
Parallelizing MCMC with Random Partition Trees

Xiangyu Wang
Dept. of Statistical Science

Duke University
xw56@stat.duke.edu

Fangjian Guo
Dept. of Computer Science

Duke University
guo@cs.duke.edu

Katherine A. Heller
Dept. of Statistical Science

Duke University
kheller@stat.duke.edu

David B. Dunson
Dept. of Statistical Science

Duke University
dunson@stat.duke.edu

Abstract

The modern scale of data has brought new challenges to Bayesian inference. In
particular, conventional MCMC algorithms are computationally very expensive
for large data sets. A promising approach to solve this problem is embarrassingly
parallel MCMC (EP-MCMC), which first partitions the data into multiple subsets
and runs independent sampling algorithms on each subset. The subset posterior
draws are then aggregated via some combining rules to obtain the final approxima-
tion. Existing EP-MCMC algorithms are limited by approximation accuracy and
difficulty in resampling. In this article, we propose a new EP-MCMC algorithm
PART that solves these problems. The new algorithm applies random partition
trees to combine the subset posterior draws, which is distribution-free, easy to re-
sample from and can adapt to multiple scales. We provide theoretical justification
and extensive experiments illustrating empirical performance.

1 Introduction

Bayesian methods are popular for their success in analyzing complex data sets. However, for large
data sets, Markov Chain Monte Carlo (MCMC) algorithms, widely used in Bayesian inference, can
suffer from huge computational expense. With large data, there is increasing time per iteration, in-
creasing time to convergence, and difficulties with processing the full data on a single machine due
to memory limits. To ameliorate these concerns, various methods such as stochastic gradient Monte
Carlo [1] and sub-sampling based Monte Carlo [2] have been proposed. Among directions that have
been explored, embarrassingly parallel MCMC (EP-MCMC) seems most promising. EP-MCMC
algorithms typically divide the data into multiple subsets and run independent MCMC chains si-
multaneously on each subset. The posterior draws are then aggregated according to some rules to
produce the final approximation. This approach is clearly more efficient as now each chain involves
a much smaller data set and the sampling is communication-free. The key to a successful EP-MCMC
algorithm lies in the speed and accuracy of the combining rule.

Existing EP-MCMC algorithms can be roughly divided into three categories. The first relies on
asymptotic normality of posterior distributions. [3] propose a “Consensus Monte Carlo” algorithm,
which produces final approximation by a weighted averaging over all subset draws. This approach is
effective when the posterior distributions are close to Gaussian, but could suffer from huge bias when
skewness and multi-modes are present. The second category relies on calculating an appropriate
variant of a mean or median of the subset posterior measures [4, 5]. These approaches rely on
asymptotics (size of data increasing to infinity) to justify accuracy, and lack guarantees in finite
samples. The third category relies on the product density equation (PDE) in (1). Assuming X is the

1

observed data and θ is the parameter of interest, when the observations are iid conditioned on θ, for
any partition of X = X(1) ∪X(2) ∪ · · · ∪X(m), the following identity holds,

p(θ|X) ∝ π(θ)p(X|θ) ∝ p(θ|X(1))p(θ|X(2)) · · · p(θ|X(m)), (1)
if the prior on the full data and subsets satisfy π(θ) =

∏m
i=1 πi(θ). [6] proposes using kernel density

estimation on each subset posterior and then combining via (1). They use an independent Metropolis
sampler to resample from the combined density. [7] apply the Weierstrass transform directly to (1)
and developed two sampling algorithms based on the transformed density. These methods guarantee
the approximation density converges to the true posterior density as the number of posterior draws
increase. However, as both are kernel-based, the two methods are limited by two major drawbacks.
The first is the inefficiency of resampling. Kernel density estimators are essentially mixture distri-
butions. Assuming we have collected 10,000 posterior samples on each machine, then multiplying
just two densities already yields a mixture distribution containing 108 components, each of which
is associated with a different weight. The resampling requires the independent Metropolis sampler
to search over an exponential number of mixture components and it is likely to get stuck at one
“good” component, resulting in high rejection rates and slow mixing. The second is the sensitivity
to bandwidth choice, with one bandwidth applied to the whole space.

In this article, we propose a novel EP-MCMC algorithm termed “parallel aggregation random trees”
(PART), which solves the above two problems. The algorithm inhibits the explosion of mixture
components so that the aggregated density is easy to resample. In addition, the density estimator is
able to adapt to multiple scales and thus achieve better approximation accuracy. In Section 2, we
motivate the new methodology and present the algorithm. In Section 3, we present error bounds and
prove consistency of PART in the number of posterior draws. Experimental results are presented in
Section 4. Proofs and part of the numerical results are provided in the supplementary materials.

2 Method

Recall the PDE identity (1) in the introduction. When data set X is partitioned into m subsets
X = X(1) ∪ · · · ∪X(m), the posterior distribution of the ith subset can be written as

f (i)(θ) ∝ π(θ)1/mp(X(i)|θ), (2)
where π(θ) is the prior assigned to the full data set. Assuming observations are iid given θ, the
relationship between the full data posterior and subset posteriors is captured by

p(θ|X) ∝ π(θ)

m∏
i=1

p(X(i)|θ) ∝
m∏
i=1

f (i)(θ). (3)

Due to the flaws of applying kernel-based density estimation to (3) mentioned above, we propose
to use random partition trees or multi-scale histograms. Let FK be the collection of all Rp-
partitions formed by K disjoint rectangular blocks, where a rectangular block takes the form of

Ak
def
= (lk,1, rk,1] × (lk,2, rk,2] × · · · (lk,p, rk,p] ⊆ Rp for some lk,q < rk,q . A K-block histogram

is then defined as

f̂ (i)(θ) =

K∑
k=1

n
(i)
k

N |Ak|
1(θ ∈ Ak), (4)

where {Ak : k = 1, 2, · · · ,K} ∈ FK are the blocks and N,n(i)k are the total number of posterior
samples on the ith subset and of those inside the blockAk respectively (assuming the sameN across
subsets). We use | · | to denote the area of a block. Assuming each subset posterior is approximated
by a K-block histogram, if the partition {Ak} is restricted to be the same across all subsets, then the
aggregated density after applying (3) is still a K-block histogram (illustrated in the supplement),

p̂(θ|X) =
1

Z

m∏
i=1

f̂ (i)(θ) =
1

Z

K∑
k=1

(m∏
i=1

n
(i)
k

|Ak|

)
1(θ ∈ Ak) =

K∑
k=1

wkgk(θ), (5)

where Z =
∑K
k=1

∏m
i=1 n

(i)
k /|Ak|m−1 is the normalizing constant, wk’s are the updated weights,

and gk(θ) = unif(θ;Ak) is the block-wise distribution. Common histogram blocks across subsets
control the number of mixture components, leading to simple aggregation and resampling proce-
dures. Our PART algorithm consists of space partitioning followed by density aggregation, with
aggregation simply multiplying densities across subsets for each block and then normalizing.

2

2.1 Space Partitioning

To find good partitions, our algorithm recursively bisects (not necessarily evenly) a previous block
along a randomly selected dimension, subject to certain rules. Such partitioning is multi-scale and
related to wavelets [8]. Assume we are currently splitting the block A along the dimension q and
denote the posterior samples in A by {θ(i)j }j∈A for the ith subset. The cut point on dimension q is

determined by a partition rule φ({θ(1)j,q }, {θ
(2)
j,q }, · · · , {θ

(m)
j,q }). The resulting two blocks are subject

to further bisecting under the same procedure until one of the following stopping criteria is met —
(i) nk/N < δρ or (ii) the area of the block |Ak| becomes smaller than δ|A|. The algorithm returns a
tree with K leafs, each corresponding to a block Ak. Details are provided in Algorithm 1.

Algorithm 1 Partition tree algorithm

1: procedure BUILDTREE({θ(1)j }, {θ
(2)
j }, · · · , {θ

(m)
j }, φ(·), δρ, δa, N , L, R)

2: D ← {1, 2, · · · , p}
3: while D not empty do
4: Draw q uniformly at random from D. . Randomly choose the dimension to cut
5: θ∗q ← φ({θ(1)j,q }, {θ

(2)
j,q }, · · · , {θ

(m)
j,q }), T .n(i) ← Cardinality of {θ(i)j } for all i

6: if θ∗q − Lq > δa, Rq − θ∗q > δa and min(
∑
j 1(θ

(i)
j,q ≤ θ∗q),

∑
j 1(θ

(i)
j,q > θ∗q)) > Nδρ

for all i then
7: L′ ← L, L′q ← θ∗q , R′ ← R, R′q ← θ∗q . Update left and right boundaries

8: T .L ← BUILDTREE({θ(1)j : θ
(1)
j,q ≤ θ∗q}, · · · , {θ

(m)
j : θ

(m)
j,q ≤ θ∗q}, · · · , N, L,R′)

9: T .R ← BUILDTREE({θ(1)j : θ
(1)
j,q > θ∗q}, · · · , {θ

(m)
j : θ

(m)
j,q > θ∗q}, · · · , N, L′, R)

10: return T
11: else
12: D ← D \ {q} . Try cutting at another dimension
13: end if
14: end while
15: T .L ← NULL, T .R ← NULL, return T . Leaf node
16: end procedure

In Algorithm 1, δ|A| becomes the minimum edge length of a block δa (possibly different across di-
mensions). Quantities L,R ∈ Rp are the left and right boundaries of the samples respectively, which
take the sample minimum/maximum when the support is unbounded. We consider two choices for
the partition rule φ(·) — maximum (empirical) likelihood partition (ML) and median/KD-tree par-
tition (KD).

Maximum Likelihood Partition (ML) ML-partition searches for partitions by greedily maximiz-
ing the empirical log likelihood at each iteration. For m = 1 we have

θ∗ = φML({θj,q, j = 1, · · · , n}) = arg max
n1+n2=n,A1∪A2=A

(
n1

n|A1|

)n1
(

n2
n|A2|

)n2

, (6)

where n1 and n2 are counts of posterior samples inA1 andA2, respectively. The solution to (6) falls
inside the set {θj}. Thus, a simple linear search after sorting samples suffices (by book-keeping the
ordering, sorting the whole block once is enough for the entire procedure). For m > 1, we have

φq,ML(·) = arg max
θ∗∈∪m

i=1{θ
(i)
j }

m∏
i=1

(
n
(i)
1

n(i)|A1|

)n(i)
1
(

n
(i)
2

n(i)|A2|

)n(i)
2

, (7)

similarly solved by a linear search. This is dominated by sorting and takes O(n log n) time.

Median/KD-Tree Partition (KD) Median/KD-tree partition cuts at the empirical median of pos-
terior samples. When there are multiple subsets, the median is taken over pooled samples to force
{Ak} to be the same across subsets. Searching for median takes O(n) time [9], which is faster than
ML-partition especially when the number of posterior draws is large. The same partitioning strategy
is adopted by KD-trees [10].

3

2.2 Density Aggregation

Given a common partition, Algorithm 2 aggregates all subsets in one stage. However, assuming a
single “good” partition for all subsets is overly restrictive when m is large. Hence, we also consider
pairwise aggregation [6, 7], which recursively groups subsets into pairs, combines each pair with
Algorithm 2, and repeats until one final set is obtained. Run time of PART is dominated by space
partitioning (BUILDTREE), with normalization and resampling very fast.

Algorithm 2 Density aggregation algorithm (drawing N ′ samples from the aggregated posterior)

1: procedure ONESTAGEAGGREGATE({θ(1)j }, {θ
(2)
j }, · · · , {θ

(m)
j }, φ(·), δρ, δa, N , N ′, L, R)

2: T ← BUILDTREE({θ(1)j }, {θ
(2)
j }, · · · , {θ

(m)
j }, φ(·), δρ, δa, N , L, R), Z ← 0

3: ({Ak}, {n(i)k })← TRAVERSELEAF(T)
4: for k = 1, 2, · · · ,K do
5: w̃k ←

∏m
i=1 n

(i)
k /|Ak|m−1, Z ← Z + w̃k . Multiply inside each block

6: end for
7: wk ← w̃k/Z for all k . Normalize
8: for t = 1, 2, · · · , N ′ do
9: Draw k with weights {wk} and then draw θt ∼ gk(θ)

10: end for
11: return {θ1, θ2, · · · , θN ′}
12: end procedure

2.3 Variance Reduction and Smoothing

Random Tree Ensemble Inspired by random forests [11, 12], the full posterior is estimated by
averaging T independent trees output by Algorithm 1. Smoothing and averaging can reduce vari-
ance and yield better approximation accuracy. The trees can be built in parallel and resampling in
Algorithm 2 only additionally requires picking a tree uniformly at random.
Local Gaussian Smoothing As another approach to increase smoothness, the blockwise uniform
distribution in (5) can be replaced by a Gaussian distribution gk = N(θ;µk,Σk), with mean and
covariance estimated “locally” by samples within the block. A multiplied Gaussian approximation
is used: Σk = (

∑m
i=1 Σ̂

(i)−1
k)−1, µk = Σk(

∑m
i=1 Σ̂

(i)−1
k µ̂

(i)
k), where Σ̂

(i)
k and µ̂(i)

k are estimated
with the ith subset. We apply both random tree ensembles and local Gaussian smoothing in all
applications of PART in this article unless explicitly stated otherwise.

3 Theory

In this section, we provide consistency theory (in the number of posterior samples) for histograms
and the aggregated density. We do not consider the variance reduction and smoothing modifications
in these developments for simplicity in exposition, but extensions are possible. Section 3.1 pro-
vides error bounds on ML and KD-tree partitioning-based histogram density estimators constructed
from N independent samples from a single joint posterior; modified bounds can be obtained for
MCMC samples incorporating the mixing rate, but will not be considered here. Section 3.2 then
provides corresponding error bounds for our PART-aggregrated density estimators in the one-stage
and pairwise cases. Detailed proofs are provided in the supplementary materials.

Let f(θ) be a p-dimensional posterior density function. Assume f is supported on a measurable
set Ω ⊆ Rp. Since one can always transform Ω to a bounded region by scaling, we simply assume
Ω = [0, 1]p as in [8, 13] without loss of generality. We also assume that f ∈ C1(Ω).

3.1 Space partitioning

Maximum likelihood partition (ML) For a given K, ML partition solves the following problem:

f̂ML = arg max
1

N

K∑
k=1

nk log

(
nk

N |Ak|

)
, s.t. nk/N ≥ c0ρ, |Ak| ≥ ρ/D, (8)

4

for some c0 and ρ, where D = ‖f‖∞ <∞. We have the following result.

Theorem 1. Choose ρ = 1/K1+1/(2p). For any δ > 0, if the sample size satisfies that N >
2(1 − c0)−2K1+1/(2p) log(2K/δ), then with probability at least 1 − δ, the optimal solution to (8)
satisfies that

DKL(f‖f̂ML) ≤ (C1 + 2 logK)K−
1
2p + C2 max

{
logD, 2 logK

}√K

N
log

(
3eN

K

)
log

(
8

δ

)
,

where C1 = logD + 4pLD with L = ‖f ′‖∞ and C2 = 48
√
p+ 1.

When multiple densities f (1)(θ), · · · , f (m)(θ) are presented, our goal of imposing the same partition
on all functions requires solving a different problem,

(f̂
(i)
ML)mi=1 = arg max

m∑
i=1

1

Ni

K∑
k=1

n
(i)
k log

(
n
(i)
k

Ni|Ak|

)
, s.t. n(i)k /Ni ≥ c0ρ, |Ak| ≥ ρ/D, (9)

where Ni is the number of posterior samples for function f (i). A similar result as Theorem 1 for (9)
is provided in the supplementary materials.

Median partition/KD-tree (KD) The KD-tree f̂KD cuts at the empirical median for different
dimensions. We have the following result.

Theorem 2. For any ε > 0, define rε = log2

(
1 + 1

2+3L/ε

)
. For any δ > 0, if N >

32e2(logK)2K log(2K/δ), then with probability at least 1− δ, we have

‖f̂KD − fKD‖1 ≤ ε+ pLK−rε/p + 4e logK

√
2K

N
log

(
2K

δ

)
.

If f(θ) is further lower bounded by some constant b0 > 0, we can then obtain an upper bound on

the KL-divergence. Define rb0 = log2

(
1 + 1

2+3L/b0

)
and we have

DKL(f‖f̂KD) ≤ pLD

b0
K−rb0/p + 8e logK

√
2K

N
log

(
2K

δ

)
.

When there are multiple functions and the median partition is performed on pooled data, the partition
might not happen at the empirical median on each subset. However, as long as the partition quantiles
are upper and lower bounded by α and 1−α for some α ∈ [1/2, 1), we can establish results similar
to Theorem 2. The result is provided in the supplementary materials.

3.2 Posterior aggregation

The previous section provides estimation error bounds on individual posterior densities, through
which we can bound the distance between the true posterior conditional on the full data set and the
aggregated density via (3). Assume we have m density functions {f (i), i = 1, 2, · · · ,m} and intend
to approximate their aggregated density fI =

∏
i∈I f

(i)/
∫ ∏

i∈I f
(i), where I = {1, 2, · · · ,m}.

Notice that for any I ′ ⊆ I , fI′ = p(θ|
⋃
i∈I′ X

(i)). Let D = maxI′⊆I ‖fI′‖∞, i.e., D is an upper
bound on all posterior densities formed by a subset of X . Also define ZI′ =

∫ ∏
i∈I′ f

(i). These
quantities depend only on the model and the observed data (not posterior samples). We denote f̂ML

and f̂KD by f̂ as the following results apply similarly to both methods.

The “one-stage” aggregation (Algorithm 2) first obtains an approximation for each f (i) (via either
ML-partition or KD-partition) and then computes f̂I =

∏
i∈I f̂

(i)/
∫ ∏

i∈I f̂
(i).

5

Theorem 3 (One-stage aggregation). Denote the average total variation distance between f (i) and
f̂ (i) by ε. Assume the conditions in Theorem 1 and 2 and for ML-partition

√
N ≥ 32c−10

√
2(p+ 1)K

3
2+

1
2p

√
log

(
3eN

K

)
log

(
8

δ

)
and for KD-partition

N > 128e2K(logK)2 log(K/δ).

Then with high probability the total variation distance between fI and f̂I is bounded by ‖fI−f̂I‖1 ≤
2
ZI
m(2D)m−1ε, where ZI is a constant that does not depend on the posterior samples.

The approximation error of Algorithm 2 increases dramatically with the number of subsets. To
ameliorate this, we introduce the pairwise aggregation strategy in Section 2, for which we have the
following result.
Theorem 4 (Pairwise aggregation). Denote the average total variation distance between f (i) and
f̂ (i) by ε. Assume the conditions in Theorem 3. Then with high probability the total varia-
tion distance between fI and f̂I is bounded by ‖fI − f̂I‖1 ≤ (4C0D)log2m+1ε, where C0 =

maxI′′⊂I′⊆I
ZI′′ZI′\I′′

ZI′
is a constant that does not depend on posterior samples.

4 Experiments

In this section, we evaluate the empirical performance of PART1 and compare the two algorithms
PART-KD and PART-ML to the following posterior aggregation algorithms.

1. Simple averaging (average): each aggregated sample is an arithmetic average of M sam-
ples coming from M subsets.

2. Weighted averaging (weighted): also called Consensus Monte Carlo algorithm [3],
where each aggregated sample is a weighted average of M samples. The weights are
optimally chosen for a Gaussian posterior.

3. Weierstrass rejection sampler (Weierstrass): subset posterior samples are passed through
a rejection sampler based on the Weierstrass transform to produce the aggregated sam-
ples [7]. We use its R package2 for experiments.

4. Parametric density product (parametric): aggregated samples are drawn from a multi-
variate Gaussian, which is a product of Laplacian approximations to subset posteriors [6].

5. Nonparametric density product (nonparametric): aggregated posterior is approximated
by a product of kernel density estimates of subset posteriors [6]. Samples are drawn with
an independent Metropolis sampler.

6. Semiparametric density product (semiparametric): similar to the nonparametric, but
with subset posteriors estimated semiparametrically [6, 14].

All experiments except the two toy examples use adaptive MCMC [15, 16] 3 for posterior sampling.
For PART-KD/ML, one-stage aggregation (Algorithm 2) is used only for the toy examples (results
from pairwise aggregation are provided in the supplement). For other experiments, pairwise aggre-
gation is used, which draws 50,000 samples for intermediate stages and halves δρ after each stage
to refine the resolution (The value of δρ listed below is for the final stage). The random ensemble of
PART consists of 40 trees.

4.1 Two Toy Examples

The two toy examples highlight the performance of our methods in terms of (i) recovering multiple
modes and (ii) correctly locating posterior mass when subset posteriors are heterogeneous. The
PART-KD/PART-ML results are obtained from Algorithm 2 without local Gaussian smoothing.

1MATLAB implementation available from https://github.com/richardkwo/
random-tree-parallel-MCMC

2https://github.com/wwrechard/weierstrass
3http://helios.fmi.fi/˜lainema/mcmc/

6

https://github.com/richardkwo/random-tree-parallel-MCMC
https://github.com/richardkwo/random-tree-parallel-MCMC
https://github.com/wwrechard/weierstrass
http://helios.fmi.fi/~lainema/mcmc/

Bimodal Example Figure 1 shows an example consisting of m = 10 subsets. Each subset
consists of 10,000 samples drawn from a mixture of two univariate normals 0.27N(µi,1, σ

2
i,1) +

0.73N(µi,2, σ
2
i,2), with the means and standard deviations slightly different across subsets, given by

µi,1 = −5 + εi,1, µi,2 = 5 + εi,2 and σi,1 = 1 + |δi,1|, σi,2 = 4 + |δi,2|, where εi,l ∼ N(0, 0.5),
δi,l ∼ N(0, 0.1) independently for m = 1, · · · , 10 and l = 1, 2. The resulting true combined pos-
terior (red solid) consists of two modes with different scales. In Figure 1, the left panel shows the
subset posteriors (dashed) and the true posterior; the right panel compares the results with various
methods to the truth. A few are omitted in the graph: average and weighted average overlap with
parametric, and Weierstrass overlaps with PART-KD/PART-ML.

x
-10 -5 0 5 10 15

de
ns

ity

0

0.2

0.4

0.6

0.8

1
True density
Subset densities

x

-10 -5 0 5 10 15
0

2

4

6

8

1
True density
PART-KD
PART-ML
Parametric
Nonparametric
Semiparametric

Figure 1: Bimodal posterior combined from 10 subsets. Left: the true posterior and subset posteriors
(dashed). Right: aggregated posterior output by various methods compared to the truth. Results are
based on 10,000 aggregated samples.

Rare Bernoulli Example We consider N = 10, 000 Bernoulli trials xi
iid∼ Ber(θ) split into m =

15 subsets. The parameter θ is chosen to be 2m/N so that on average each subset only contains
2 successes. By random partitioning, the subset posteriors are rather heterogeneous as plotted in
dashed lines in the left panel of Figure 2. The prior is set as π(θ) = Beta(θ; 2, 2). The right
panel of Figure 2 compares the results of various methods. PART-KD, PART-ML and Weierstrass
capture the true posterior shape, while parametric, average and weighted average are all biased. The
nonparametric and semiparametric methods produce flat densities near zero (not visible in Figure 2
due to the scale).

3

0 0.005 0.01 0.015 0.02

de
ns

ity

0

200

400

600

800
True posterior
Subset posteriors PART-KD

PART-ML

Figure 2: The posterior for the probability θ of a rare event. Left: the full posterior (solid) and
m = 15 subset posteriors (dashed). Right: aggregated posterior output by various methods. All
results are based on 20,000 aggregated samples.

4.2 Bayesian Logistic Regression

Synthetic dataset The dataset {(xi, yi)}Ni=1 consists of N = 50, 000 observations in p = 50
dimensions. All features xi ∈ Rp−1 are drawn from Np−1(0,Σ) with p = 50 and Σk,l = 0.9|k−l|.
The model intercept is set to −3 and the other coefficient θ∗j ’s are drawn randomly from N(0, 52).
Conditional on xi, yi ∈ {0, 1} follows p(yi = 1) = 1/(1 + exp(−θ∗T [1,xi])). The dataset is
randomly split into m = 40 subsets. For both full chain and subset chains, we run adaptive MCMC
for 200,000 iterations after 100,000 burn-in. Thinning by 4 results in T = 50, 000 samples.

The samples from the full chain (denoted as {θj}Tj=1) are treated as the ground truth. To compare the
accuracy of different methods, we resample T points {θ̂j} from each aggregated posterior and then

7

compare them using the following metrics: (1) RMSE of posterior mean ‖ 1
pT (
∑
j θ̂j −

∑
j θj)‖2

(2) approximate KL divergence DKL(p(θ)‖p̂(θ)) and DKL(p̂(θ)‖p(θ)), where p̂ and p are both
approximated by multivariate Gaussians (3) the posterior concentration ratio, defined as r =√∑

j ‖θ̂j − θ∗‖22/
∑
j ‖θj − θ∗‖22, which measures how posterior spreads out around the true

value (with r = 1 being ideal). The result is provided in Table 1. Figure 4 shows the DKL(p‖p̂)
versus the length of subset chains supplied to the aggregation algorithm. The results of PART are
obtained with δρ = 0.001, δa = 0.0001 and 40 trees. Figure 3 showcases the aggregated posterior
for two parameters in terms of joint and marginal distributions.

Method RMSE DKL(p‖p̂) DKL(p̂‖p) r

PART (KD) 0.587 3.95× 102 6.45× 102 3.94
PART (ML) 1.399 8.05× 101 5.47× 102 9.17
average 29.93 2.53× 103 5.41× 104 184.62
weighted 38.28 2.60× 104 2.53× 105 236.15
Weierstrass 6.47 7.20× 102 2.62× 103 39.96
parametric 10.07 2.46× 103 6.12× 103 62.13
nonparametric 25.59 3.40× 104 3.95× 104 157.86
semiparametric 25.45 2.06× 104 3.90× 104 156.97

Table 1: Accuracy of posterior aggregation on logistic regression. Figure 3: Posterior of θ1 and θ17.

Real datasets We also run experiments on two real datasets: (1) the Covertype dataset4 [17] con-
sists of 581,012 observations in 54 dimensions, and the task is to predict the type of forest cover
with cartographic measurements; (2) the MiniBooNE dataset5 [18, 19] consists of 130,065 observa-
tions in 50 dimensions, whose task is to distinguish electron neutrinos from muon neutrinos with
experimental data. For both datasets, we reserve 1/5 of the data as the test set. The training set
is randomly split into m = 50 and m = 25 subsets respectively for covertype and MiniBooNE.
Figure 5 shows the prediction accuracy versus total runtime (parallel subset MCMC + aggregation
time) for different methods. For each MCMC chain, the first 20% iterations are discarded before ag-
gregation as burn-in. The aggregated chain is required to be of the same length as the subset chains.
As a reference, we also plot the result for the full chain and lasso [20] run on the full training set.

PART-KD

PART-ML

Figure 4: Approximate KL diver-
gence between the full chain and
the combined posterior versus the
length of subset chains.

total time (sec)

0 200 400 600 800

p
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

0.6

0.65

0.7

0.75

0.8

Covertype

PART-KD

PART-ML

Parametric
Nonparametric

Weierstrass
Average

Weighted

Full chain Lasso

total time (sec)

0 50 100 150 200 250 300
0.2

0.4

0.6

0.8

1

MiniBooNE

Figure 5: Prediction accuracy versus total runtime (running
chain + aggregation) on Covertype and MiniBooNE datasets
(semiparametric is not compared due to its long running time).
Plots against the length of chain are provided in the supplement.

5 Conclusion

In this article, we propose a new embarrassingly-parallel MCMC algorithm PART that can efficiently
draw posterior samples for large data sets. PART is simple to implement, efficient in subset com-
bining and has theoretical guarantees. Compared to existing EP-MCMC algorithms, PART has sub-
stantially improved performance. Possible future directions include (1) exploring other multi-scale
density estimators which share similar properties as partition trees but with a better approximation
accuracy (2) developing a tuning procedure for choosing good δρ and δa, which are essential to the
performance of PART.

4http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
5https://archive.ics.uci.edu/ml/machine-learning-databases/00199

8

