate ε and damping factor λ

D← 0
for i = 1→ K do

v ∼ N (0, 1)
D← D + (Hv)2

θ ← θ − ε ∇f(θ)√
D/i+λ

end for

This quotient is large when there is a lot of curvature in the direction v. The Raleigh quo-
tient can be decomposed into R(H,v) =

∑N
j λjv

>qjq>j v where λj and qj are the eigenval-
ues and eigenvectors of H. It is easy to show that each element of the Jacobi matrix is given by
DJ
ii = |R(H, I·,i)|−1 = |

∑N
j λjq

2
j,i|−1. An element DJ

ii is the inverse of the sum of the eigen-
values λj . Negative eigenvalues will reduce the total sum and make the step much larger than it
should. Specifically, imagine a diagonal element where there are large positive and negative curva-
ture eigendirections. The contributions of these directions will cancel each other and a large step
will be taken in that direction. However, the function will probably also change fast in that direction
(because of the high curvature), and the step is too large for the local quadratic approximation we
have considered.

Equilibration methods never diverge this way because they will not underestimate curvature. In
equilibration, the curvature information is given by the Raleigh quotient of the squared Hessian
DE
ii = (R(H2, I·,i))−1/2 = (

∑
j λ

2
jq

2
j,i)
−1/2. Note that all the elements are positive and so will

not cancel. Jensen’s inequality then gives us an upper bound

DE
ii ≤ |H|−1

ii . (12)

which ensures that equilibrated adaptive learning rate will in fact be more conservative than the
Jacobi preconditioner of the absolute Hessian (see Proposition 2 for proof).

This strengthens the links between equilibration and the absolute Hessian and may explain why
equilibration has been found to work well for indefinite matrices Bradley & Murray (2011). We have
verified this claim experimentally for random neural networks. The neural networks have 1 hidden
layer of a 100 sigmoid units with zero mean unit-variance Gaussian distributed inputs, weights and
biases. The output layer is a softmax with the target generated randomly. We also give results for
similarly sampled logistic regressions. We compare reductions of the condition number between
the methods. Figure 2 gives the histograms of the condition number reductions. We obtained these
graphs by sampling a hundred networks and computing the ratio of the condition number before and
after preconditioning. On the left we have the convex case, and on the right the non-convex case. We
clearly observe that the Jacobi and equilibration method are closely matched for the convex case.
However, in the non-convex case equilibration significantly outperforms the other methods. Note
that the poor performance of the Gauss-Newton diagonal only means that its success in optimization
is not due to preconditioning. As we will see in Section 8 these results extend to practical high-
dimensional problems.

6 Implementation

We propose to build a scalable algorithm for preconditioning neural networks using equilibration.
This method will estimate the same curvature information

√
diag(H2) with the unbiased estimator

described in Equation 9. It is prohibitive to compute the full expectation at each learning step.
Instead we will simply update our running average at each learning step much like RMSProp. The
pseudo-code is given in Algorithm 1. The additional costs are one product with the Hessian, which is
roughly the cost of two additional gradient calculations, and the sampling a random Gaussian vector.
In practice we greatly amortize the cost by only performing the update every 20 iterations. This
brings the cost of equilibration very close to that of regular SGD. The only added hyper-parameter
is the damping λ. We find that a good setting for that hyper-parameter is λ = 10−4 and it is robust
over the tasks we considered.

6

(a) MNIST (b) CURVES

Figure 3: Learning curves for deep auto-encoders on a) MNIST and b) CURVES comparing the
different preconditioned SGD methods.

In the interest of comparison, we will evaluate SGD preconditioned with the Jacobi preconditioner.
This will allow us to verify the claims that the equilibration preconditioner is better suited for non-
convex problems. Bekas et al. (2007) show that the diagonal of a matrix can be recovered by the
expression

diag(H) = E[v �Hv] (13)

where v are random vectors with entries ±1 and � is the element-wise product. We use this esti-
mator to precondition SGD in the same fashion as that described in Algorithm 1. The variance of
this estimator for an element i is

∑
j H

2
ji −H2

ii, while the method in Martens et al. (2012) has H2
ii.

Therefore, the optimal method depends on the situation. The computational complexity is the same
as ESGD.

7 Experimental setup

We consider the challenging optimization benchmark of training very deep neural networks. Follow-
ing Martens (2010); Sutskever et al. (2013); Vinyals & Povey (2011), we train deep auto-encoders
which have to reconstruct their input under the constraint that one layer is very low-dimensional.
The networks have up to 11 layers of sigmoidal hidden units and have on the order of a million
parameters. We use the standard network architectures described in Martens (2010) for the MNIST
and CURVES dataset. Both of these datasets have 784 input dimensions and 60,000 and 20,000
examples respectively.

We tune the hyper-parameters of the optimization methods with random search. We have sampled
the learning rate from a logarithmic scale between [0.1, 0.01] for stochastic gradient descent (SGD)
and equilibrated SGD (ESGD). The learning rate for RMSProp and the Jacobi preconditioner are
sampled from [0.001, 0.0001]. The damping factor λ used before dividing the gradient is taken
from either {10−4, 10−5, 10−6} while the exponential decay rate of RMSProp is taken from either
{0.9, 0.95}. The networks are initialized using the sparse initialization described in Martens (2010).
The minibatch size for all methods in 200. We do not make use of momentum in these experiments
in order to evaluate the strength of each preconditioning method on its own. Similarly we do not
use any regularization because we are only concerned with optimization performance. For these
reasons, we report training error in our graphs. The networks and algorithms were implemented
using Theano Bastien et al. (2012), simplifying the use of the R-operator in Jacobi and equilibrated
SGD. All experiments were run on GPU’s.

8 Results
8.1 Comparison of preconditioned SGD methods

We compare the different adaptive learning rates for training deep auto-encoders in Figure 3. We
don’t use momentum to better isolate the performance of each method. We believe this is important
because RMSProp has been found not to mix well with momentum (Tieleman & Hinton, 2012).
Thus the results presented are not state-of-the-art, but they do reach state of the art when momentum
is used.

7

(a) MNIST (b) CURVES

Figure 4: Cosine distance between the diagonals estimated by each method during the training of
a deep auto-encoder trained on a) MNIST and b) CURVES. We can see that RMSProp estimates a
quantity close to the equilibration matrix.

Our results on MNIST show that the proposed ESGD method significantly outperforms both RM-
SProp and Jacobi SGD. The difference in performance becomes especially notable after 250 epochs.
Sutskever et al. (2013) reported a performance of 2.1 of training MSE for SGD without momentum
and we can see all adaptive learning rates improve on this result, with equilibration reaching 0.86.
We observe a convergence speed that is approximately three times faster then our baseline SGD.
ESGD also performs best for CURVES, although the difference with RMSProp and Jacobi SGD is
not as significant as for MNIST. We show in the next section that the smaller gap in performance is
due to the different preconditioners behaving the same way on this dataset.

8.2 Measuring the similarity of the methods

We train deep autoencoders with RMSProp and measure every 10 epochs the equilibration matrix
DE =

√
diag(H2) and Jacobi matrix DJ =

√
diag(H)2 using 100 samples of the unbiased esti-

mators described in Equations 9, respectively. We then measure the pairwise differences between
these quantities in terms of the cosine distance cosine(u, v) = 1− u·v

‖u‖‖v‖ , which measures the angle
between two vectors and ignores their norms.

Figure 4 shows the resulting cosine distances over training on MNIST and CURVES. For the latter
dataset we observe that RMSProp remains remarkably close (around 0.05) to equilibration, while it
is significantly different from Jacobi (in the order of 0.2). The same order of difference is observed
when we compare equilibration and Jacobi, confirming the observations of Section 5 that both quan-
tities are rather different in practice. For the MNIST dataset we see that RMSProp fairly well esti-
mates

√
diag(H)2 in the beginning of training, but then quickly diverges. After 1000 epochs this

difference has exceeded the difference between Jacobi and equilibration, and RMSProp no longer
matches equilibration. Interestingly, at the same time that RMSProp starts diverging, we observe in
Figure 3 that also the performance of the optimizer drops in comparison to ESGD. This may suggests
that the success of RMSProp as a optimizer is tied to its similarity to the equilibration matrix.

9 Conclusion

We have studied diagonal preconditioners for saddle point problems i.e. indefinite matrices. We have
shown by theoretical and empirical arguments that the equilibration preconditioner is comparatively
better suited to this kind of problems than the Jacobi preconditioner. Using this insight, we have pro-
posed a novel adaptive learning rate schedule for non-convex optimization problems, called ESGD,
which empirically outperformed RMSProp on two competitive deep autoencoder benchmark. In-
terestingly, we have found that the update direction of RMSProp was in practice very similar to
the equilibrated update direction, which might provide more insight into why RMSProp has been
so successfull in training deep neural networks. More research is required to confirm these results.
However, we hope that our findings will contribute to a better understanding of SGD’s adaptive
learning rate schedule for large scale, non-convex optimization problems.

8

References
Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan, Bergstra, James, Goodfellow, Ian J., Bergeron,

Arnaud, Bouchard, Nicolas, and Bengio, Yoshua. Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

Bekas, Costas, Kokiopoulou, Effrosyni, and Saad, Yousef. An estimator for the diagonal of a matrix.
Applied numerical mathematics, 57(11):1214–1229, 2007.

Bradley, Andrew M and Murray, Walter. Matrix-free approximate equilibration. arXiv preprint
arXiv:1110.2805, 2011.

Choromanska, Anna, Henaff, Mikael, Mathieu, Michael, Arous, Grard Ben, and LeCun, Yann. The
loss surface of multilayer networks, 2014.

Datta, Biswa Nath. Numerical Linear Algebra and Applications, Second Edition. SIAM, 2nd edition,
2010. ISBN 0898716853, 9780898716856.

Dauphin, Yann, Pascanu, Razvan, Gulcehre, Caglar, Cho, Kyunghyun, Ganguli, Surya, and Bengio,
Yoshua. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In NIPS’2014, 2014.

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 2011.

Guggenheimer, Heinrich W., Edelman, Alan S., and Johnson, Charles R. A simple estimate of the
condition number of a linear system. The College Mathematics Journal, 26(1):pp. 2–5, 1995.
ISSN 07468342. URL http://www.jstor.org/stable/2687283.

LeCun, Yann, Bottou, Léon, Orr, Genevieve B., and Müller, Klaus-Robert. Efficient backprop. In
Neural Networks, Tricks of the Trade, Lecture Notes in Computer Science LNCS 1524. Springer
Verlag, 1998.

Martens, J. Deep learning via Hessian-free optimization. In ICML’2010, pp. 735–742, 2010.
Martens, James, Sutskever, Ilya, and Swersky, Kevin. Estimating the hessian by back-propagating

curvature. arXiv preprint arXiv:1206.6464, 2012.
Pascanu, Razvan and Bengio, Yoshua. Revisiting natural gradient for deep networks. In Interna-

tional Conference on Learning Representations 2014(Conference Track), April 2014.
Schaul, Tom, Antonoglou, Ioannis, and Silver, David. Unit tests for stochastic optimization. arXiv

preprint arXiv:1312.6055, 2013.
Schraudolph, Nicol N. Fast curvature matrix-vector products for second-order gradient descent.

Neural Computation, 14(7):1723–1738, 2002.
Sluis, AVD. Condition numbers and equilibration of matrices. Numerische Mathematik, 14(1):

14–23, 1969.
Sutskever, Ilya, Martens, James, Dahl, George, and Hinton, Geoffrey. On the importance of initial-

ization and momentum in deep learning. In ICML, 2013.
Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.
Vinyals, Oriol and Povey, Daniel. Krylov subspace descent for deep learning. arXiv preprint

arXiv:1111.4259, 2011.
Zeiler, Matthew D. ADADELTA: an adaptive learning rate method. Technical report, arXiv

1212.5701, 2012. URL http://arxiv.org/abs/1212.5701.

9

http://www.jstor.org/stable/2687283
http://arxiv.org/abs/1212.5701

