
A Proof of Main Results for Matrix Sensing (Cont’d)

We continue with the proof of Theorem 3.4 for the alternating gradient and gradient descent algo-
rithms.

A.1 Proof of Theorem 3.4 (Alternating Gradient Descent)

Proof. Throughout the proof for alternating gradient descent, we define a sufficiently large constant
⇠. Moreover, we assume that at the t-th iteration, there exists a matrix factorization of M⇤
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The first lemma is parallel to Lemma 4.3 for alternating exact minimization.
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Then we have
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The proof of Lemma A.1 is provided in Appendix C.1. Lemma A.1 illustrates the projected oracle
divergence diminishes with the estimation error of U

(t)
, when U

(t)
and V (t) are sufficiently close to

U
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and V ⇤(t).
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Then we have
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The proof of Lemma A.2 is in Appendix C.2. Lemma A.2 characterizes the progress of a gradient
descent step with a pre-specified fixed step size. A more practical option is adaptively selecting ⌘ using
the backtracking line search procedure, and similar results can be guaranteed. See [20] for details.
The following lemma characterizes the effect of the renormalization step using QR decomposition.
Lemma A.3. Suppose that V (t+0.5) satisfies
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Then there exists a factorization of M⇤
= U⇤(t+1)V
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such that V
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2 Rn⇥k is an orthonor-
mal matrix, and
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The proof of Lemma A.3 is provided in Appendix C.3. The next lemma quantifies the accuracy of the
initial solutions.
Lemma A.4. Suppose that �
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Then we have
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The proof of Lemma A.4 is in Appendix C.4. Lemma A.4 indicates that the initial solutions U
(0)

and
V (0) attain sufficiently small estimation errors.

Combining Lemmas A.1, A.2, 4.5, , we obtain the following corollary for a complete iteration of
updating V .
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We then have
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The proof of Corollary A.5 is provided in Appendix C.5. Since the alternating gradient descent
algorithm updates U and V in a symmetric manner, we can establish similar results for a complete
iteration of updating U in the next corollary.
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We then have
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The proof of Corollary A.6 directly follows Appendix C.5, and is therefore omitted..

Now we proceed with the proof of Theorem 3.4 for alternating gradient descent. Recall that Lemma
A.4 ensures that (A.5) of Corollary A.5 holds for U

(0)

and V (0). Then Corollary A.5 ensures that
(A.9) of Corollary A.6 holds for U (0) and V
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. By induction, Corollaries 4.7 and 4.8 can be applied
recursively for all T iterations. For notational simplicity, we write (A.6)-(A.12) as
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where (i) comes from (A.17), (ii) comes from (A.18), (iii) comes from (A.16), and (iv) comes from
(A.14). Similarly, we can obtain
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Then combining (A.13), (A.14) with (A.19)–(A.22), we obtain
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Then we can choose ⇠ as a sufficiently large constant such that � < 1. By recursively applying (A.23)
for t = 0, ..., T , we obtain
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By Corollary A.5, we obtain
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where (i) and (ii) come from Lemma A.4, and (iii) comes from the definition of ⇠ and �
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iterations such that
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We then follow similar lines to (4.9) in Appendix 4.1, and show kM (T )
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 ✏, which completes
the proof.

A.2 Proof of Theorem 3.4 (Gradient Descent)

Proof. The convergence analysis of the gradient descent algorithm is similar to that of the alternating
gradient descent. The only difference is that for updating U , the gradient descent algorithm employs
V = V

(t)
instead of V = V

(t+1)

to calculate the gradient at U = U (t). Then everything else directly
follows Appendix A.1, and is therefore omitted..

B Lemmas for Theorem 3.4 (Alternating Exact Minimization)

B.1 Proof of Lemma 4.1
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The proof of Lemma B.1 is provided in Appendix B.7. Note that Lemma B.1 is also applicable G(t),
since G(t) shares the same structure with S(t). Given a fixed U , F(U, V ) is a quadratic function of
V . Therefore we have
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Then we can verify that r2

V F (U, V ) also shares the same structure with S(t). Thus applying Lemma
B.1 to the above two inequalities, we complete the proof.
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B.2 Proof of Lemma 4.3

Proof. For notational convenience, we omit the index t in U
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The proof of Lemma B.2 is provided in Appendix B.8. Note that Lemma B.2 is also applicable to
G(t)K(t)

� J (t), since G(t) and S(t) share the same structure.
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For notational simplicity, we define v = vec(V ). Since V (t+0.5) minimizes F(U
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= (S(t)
)

�1J (t)v⇤. (B.1)
Meanwhile, we have

vec(rV F(U
⇤
, V (t+0.5)

)) = G(t)v(t+0.5)
�G(t)v⇤

= G(t)
(S(t)

)

�1J (t)v⇤ �G(t)v⇤ = G(t)
�

(S(t)
)

�1J (t)
� Ink

�

v⇤, (B.2)
where the second equality come from (B.1). By triangle inequality, (B.2) further implies

k((S(t)
)

�1J (t)
� Ink)v

⇤
k

2

 k(K(t)
� Ink)v

⇤
k

2

+ k(S(t)
)

�1

(J (t)
� S(t)K(t)

)v⇤k
2

 k(U
(t)>

U
⇤
� Ik)V

⇤
k

F

+ k(S(t)
)

�1

k

2

k(J (t)
� S(t)K(t)

)v⇤k
2

 kU
(t)>

U
⇤
� IkkFkV

⇤
k

2

+ k(S(t)
)

�1

k

2

k(J (t)
� S(t)K(t)

)v⇤k
2

, (B.3)
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where the second inequality comes from Lemma B.3. Plugging (B.3) into (B.2), we have
kvec(rV F(U

⇤
, V (t+0.5)

))k

2

 kG(t)
k

2

k((S(t)
)

�1J (t)
� Ink)v

⇤
k

2

(i)

(1 + �
2k)(�1

kU
(t)>

U
⇤
� Ikk2 + k(S

(t)
)

�1

k

2

kS(t)K(t)
� J (t)

k

2

�
1

p

k)

(ii)

 (1 + �
2k)�1

⇣

k(U
(t)
� U

⇤
)

>
(U

(t)
� U

⇤
)k

F

+

p

2�
2kk

1� �
2k
kU

(t)
� U

⇤
k

F

⌘

(iii)

 (1 + �
2k)�1

⇣

kU
(t)
� U

⇤
k

2

F

+

p

2�
2kk

1� �
2k
kU

(t)
� U

⇤
k

F

⌘

(iv)



(1� �
2k)�k

2⇠
kU

⇤
� U

(t)
k

F

,

where (i) comes from Lemma B.1 and kV ⇤
k

2

= kM⇤
k = �

1

and kV ⇤
k

F

= kv⇤k
2

 �
1

p

k, (ii)
comes from Lemmas B.1 and B.2, (iii) from Cauchy-Schwartz inequality, and (iv) comes from (4.1).
By Cauchy-Schwartz inequality again, we obtain

D(V (t+0.5), V (t+0.5), U
(t)
)  krV F(U

⇤
, V (t+0.5)

)k

F



(1� �
2k)�k

2⇠
kU

⇤
� U

(t)
k

F

,

which completes the proof.

B.3 Proof of Lemma 4.4

Proof. For notational convenience, we omit the index t in U
⇤(t)

and V ⇤(t), and denote them by U
⇤

and V ⇤ respectively. By the strong convexity of F(U
⇤
, ·), we have

F(U
⇤
, V ⇤

)�

1� �
2k

2

kV (t+0.5)
� V ⇤

k

2

F

� F(U
⇤
, V (t+0.5)

) + hrV F(U
⇤
, V (t+0.5)

), V ⇤
� V (t+0.5)

i. (B.4)

By the strong convexity of F(U
⇤
, ·) again, we have

F(U
⇤
, V (t+0.5)

) � F(U
⇤
, V ⇤

) + hrV F(U
⇤
, V ⇤

), V (t+0.5)
� V (t+0.5)

)i+

1� �
2k

2

kV (t+0.5)
� V ⇤

k

2

F

� F(U
⇤
, V ⇤

) +

1� �
2k

2

kV (t+0.5)
� V ⇤

k

2

F

, (B.5)

where the last inequality comes from the optimality condition of V ⇤
= argminV F(U

⇤
, V ), i.e.

hrV F(U
⇤
, V ⇤

), V (t+0.5)
� V ⇤

i � 0.

Meanwhile, since V (t+0.5) minimizes F(U
(t)
, ·), we have the optimality condition

hrV F(U
(t)
, V (t+0.5)

), V ⇤
� V (t+0.5)

i � 0,

which further implies
hrV F(U

⇤
, V (t+0.5)

), V ⇤
� V (t+0.5)

i

� hrV F(U
⇤
, V (t+0.5)

)�rV F(U
(t)
, V (t+0.5)

), V ⇤
� V (t+0.5)

i. (B.6)
Combining (B.4) and (B.5) with (B.6), we obtain

kV (t+0.5)
� V ⇤

k

2



1

1� �
2k

D(V (t+0.5), V (t+0.5), U
(t)
),

which completes the proof.

B.4 Proof of Lemma 4.5

Proof. Before we proceed with the proof, we first introduce the following Lemma

Lemma B.4. Suppose that A⇤
2 Rn⇥k is a rank k matrix. Let E 2 Rn⇥k satisfy kEk

2

kA⇤†
k

2

< 1.
Then given a QR decomposition (A⇤

+ E) = QR, there exists a factorization of A⇤
= Q⇤O⇤ such

that Q⇤
2 Rn⇥k is an orthonormal matrix, and satisfies

kQ�Q⇤
k

F



p

2kA⇤†
k

2

kEk
F

1� kEk
2

kA⇤†
k

2

.

The proof of Lemma B.4 is provided in [26], therefore omitted.

15



We then proceed with the main proof. We consider A⇤
= V ⇤(t) and E = V (t+0.5)

�V ⇤(t) in Lemma
B.4 respectively. We can verify that

kV (t+0.5)
� V ⇤(t)

k

2

kV ⇤(t)†
k

2



kV (t+0.5)
� V ⇤(t)

k

F

�k


1

4

.

Then there exists a V ⇤(t)
= V

⇤(t+1)

O⇤ such that V
⇤(t+1)

is an orthonormal matrix, and satisfies

kV
⇤(t+0.5)

� V
⇤(t+1)

k

F

 2kV ⇤(t)†
k

2

kV (t+0.5)
� V ⇤(t)

k

F



2

�k
kV (t+0.5)

� V ⇤(t)
k

F

.

Thus we conclude the proof.

B.5 Proof of Lemma 4.6

Proof. We first introduce the following lemma.

Lemma B.5. Let b = A(M⇤
) + ", M is a rank-k matrix, and A is a linear measurement operator

that satisfies 2k-RIP with constant �
2k < 1/3. Let X(t+1) be the (t+ 1)-th step iterate of SVP, then

we have
kA(X(t+1)

)� bk2
2

 kA(M⇤
)� bk2

2

+ 2�
2kkA(X(t)

)� bk2
2

The proof of Lemma B.5 is provided in [12], therefore omitted. We then explain the implication of
Lemma B.5. [12] show that X(t+1) is obtained by taking a projected gradient iteration over X(t)

using step size 1

1+�2k
. Then taking X(t)

= 0, we have

X(t+1)

=

U
(0)

⌃

(0)

V
(0)>

1 + �
2k

.

Suppose that M⇤ has a compact singular value decomposition M⇤
=

eU⇤
eD⇤

eV ⇤>. Then Lemma B.5
implies

�

�

�

�

A

✓

U
(0)

⌃

(0)

V
(0)>

1 + �
2k

�

eU⇤
eD⇤

eV ⇤>
◆

�

�

�

�

2

2

 4�
2kkA(

eU⇤
eD⇤

eV ⇤>
)k

2

2

. (B.7)

Since A(·) satisfies 2k-RIP, (B.7) further implies
�

�

�

�

U
(0)

⌃

(0)

V
(0)>

1 + �
2k

�

eU⇤
eD⇤

eV ⇤>
�

�

�

�

2

F

 4�
2k(1 + 3�

2k)k
eD⇤
k

2

F

. (B.8)

We then project each column of eU⇤
eD⇤

eV ⇤> into the subspace spanned by {U
(0)

⇤i }
k
i=1

, and obtain

kU
(0)

U
(0)>

eU⇤
eD⇤

eV ⇤>
�

eU⇤
eD⇤

eV ⇤>
k

2

F

 6�
2kk

eD⇤
k

2

F

.

Let U
(0)

? denote the orthonormal complement of U
(0)

, i.e.,

U
(0)>
? U

(0)

? = In�k and U
(0)>
? U

(0)

= 0.

Then we have
6�

2kk�
2

1

�2

k

� k(U
(0)

U
(0)>
� In)eU

⇤
k

2

F

= kU
(0)>
?

eU⇤
k

2

F

.

Thus there exists a unitary matrix O 2 Rk⇥k such that OO>
= Ik and

kU
(0)

�

eU⇤Ok
F



p

2kU
(0)>
?

eU⇤
k

F

 2

p

3�
2kk ·

�
1

�k
.

We define U
⇤(0)

=

eU⇤O. Then combining the above inequality with (4.3), we have

kU
(0)

� U
⇤(0)
k

F



(1� �
2k)�k

4⇠(1 + �
2k)�1

.

Moreover, we define V ⇤(0)
=

eV ⇤
eD⇤O. Then we have U

⇤(0)
V ⇤(0)>

=

eU⇤OO>
eD⇤

eV ⇤
= M⇤.

16



B.6 Proof of Corollary 4.7

Proof. Since (4.4) ensures that (4.1) of Lemma 4.3 holds, then we have

kV (t+0.5)
� V ⇤(t)

k

F



1

1� �
2k

D(V (t+0.5), V (t+0.5), U
(t)
)

(i)



1

1� �
2k

·

(1� �
2k)�k

2⇠
kU

(t)
� U

⇤(t)
k

F

(ii)



1

1� �
2k

·

(1� �
2k)�k

2⇠
·

(1� �
2k)�k

4⇠(1 + �
2k)�1



✓

(1� �
2k)�k

8⇠2(1 + �
2k)�1

◆

�k

(iii)



�k

4

, (B.9)

where (i) comes from Lemma 4.4, (ii) comes from (4.4), and (iii) comes from the definition of ⇠ and
�k  �

1

. Since (B.9) ensures that (4.2) of Lemma 4.5 holds for V (t+0.5), we obtain

kV
(t+1)

� V
⇤(t+1)

k

F



2

�k
kV (t+0.5)

� V ⇤(t)
k

F

(i)



1

⇠
kU

(t)
� U

⇤(t)
k

F

(ii)



(1� �
2k)�k

4⇠(1 + �
2k)�1

,

(B.10)
where (i) comes from (B.9), and (ii) comes from the definition of ⇠ and (4.4).

B.7 Proof of Lemma B.1

Proof. We consider an arbitrary W 2 Rn⇥k such that kWk
F

= 1. Let w = vec(W ). Then have

w>Bw =

k
X

p,q=1

W>
⇤pS

(t)
pq W⇤p =

k
X

p,q=1

W>
⇤p

✓ d
X

i=1

AiU
(t)
⇤pU

(t)>
⇤q A>

i

◆

W⇤q

=

d
X

i=1

✓ k
X

p=1

W>
⇤pAiU

(t)
⇤p

◆✓ k
X

q=1

W>
⇤qAiU

(t)
⇤q

◆

=

n
X

i=1

tr(W>AiU
(t)
)

2.

Since A(·) satisfies 2k-RIP, then we have
d
X

i=1

tr(W>AiU
(t)
)

2

� (1� �
2k)kU

(t)
W>
k

F

= (1� �
2k)kWkF = 1� �

2k,

d
X

i=1

tr(W>AiU
(t)
)

2

 (1 + �
2k)kU

(t)
W>
k

F

= (1 + �
2k)kWkF = 1 + �

2k.

Since W is arbitrary, then we have
�
min

(S(t)
) = min

kwk2=1

w>S(t)w � 1� �
2k and �

max

(S(t)
) = max

kwk2=1

w>S(t)w  1 + �
2k.

Thus we conclude the proof.

B.8 Proof of Lemma B.2

Proof. For notational convenience, we omit the index t in U
⇤(t)

and V ⇤(t), and denote them by U
⇤

and V ⇤ respectively. We first introduce the following lemma.

Lemma B.6. Suppose A(·) satisfies 2k-RIP. For any U, U 0
2 Rm⇥k and V, V 0

2 Rn⇥k, we have
|hA(UV >

),A(U 0V 0>
)i � hU>U 0, V >V 0

i|  3�
2kkUV >

k

F

· kU 0V 0>
k

F

.

The proof of Lemma B.6 is provided in [14], and hence omitted.

We now proceed with the proof. We consider arbitrary W,Z 2 Rn⇥k such that kWk
F

= kZk
F

= 1.
Let w = vec(W ) and z = vec(Z). Then have

w>
(S(t)K(t)

� J (t)
)z =

k
X

p,q=1

W>
⇤p[S

(t)K(t)
� J (t)

]pqZ⇤q.
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We consider a decomposition

[S(t)K(t)
� J (t)

]pq =

k
X

`=1

S
(t)
p` K

(t)
`q � J (t)

pq =

k
X

`=1

S
(t)
p` U

(t)>
⇤` U

⇤
⇤qIn � J (t)

pq

=

k
X

`=1

U
⇤>
⇤q U

(t)
⇤`

d
X

i=1

AiU
(t)
⇤pU

(t)
⇤` A

>
i � J (t)

pq =

k
X

`=1

AiU
⇤>
⇤q U

(t)
⇤`

d
X

i=1

U
(t)
⇤pU

(t)
⇤` A

>
i �

d
X

i=1

AiU
(t)
⇤pU

⇤
⇤qA

>
i

=

d
X

i=1

AiU
(t)
⇤pU

⇤
⇤q(U

(t)
U

(t)>
� In)A

>
i .

which further implies

w>
(S(t)K(t)

� J (t)
)z =

X

p,q

W>
⇤p

✓ d
X

i=1

AiU
(t)
⇤pU

⇤
⇤q(U

(t)
U

(t)>
� In)A

>
i

◆

Z⇤q

=

d
X

i=1

X

p,q

W>
⇤pAiU

(t)
⇤pU

⇤
⇤q(U

(t)
U

(t)>
� In)A

>
i Z⇤q

=

d
X

i=1

tr(W>AiU
(t)
) tr

�

Z>Ai(U
(t)
U

(t)>
� In)U

⇤�
.

Therefore by 2k-RIP of A(·) and Lemma B.6, we obtain
w>

(S(t)K(t)
� J (t)

)z

 tr

�

U
⇤
(U

(t)
U

(t)>
� In)U

(t)
W>Z

�

+ �
2kkU

(t)
W>
k

F

k(U
(t)
U

(t)>
� In)U

⇤
Z>
k

F

 �
2kkWkF

q

kU
⇤>

(U
(t)
U

(t)>
� In)U

⇤
k

F

kZ>Zk
F

 �
2k

p

2kkU
(t)
� U

⇤
k

F

,

where the last inequality comes from (U
(t)
U

(t)>
� In)U

(t)
= 0. Since W and Z are arbitrary, we

have
�
max

(S(t)K(t)
� J (t)

) = max

kwk2=1,kzk2=1

w>
(S(t)K(t)

� J (t)
)w  �

2k

p

2kkU
(t)
� U

⇤
k

F

,

which completes the proof.

C Lemmas for Theorem 3.4 (Alternating Gradient Descent)

C.1 Proof of Lemma A.1

Proof. For notational convenience, we omit the index t in U
⇤(t)

and V ⇤(t), and denote them by U
⇤

and V ⇤ respectively. We have

vec(rV F(U
(t)
, V (t)

)) = S(t)v(t) � J (t)v⇤ and vec(rV F(U
⇤
, V (t)

)) = G(t)v(t) �G(t)v⇤.

Therefore, we further obtain

krV F(U
(t)
, V (t)

)�rV F(U
⇤
, V (t)

)k

F

= k(S(t)
� J (t)

)(v(t) � v⇤) + (S(t)
� J (t)

)v⇤ + (J (t)
�G(t)

)(v(t) � v⇤)k
2

 k(S(t)
� J (t)

)(v(t) � v⇤)k
2

+ k(S(t)
� J (t)

)v⇤k
2

+ k(J (t)
�G(t)

)(v(t) � v⇤)k
2

 kS(t)
k

2

k((S(t)
)

�1J (t)
� Ink)(v

(t)
� v⇤)k

2

+ kS(t)
k

2

k((S(t)
)

�1J (t)
� Ink)v

⇤
k

2

+ kGk
2

k((G(t)
)

�1J (t)
� Ink)(v

(t)
� v⇤)k

2

. (C.1)
Recall that Lemma B.2 is also applicable to G(t)K(t)

� J (t). Since we have
kV (t)

� V ⇤
k

2

 kV (t)
� V ⇤

k

F

= kv(t) � v⇤k
2

 �
1

,
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following similar lines to Appendix B.2, we can show

k((S(t)
)

�1J (t)
� Imn)v

⇤
k

2

 �
1

✓

kU
(t)
� U

⇤
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2

F

+

p

2�
2kk

1� �
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� U

⇤
k

F

◆

,

k((G(t)
)

�1J (t)
� Imn)(v

(t)
� v⇤)k

2

 �
1

✓

kU
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� U

⇤
k

2

F

+

p

2�
2kk

1� �
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kU

(t)
� U

⇤
k

F

◆

,

k((S(t)
)

�1J (t)
� Imn)(v

(t)
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 �
1

✓

kU
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� U

⇤
k

2

F

+

p

2�
2kk
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2k
kU

(t)
� U

⇤
k

F

◆

.

Combining the above three inequalities with (C.1), we have

krV F(U
(t)
, V (t)

)�rV F(U
⇤
, V (t)

)k

F

 2(1 + �
2k)�1

✓
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⇤
k

2

F

+

p
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2kk
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kU

(t)
� U

⇤
k

F

◆

. (C.2)

Since U
(t)

, �
2k, and ⇠ satisfy (A.1), then (C.2) further implies

krV F(U
(t)
, V (t)

)�rV F(U
⇤
, V (t)

)k

F



(1 + �
2k)�k

⇠
kU

(t)
� U

⇤
k

F

. (C.3)

Therefore by Cauchy-Schwartz inequality, (C.3) implies

D(V (t+0.5), V (t), U
(t)
)  krV F(U

(t)
, V (t)

)�rV F(U
⇤
, V (t)

)k
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2k)�k

⇠
kU

(t)
� U

⇤
k

F

,

which completes the proof.

C.2 Proof of Lemma A.2

Proof. For notational convenience, we omit the index t in U
⇤(t)

and V ⇤(t), and denote them by U
⇤

and V ⇤ respectively. By the strong convexity of F(U
⇤
, ·), we have

F(U
⇤
, V ⇤

)�

1� �
2k

2

kV (t)
� V ⇤

k

2

F

� F(U
⇤
, V (t)

) + hrV F(U
⇤
, V (t)

), V ⇤
� V (t)

i

= F(U
⇤
, V (t)

) + hrV F(U
⇤
, V (t)

), V (t+0.5)
� V (t)

i+ hrV F(U
⇤
, V (t)

), V ⇤
� V (t+0.5)

i.
(C.4)

Meanwhile, we define

Q(V ;U
⇤
, V (t)

) = F(U
⇤
, V (t)

) + hrV F(U
⇤
, V (t)

), V � V (t)
i+

1

2⌘
kV � V (t)

k

2

F

.

Since ⌘ satisfies (A.2) and F(U
⇤
, V ) is strongly smooth in V for a fixed orthonormal U

⇤
, we have

Q(V ;U
⇤
, V (t)

) � F(U
⇤
, V (t)

).

Combining the above two inequalities, we obtain
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Moreover, by the strong convexity of F(U
⇤
, ·) again, we have

F(U
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where the second equalities comes from the optimality condition of V ⇤
= argminV F(U

⇤
, V ), i.e.

hrV F(U
⇤
, V ⇤

), V (t+0.5)
� V ⇤

i � 0.

Combining (C.4) and (C.5) with (C.6), we obtain
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⇤
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On the other hand, since V (t+0.5) minimizes Q(V ;U
⇤
, V (t)

), we have
0  hrQ(V (t+0.5)

;U
⇤
, V (t)
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Meanwhile, we have
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Combining (C.8) with (C.9), we obtain
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Therefore, combining (C.7) with (C.10), we obtain
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Rearranging the above inequality, we obtain
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which completes the proof.

C.3 Proof of Lemma A.3

Proof. Before we proceed with the proof, we first introduce the following lemma.

Lemma C.1. For any matrix U, eU 2 Rm⇥k and V, eV 2 Rn⇥k, we have
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Thus, we conclude the proof.

By Lemma C.1, we have
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where the last inequality comes from Lemma 4.5. Moreover, let U⇤(t+1)

= U
⇤(t)

(V
⇤(t+1)>

V ⇤(t)
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>.
Then we can verify
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where the last equality holds, since V
⇤(t+1)

V
⇤(t+1)>

is exactly the projection matrix for the row
space of M⇤. Thus by Lemma C.1, we have
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where the last inequality comes from (C.12), kV
⇤(t+1)

k

2

= �
1

, and kU
(t)
k

2

= 1.

C.4 Proof of Lemma A.4

Proof. Following similar lines to Appendix B.5, we have
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By triangle inequality, we further have
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where (i) comes from (C.13) and kV ⇤(0)
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k, (ii) comes from (A.4), and (iii)
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C.5 Proof of Corollary A.5

Proof. Since (A.5) ensures that (A.1) of Lemma A.1 holds, we have
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where (i) comes from Lemma A.2, (ii) and (iii) come from (A.5), and (iii) and (iv) come from the
definition of ⇠ and �k  �

1

. Since (C.14) ensures that (4.2) of Lemma 4.5, we obtain
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where (i) and (ii) come from (C.14), and (iii) comes from the definition of ⇠ and �
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> �k. Moreover,
since (C.14) ensures that (A.3) of Lemma A.3 holds, we have
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where (i) comes from (C.14), (ii) comes from (A.5), and (iii) comes from the definition of ⇠ and
�
1

� �k.

D Algorithms for Matrix Completion

Algorithm 2 A family of nonconvex optimization algorithms for matrix completion. The incoherence
factorization algorithm IF(·) is illustrated in Algorithm 3, and the partition algorithm Partition(·),
which is proposed by [10], is provided in Algorithm 4. The initialization procedures INTU (·) and
INTU (·) are provided in Algorithm 5 and Algorithm 6. Here FW(·) is defined in (5.2).

Input: PW(M⇤
)

Parameter: Step size ⌘, Total number of iterations T
({Wt}

2T
t=0

, e⇢) Partition(W), PW0(
fM) PW0(M

⇤
), and fMij  0 for all (i, j) /2W

0

(U
(0)

, V (0)

) INTU (
fM), (V

(0)

, U (0)

) INTV (
fM)

For: t = 0, ...., T � 1

Alternating Exact Minimization : V (t+0.5)
 argminV FW2t+1(U

(t)
, V )

(V
(t+1)

, R
(t+0.5)

V
) IF(V (t+0.5)

)

Alternating Gradient Descent : V (t+0.5)
 V (t)

� ⌘rV FW2t+1(U
(t)
, V (t)

)

(V
(t+1)

, R
(t+0.5)

V
) IF(V (t+0.5)

), U (t)
 U

(t)
R

(t+0.5)>
V

Gradient Descent : V (t+0.5)
 V (t)
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(t)
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V
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>

>

>

>

>

>

>

>

>
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>

>

>

>

>

>

>

>

>

;

Updating V .

Alternating Exact Minimization : U (t+0.5)
 argminU FW2t+2(U, V

(t+1)
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, R
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U
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)
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U
) IF(U (t+0.5)

), V (t+1)

 V
(t+1)

R
(t+0.5)>
U

Gradient Descent : U (t+0.5)
 U (t)

� ⌘rUFW2t+2(U
(t), V

(t)
)

(U
(t+1)

, R
(t+0.5)

U
) IF(U (t+0.5)

), V (t+1)

 V
(t)
R

(t+0.5)>
U

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

Updating U .

End for
Output: M (T )

 U (T�0.5)V
(T )>

or U
(T )

V (T )> (Gradient Descent Only)
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Algorithm 3 The incoherence factorization algorithm for matrix completion. It guarantees that the
solutions satisfy the incoherence condition throughout all iterations.

Input: W in

r  Number of rows of W in

Parameter: Incoherence parameter µ
(W

in

, Rin

W
) QR(W in

)

fW  argmin

W
kW �W

in

k

2

F

subject to max

j
kWj⇤k2  µ

p

k/r

(W
out

, Rtmp

W
) QR(W out

)

Rout

W
= W

out>
W in

Output: W out

, Rout

W

Algorithm 4 The observation set partition algorithm for matrix completion. It guarantees the inde-
pendence among all 2T + 1 output observation sets.

Input: W , ⇢̄
e⇢ = 1� (1� ⇢̄)

1
2T+1 .

For: t = 0, ...., 2T

e⇢t =
(mn)!⇢̄t+1

(1� ⇢̄)mn�t�1

⇢̄(mn� t� 1)!(t+ 1)!

End for
W

0

= ;, ..., W
2T = ;

For every (i, j) 2W

Sample t from {0, ..., 2T} with probability {e⇢
0

, ..., e⇢
2T }

Sample (w/o replacement) a set B such that |B| = t from {0, ..., 2T} with equal probability
Add (i, j) to W` for all ` 2 B

End for
Output: {Wt}

2T
t=0

, e⇢

Algorithm 5 The initialization procedure INTU (·) for matrix completion. It guarantees that the initial
solutions satisfy the incoherence condition throughout all iterations.

Input: fM
Parameter: Incoherence parameter µ
(

eU, eD, eV ) KSVD(
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U
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V
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)

>

Output: Uout

, V out
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Algorithm 6 The initialization procedure INTV (·) for matrix completion. It guarantees that the initial
solutions satisfy the incoherence condition throughout all iterations.

Input: fM
Parameter: Incoherence parameter µ
(

eU, eD, eV ) KSVD(

fM)

eV tmp

 argmin

V
kV � eV k2

F

subject to max

j
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p
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U
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k
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F
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, Rout

U
) QR(
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)

Uout
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out

(U
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fMV
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)

Output: V out

, Uout
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