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Abstract

Consider estimating an unknown, but structured (e.g. sparse, low-rank, etc.), sig-
nal x0 ∈ Rn from a vector y ∈ Rm of measurements of the form yi = gi(ai

Tx0),
where the ai’s are the rows of a known measurement matrix A, and, g(·) is a
(potentially unknown) nonlinear and random link-function. Such measurement
functions could arise in applications where the measurement device has nonlin-
earities and uncertainties. It could also arise by design, e.g., gi(x) = sign(x+zi),
corresponds to noisy 1-bit quantized measurements. Motivated by the classical
work of Brillinger, and more recent work of Plan and Vershynin, we estimate x0

via solving the Generalized-LASSO, i.e., x̂ := argminx ‖y − Ax0‖2 + λf(x)
for some regularization parameter λ > 0 and some (typically non-smooth) convex
regularizer f(·) that promotes the structure of x0, e.g. `1-norm, nuclear-norm,
etc. While this approach seems to naively ignore the nonlinear function g(·), both
Brillinger (in the non-constrained case) and Plan and Vershynin have shown that,
when the entries of A are iid standard normal, this is a good estimator of x0 up to
a constant of proportionality µ, which only depends on g(·). In this work, we con-
siderably strengthen these results by obtaining explicit expressions for‖x̂−µx0‖2,
for the regularized Generalized-LASSO, that are asymptotically precise when m
and n grow large. A main result is that the estimation performance of the Gener-
alized LASSO with non-linear measurements is asymptotically the same as one
whose measurements are linear yi = µai

Tx0 + σzi, with µ = Eγg(γ) and
σ2 = E(g(γ) − µγ)2, and, γ standard normal. To the best of our knowledge,
the derived expressions on the estimation performance are the first-known precise
results in this context. One interesting consequence of our result is that the op-
timal quantizer of the measurements that minimizes the estimation error of the
Generalized LASSO is the celebrated Lloyd-Max quantizer.

1 Introduction
Non-linear Measurements. Consider the problem of estimating an unknown signal vector x0 ∈ Rn
from a vector y = (y1, y2, . . . , ym)T of m measurements taking the following form:

yi = gi(a
T
i x0), i = 1, 2, . . . ,m. (1)

Here, each ai represents a (known) measurement vector. The gi’s are independent copies of a
(generically random) link function g. For instance, gi(x) = x + zi, with say zi being normally
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distributed, recovers the standard linear regression setup with gaussian noise. In this paper, we are
particularly interested in scenarios where g is non-linear. Notable examples include g(x) = sign(x)
(or gi(x) = sign(x+zi)) and g(x) = (x)+, corresponding to 1-bit quantized (noisy) measurements,
and, to the censored Tobit model, respectively. Depending on the situation, g might be known or
unspecified. In the statistics and econometrics literature, the measurement model in (1) is popular
under the name single-index model and several aspects of it have been well-studied, e.g. [4,5,14,15]1.
Structured Signals. It is typical that the unknown signal x0 obeys some sort of structure. For
instance, it might be sparse, i.e. only a few k � n, of its entries are non-zero; or, it might be that
x0 = vec(X0), where X0 ∈ R

√
n×
√
n is a matrix of low-rank r � n. To exploit this information

it is typical to associate with the structure of x0 a properly chosen function f : Rn → R, which we
refer to as the regularizer. Of particular interest are convex and non-smooth such regularizers, e.g.
the `1-norm for sparse signals, the nuclear-norm for low-rank ones, etc. Please refer to [1, 6, 13] for
further discussions.
An Algorithm for Linear Measurements: The Generalized LASSO. When the link function
is linear, i.e. gi(x) = x + zi, perhaps the most popular way of estimating x0 is via solving the
Generalized LASSO algorithm:

x̂ := argmin
x
‖y −Ax‖2 + λf(x). (2)

Here, A = [a1,a2, . . . ,am]T ∈ Rm×n is the known measurement matrix and λ > 0 is a regularizer
parameter. This is often referred to as the `2-LASSO or the square-root-LASSO [3] to distinguish
from the one solving minx

1
2‖y −Ax‖22 + λf(x), instead. Our results can be accustomed to this

latter version, but for concreteness, we restrict attention to (2) throughout. The acronym LASSO for
(2) was introduced in [22] for the special case of `1-regularization; (2) is a natural generalization
to other kinds of structures and includes the group-LASSO [25], the fused-LASSO [23] as special
cases. We often drop the term “Generalized” and refer to (2) simply as the LASSO.
One popular, measure of estimation performance of (2) is the squared-error ‖x̂ − x0‖22. Recently,
there have been significant advances on establishing tight bounds and even precise characterizations
of this quantity, in the presence of linear measurements [2, 10, 16, 18, 19, 21]. Such precise results
have been core to building a better understanding of the behavior of the LASSO, and, in particular,
on the exact role played by the choice of the regularizer f (in accordance with the structure of x0),
by the number of measurements m, by the value of λ, etc.. In certain cases, they even provide us
with useful insights into practical matters such as the tuning of the regularizer parameter.
Using the LASSO for Non-linear Measurements?. The LASSO is by nature tailored to a linear
model for the measurements. Indeed, the first term of the objective function in (2) tries to fit Ax to
the observed vector y presuming that this is of the form yi = aTi x0+noise. Of course, no one stops
us from continuing to use it even in cases where yi = g(aTi x0) with g being non-linear2. But, the
question then becomes: Can there be any guarantees that the solution x̂ of the Generalized LASSO
is still a good estimate of x0?
The question just posed was first studied back in the early 80’s by Brillinger [5] who provided an-
swers in the case of solving (2) without a regularizer term. This, of course, corresponds to standard
Least Squares (LS). Interestingly, he showed that when the measurement vectors are Gaussian, then
the LS solution is a consistent estimate of x0, up to a constant of proportionality µ, which only
depends on the link-function g. The result is sharp, but only under the assumption that the number
of measurements m grows large, while the signal dimension n stays fixed, which was the typical
setting of interest at the time. In the world of structured signals and high-dimensional measure-
ments, the problem was only very recently revisited by Plan and Vershynin [17]. They consider a
constrained version of the Generalized LASSO, in which the regularizer is essentially replaced by a
constraint, and derive upper bounds on its performance. The bounds are not tight (they involve ab-
solute constants), but they demonstrate some key features: i) the solution to the constrained LASSO
x̂ is a good estimate of x0 up to the same constant of proportionality µ that appears in Brillinger’s
result. ii) Thus, ‖x̂ − µx0‖22 is a natural measure of performance. iii) Estimation is possible even
with m < n measurements by taking advantage of the structure of x0.

1 The single-index model is a classical topic and can also be regarded as a special case of what is known
as sufficient dimension reduction problem. There is extensive literature on both subjects; unavoidably, we only
refer to the directly relevant works here.

2Note that the Generalized LASSO in (2) does not assume knowledge of g. All that is assumed is the
availability of the measurements yi. Thus, the link-function might as well be unknown or unspecified.
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Figure 1: Squared error of the `1-regularized LASSO with non-linear measurements (�) and with correspond-
ing linear ones (?) as a function of the regularizer parameter λ; both compared to the asymptotic prediction.
Here, gi(x) = sign(x + 0.3zi) with zi ∼ N (0, 1). The unknown signal x0 is of dimension n = 768 and has
d0.15ne non-zero entries (see Sec. 2.2.2 for details). The different curves correspond to d0.75ne and d1.2ne
number of measurements, respectively. Simulation points are averages over 20 problem realizations.

1.1 Summary of Contributions
Inspired by the work of Plan and Vershynin [17], and, motivated by recent advances on the precise
analysis of the Generalized LASSO with linear measurements, this paper extends these latter results
to the case of non-linear mesaurements. When the measurement matrix A has entries i.i.d. Gaussian
(henceforth, we assume this to be the case without further reference), and the estimation performance
is measured in a mean-squared-error sense, we are able to precisely predict the asymptotic behavior
of the error. The derived expression accurately captures the role of the link function g, the particular
structure of x0, the role of the regularizer f , and, the value of the regularizer parameter λ. Further,
it holds for all values of λ, and for a wide class of functions f and g.
Interestingly, our result shows in a very precise manner that in large dimensions, modulo the infor-
mation about the magnitude of x0, the LASSO treats non-linear measurements exactly as if they
were scaled and noisy linear measurements with scaling factor µ and noise variance σ2 defined as

µ := E[γg(γ)], and σ2 := E[(g(γ)− µγ)2], for γ ∼ N (0, 1), (3)

where the expecation is with respect to both γ and g. In particular, when g is such that µ 6= 03, then,

the estimation performance of the Generalized LASSO with measurements of the form
yi = gi(a

T
i x0) is asymptotically the same as if the measurements were rather of the form
yi = µaTi x0 + σzi, with µ, σ2 as in (3) and zi standard gaussian noise.

Recent analysis of the squared-error of the LASSO, when used to recover structured signals from
noisy linear observations, provides us with either precise predictions (e.g. [2,20]), or in other cases,
with tight upper bounds (e.g. [10, 16]). Owing to the established relation between non-linear and
(corresponding) linear measurements, such results also characterize the performance of the LASSO
in the presence of nonlinearities. We remark that some of the error formulae derived here in the
general context of non-linear measurements, have not been previously known even under the prism
of linear measurements. Figure 1 serves as an illustration; the error with non-linear measurements
matches well with the error of the corresponding linear ones and both are accurately predicted by
our analytic expression.
Under the generic model in (1), which allows for g to even be unspecified, x0 can, in principle, be
estimated only up to a constant of proportionality [5, 15, 17]. For example, if g is uknown then any
information about the norm ‖x0‖2 could be absorbed in the definition of g. The same is true when
g(x) = sign(x), eventhough g might be known here. In these cases, what becomes important is
the direction of x0. Motivated by this, and, in order to simplify the presentation, we have assumed
throughout that x0 has unit Euclidean norm4, i.e. ‖x0‖2 = 1.

3This excludes for example link functions g that are even, but also some other not so obvious cases [11,
Sec. 2.2]. For a few special cases, e.g. sparse recovery with binary measurements yi [24], different methodolo-
gies than the LASSO have been recently proposed that do not require µ = 0.

4In [17, Remark 1.8], they note that their results can be easily generalized to the case when ‖x0‖2 6= 1 by
simply redifining ḡ(x) = g(‖x0‖2x) and accordingly adjusting the values of the parameters µ and σ2 in (3).
The very same argument is also true in our case.
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1.2 Discussion of Relevant Literature
Extending an Old Result. Brillinger [5] identified the asymptotic behavior of the estimation error
of the LS solution x̂LS = (ATA)−1ATy by showing that, when n (the dimension of x0) is fixed,

lim
m→∞

√
m‖x̂LS − µx0‖2 = σ

√
n, (4)

where µ and σ2 are same as in (3). Our result can be viewed as a generalization of the above in
several directions. First, we extend (4) to the regime where m/n = δ ∈ (1,∞) and both grow large
by showing that

lim
n→∞

‖x̂LS − µx0‖2 =
σ√
δ − 1

. (5)

Second, and most importantly, we consider solving the Generalized LASSO instead, to which LS is
only a very special case. This allows versions of (5) where the error is finite even when δ < 1 (e.g.,
see (8)). Note the additional challenges faced when considering the LASSO: i) x̂ no longer has a
closed-form expression, ii) the result needs to additionally capture the role of x0, f , and, λ.
Motivated by Recent Work. Plan and Vershynin consider a constrained Generalized LASSO:

x̂C-LASSO = argmin
x∈K
‖y −Ax‖2, (6)

with y as in (1) and K ⊂ Rn some known set (not necessarily convex). In its simplest form, their
result shows that when m & DK(µx0) then with high probability,

‖x̂C-LASSO − µx0‖2 .
σ
√
DK(µx0) + ζ√

m
. (7)

Here, DK(µx0) is the Gaussian width, a specific measure of complexity of the constrained set K
when viewed from µx0. For our purposes, it suffices to remark that if K is properly chosen, and,
if µx0 is on the boundary of K, then DK(µx0) is less than n. Thus, estimation is in principle is
possible with m < n measurements. The parameters µ and σ that appear in (7) are the same as in
(3) and ζ := E[(g(γ) − µγ)2γ2]. Observe that, in contrast to (4) and to the setting of this paper,
the result in (7) is non-asymptotic. Also, it suggests the critical role played by µ and σ. On the
other hand, (7) is only an upper bound on the error, and also, it suffers from unknown absolute
proportionality constants (hidden in .).
Moving the analysis into an asymptotic setting, our work expands upon the result of [17]. First, we
consider the regularized LASSO instead, which is more commonly used in practice. Most impor-
tantly, we improve the loose upper bounds into precise expressions. In turn, this proves in an exact
manner the role played by µ and σ2 to which (7) is only indicative. For a direct comparison with
(7) we mention the following result which follows from our analysis (we omit the proof for brevity).
Assume K is convex, m/n = δ ∈ (0,∞), DK(µx0)/n = ρ ∈ (0, 1] and n → ∞. Also, δ > ρ.
Then, (7) yields an upper bound Cσ

√
ρ/δ to the error, for some constant C > 0. Instead, we show

‖x̂C-LASSO − µx0‖2 ≤ σ
√
ρ

√
δ − ρ

. (8)

Precise Analysis of the LASSO With Linear Measurements. The first precise error formulae
were established in [2, 10] for the `22-LASSO with `1-regularization. The analysis was based on
the the Approximate Message Passing (AMP) framework [9]. A more general line of work studies
the problem using a recently developed framework termed the Convex Gaussian Min-max Theorem
(CGMT) [19], which is a tight version of a classical Gaussian comparison inequality by Gordon
[12]. The CGMT framework was initially used by Stojnic [18] to derive tight upper bounds on the
constrained LASSO with `1-regularization; [16] generalized those to general convex regularizers
and also to the `2-LASSO; the `22-LASSO was studied in [21]. Those bounds hold for all values
of SNR, but they become tight only in the high-SNR regime. A precise error expression for all
values of SNR was derived in [20] for the `2-LASSO with `1-regularization under a gaussianity
assumption on the distribution of the non-zero entries of x0. When measurements are linear, our
Theorem 2.3 generalizes this assumption. Moreover, our Theorem 2.2 provides error predictions
for regularizers going beyond the `1-norm, e.g. `1,2-norm, nuclear norm, which appear to be novel.
When it comes to non-linear measurements, to the best of our knowledge, this paper is the first to
derive asymptotically precise results on the performance of any LASSO-type program.

2 Results
2.1 Modeling Assumptions
Unknown structured signal. We let x0 ∈ Rn represent the unknown signal vector. We assume that
x0 = x0/‖x0‖2,with x0 sampled from a probability density px0 in Rn. Thus, x0 is deterministically
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of unit Euclidean-norm (this is mostly to simplify the presentation, see Footnote 4). Information
about the structure of x0 (and correspondingly of x0) is encoded in px0

. E.g., to study an x0 which
is sparse, it is typical to assume that its entries are i.i.d. x0,i ∼ (1− ρ)δ0 + ρqX0

, where ρ ∈ (0, 1)

becomes the normalized sparsity level, qX0
is a scalar p.d.f. and δ0 is the Dirac delta function5.

Regularizer. We consider convex regularizers f : Rn → R.
Measurement matrix. The entries of A ∈ Rm×n are i.i.d. N (0, 1).
Measurements and Link-function. We observe y = ~g(Ax0) where ~g is a (possibly random) map
from Rm to Rm and ~g(u) = [g1(u1), . . . , gm(um)]T . Each gi is i.i.d. from a real valued random
function g for which µ and σ2 are defined in (3). We assume that µ and σ2 are nonzero and bounded.
Asymptotics. We study a linear asymptotic regime. In particular, we consider a sequence of prob-
lem instances {x(n)

0 ,A(n), f (n),m(n)}n∈N indexed by n such that A(n) ∈ Rm×n has entries i.i.d.
N (0, 1), f (n) : Rn → R is proper convex, and, m := m(n) with m = δn, δ ∈ (0,∞). We further
require that the following conditions hold:

(a) x
(n)
0 is sampled from a probability density p(n)x0

in Rn with one-dimensional marginals that are

independent of n and have bounded second moments. Furthermore, n−1‖x(n)
0 ‖22

P−→ σ2
x = 1.

(b) For any n ∈ N and any ‖x‖2 ≤ C, it holds n−1/2f(x) ≤ c1 and n−1/2 maxs∈∂f(n)(x) ‖s‖2 ≤
c2, for constants c1, c2, C ≥ 0 independent of n.

In (a), we used “ P−→” to denote convergence in probability as n→∞. The assumption σ2
x = 1 holds

without loss of generality, and, is only necessary to simplify the presentation. In (b), ∂f(x) denotes
the subdifferential of f at x. The condition itself is no more than a normalization condition on f .
Every such sequence {x(n)

0 ,A(n), f (n)}n∈N generates a sequence {x(n)
0 ,y(n)}n∈N where x

(n)
0 :=

x
(n)
0 /‖x(n)

0 ‖2 and y(n) := ~g(n)(Ax0). When clear from the context, we drop the superscript (n).

2.2 Precise Error Prediction

Let {x(n)
0 ,A(n), f (n),y(n)}n∈N be a sequence of problem instances that satisfying all the condi-

tions above. With these, define the sequence {x̂(n)}n∈N of solutions to the corresponding LASSO
problems for fixed λ > 0:

x̂(n) := min
x

1√
n

{
‖y(n) −A(n)x‖2 + λf (n)(x)

}
. (9)

The main contribution of this paper is a precise evaluation of limn→∞ ‖µ−1x̂(n)−x
(n)
0 ‖22 with high

probability over the randomness of A, of x0, and of g.

2.2.1 General Result

To state the result in a general framework, we require a further assumption on p(n)x0
and f (n). Later

in this section we illustrate how this assumption can be naturally met. We write f∗ for the Fenchel’s
conjugate of f , i.e., f∗(v) := supx x

Tv − f(x); also, we denote the Moreau envelope of f at v
with index τ to be ef,τ (v) := minx{ 12‖v − x‖22 + τf(x)}.
Assumption 1. We say Assumption 1 holds if for all non-negative constants c1, c2, c3 ∈ R the
point-wise limit of 1

ne
√
n(f∗)(n),c3 (c1h+ c2x0) exists with probability one over h ∼ N (0, In) and

x0 ∼ p(n)x0
. Then, we denote the limiting value as F (c1, c2, c3).

Theorem 2.1 (Non-linear=Linear). Consider the asymptotic setup of Section 2.1 and let Assumption
1 hold. Recall µ and σ2 as in (3) and let x̂ be the minimizer of the Generalized LASSO in (9) for
fixed λ > 0 and for measurements given by (1). Further let x̂lin be the solution to the Generalized
LASSO when used with linear measurements of the form ylin = A(µx0) + σz, where z has entries
i.i.d. standard normal. Then, in the limit of n→∞, with probability one,

‖x̂− µx0‖22 = ‖x̂lin − µx0‖22.
5Such models have been widely used in the relevant literature, e.g. [7,8,10]. In fact, the results here continue

to hold as long as the marginal distribution of x0 converges to a given distribution (as in [2]).
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Theorem 2.1 relates in a very precise manner the error of the Generalized LASSO under non-linear
measurements to the error of the same algorithm when used under appropriately scaled noisy linear
measurements. Theorem 2.2 below, derives an asymptotically exact expression for the error.
Theorem 2.2 (Precise Error Formula). Under the same assumptions of Theorem 2.1 and δ := m/n,
it holds, with probability one,

lim
n→∞

‖x̂− µx0‖22 = α2
∗,

where α∗ is the unique optimal solution to the convex program

max
0≤β≤1
τ≥0

min
α≥0

β
√
δ
√
α2 + σ2 − ατ

2
+
µ2τ

2α
− αλ2

τ
F

(
β

λ
,
µτ

λα
,
τ

λα

)
. (10)

Also, the optimal cost of the LASSO in (9) converges to the optimal cost of the program in (10).

Under the stated conditions, Theorem 2.2 proves that the limit of ‖x̂ − µx0‖2 exists and is equal
to the unique solution of the optimization program in (10). Notice that this is a deterministic and
convex optimization, which only involves three scalar optimization variables. Thus, the optimal α∗
can, in principle, be efficiently numerically computed. In many specific cases of interest, with some
extra effort, it is possible to yield simpler expressions for α∗, e.g. see Theorem 2.3 below. The role
of the normalized number of measurement δ = m/n, of the regularizer parameter λ, and, that of
g, through µ and σ2, are explicit in (10); the structure of x0 and the choice of the regularizer f are
implicit in F . Figures 1-2 illustrate the accuracy of the prediction of the theorem in a number of
different settings. The proofs of both the Theorems are deferred to Appendix A. In the next sections,
we specialize Theorem 2.2 to the cases of sparse, group-sparse and low-rank signal recovery.
2.2.2 Sparse Recovery
Assume each entry x0,i, i = 1, . . . , n is sampled i.i.d. from a distribution

pX0
(x) = (1− ρ) · δ0(x) + ρ · qX0

(x), (11)

where δ0 is the delta Dirac function, ρ ∈ (0, 1) and qX0
a probability density function with second

moment normalized to 1/ρ so that condition (a) of Section 2.1 is satisfied. Then, x0 = x0/‖x0‖2
is ρn-sparse on average and has unit Euclidean norm. Letting f(x) = ‖x‖1 also satisfies condition
(b). Let us now check Assumption 1. The Fenchel’s conjugate of the `1-norm is simply the indicator
function of the `∞ unit ball. Hence, without much effort,

1

n
e√n(f∗)(n),c3 (c1h+ c2x0) =

1

2n

n∑
i=1

min
|vi|≤1

(vi − (c1hi + c2x0,i))
2

=
1

2n

n∑
i=1

η2(c1hi + c2x0,i; 1), (12)

where we have denoted
η(x; τ) := (x/|x|) (|x| − τ)+ (13)

for the soft thresholding operator. An application of the weak law of large numbers to see that the
limit of the expression in (12) equals F (c1, c2, c3) := 1

2E
[
η2(c1h+ c2X0; 1)

]
, where the expecta-

tion is over h ∼ N (0, 1) and X0 ∼ pX0
. With all these, Theorem 2.2 is applicable. We have put

extra effort in order to obtain the following equivalent but more insightful characterization of the
error, as stated below and proved in Appendix B.
Theorem 2.3 (Sparse Recovery). If δ > 1, then define λcrit = 0. Otherwise, let λcrit, κcrit be the
unique pair of solutions to the following set of equations:{

κ2δ = σ2 + E
[
(η(κh+ µX0;κλ)− µX0)

2
]
, (14)

κδ = E[(η(κh+ µX0;κλ) · h)], (15)

where h ∼ N (0, 1) and is independent of X0 ∼ pX0
. Then, for any λ > 0, with probability one,

lim
n→∞

‖x̂− µx0‖22 =

{
δκ2crit − σ2 , λ ≤ λcrit,

δκ2∗(λ)− σ2 , λ ≥ λcrit,

where κ2∗(λ) is the unique solution to (14).
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Figure 2: Squared error of the LASSO as a function of the regularizer parameter compared to the asymptotic
predictions. Simulation points represent averages over 20 realizations. (a) Illustration of Thm. 2.3 for g(x) =
sign(x), n = 512, pX0

(+1) = pX0
(+1) = 0.05, pX0

(+1) = 0.9 and two values of δ, namely 0.75 and 1.2.
(b) Illustration of Thm. 2.2 for x0 being group-sparse as in Section 2.2.3 and gi(x) = sign(x + 0.3zi). In
particular, x0 is composed of t = 512 blocks of block size b = 3. Each block is zero with probability 0.95,
otherwise its entries are i.i.d. N (0, 1). Finally, δ = 0.75.

Figures 1 and 2(a) validate the prediction of the theorem, for different signal distributions, namely
qX0

being Gaussian and Bernoulli, respectively. For the case of compressed (δ < 1) measurements,
observe the two different regimes of operation, one for λ ≤ λcrit and the other for λ ≥ λcrit, precisely
as they are predicted by the theorem (see also [16, Sec. 8]). The special case of Theorem 2.3 for
which qX0

is Gaussian has been previously studied in [20]. Otherwise, to the best of our knowledge,
this is the first precise analysis result for the `2-LASSO stated in that generality. Analogous result,
but via different analysis tools, has only been known for the `22-LASSO as appears in [2].

2.2.3 Group-Sparse Recovery

Let x0 ∈ Rn be composed of t non-overlapping blocks of constant size b each such that n = t · b.
Each block [x0]i, i = 1, . . . , t is sampled i.i.d. from a probability density in Rb: pX0

(x) = (1 −
ρ) · δ0(x) + ρ · qX0

(x),x ∈ Rb, where ρ ∈ (0, 1). Thus, x0 is ρt-block-sparse on average. We
operate in the regime of linear measurements m/n = δ ∈ (0,∞). As is common we use the
`1,2-norm to induce block-sparsity, i.e., f(x) =

∑t
i=1 ‖[x0]i‖2; with this, (9) is often referred

to as group-LASSO in the literature [25]. It is not hard to show that Assumption 1 holds with
F (c1, c2, c3) :=

1
2bE

[
‖~η(c1h+ c2X0; 1)‖22

]
, where ~η(x; τ) = x/‖x‖ (‖x‖2 − τ)+ ,x ∈ Rb is the

vector soft thresholding operator and h ∼ N (0, Ib), X0 ∼ pX0
and are independent. Thus Theorem

2.2 is applicable in this setting; Figure 2(b) illustrates the accuracy of the prediction.

2.2.4 Low-rank Matrix Recovery

Let X0 ∈ Rd×d be an unknown matrix of rank r, in which case, x0 = vec(X0) with n = d2.
Assume m/d2 = δ ∈ (0,∞) and r/d = ρ ∈ (0, 1). As usual in this setting, we consider nuclear-
norm regularization; in particular, we choose f(x) =

√
d‖X‖∗. Each subgradient S ∈ ∂f(X) then

satisfies ‖S‖F ≤ d in agreement with assumption (b) of Section 2.1. Furthermore, for this choice of
regularizer, we have

1

n
e√n(f∗)(n),c3

(
c1H+ c2X0

)
=

1

2d2
min

‖V‖2≤
√
d
‖V − (c1H+ c2X0)‖2F

=
1

2d
min
‖V‖2≤1

‖V − d−1/2(c1H+ c2X0)‖2F =
1

2d

d∑
i=1

η2
(
si

(
d−1/2(c1H+ c2X0)

)
; 1
)
,

where η(·; ·) is as in (13), si(·) denotes the ith singular value of its argument and H ∈ Rd×d has en-
triesN (0, 1). If conditions are met such that the empirical distribution of the singular values of (the
sequence of random matrices) c1H+ c2X0 converges asymptotically to a limiting distribution, say
q(c1, c2), then F (c1, c2, c3) := 1

2Ex∼q(c1,c2)
[
η2(x; 1)

]
, and Theorem 2.1–2.2 apply. For instance,

this will be the case if d−1/2X0 = USVt, where U,V unitary matrices and S is a diagonal matrix
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whose entries have a given marginal distribution with bounded moments (in particular, independent
of d). We leave the details and the problem of (numerically) evaluating F for future work.

2.3 An Application to q-bit Compressive Sensing
2.3.1 Setup
Consider recovering a sparse unknown signal x0 ∈ Rn from scalar q-bit quantized linear measure-
ments. Let t := {t0 = 0, t1, . . . , tL−1, tL = +∞} represent a (symmetric with respect to 0) set of
decision thresholds and ` := {±`1,±`2, . . . ,±`L} the corresponding representation points, such
that L = 2q−1. Then, quantization of a real number x into q-bits can be represented as

Qq(x, `, t) = sign(x)

L∑
i=1

`i1{ti−1≤|x|≤ti},

where 1S is the indicator function of a set S. For example, 1-bit quantization with level ` corre-
sponds to Q1(x, `) = ` · sign(x). The measurement vector y = [y1, y2 . . . , ym]T takes the form

yi = Qq(aTi x0, `, t), i = 1, 2, . . . ,m, (16)

where aTi ’s are the rows of a measurement matrix A ∈ Rm×n, which is henceforth assumed i.i.d.
standard Gaussian. We use the LASSO to obtain an estimate x̂ of x0 as

x̂ := argmin
x
‖y −Ax‖2 + λ‖x‖1. (17)

Henceforth, we assume for simplicity that ‖x0‖2 = 1. Also, in our case, µ is known since g = Qq
is known; thus, is reasonable to scale the solution of (17) as µ−1x̂ and consider the error quantity
‖µ−1x̂− x0‖2 as a measure of estimation performance. Clearly, the error depends (besides others)
on the number of bits q, on the choice of the decision thresholds t and on the quantization levels `.
An interesting question of practical importance becomes how to optimally choose these to achieve
less error. As a running example for this section, we seek optimal quantization thresholds and
corresponding levels

(t∗, `∗) = argmin
t,`
‖µ−1x̂− x0‖2, (18)

while keeping all other parameters such as the number of bits q and of measurements m fixed.

2.3.2 Consequences of Precise Error Prediction
Theorem 2.1 shows that ‖µ−1x̂− x0‖2 = ‖x̂lin − x0‖2, where x̂lin is the solution to (17), but only,
this time with a measurement vector ylin = Ax0 +

σ
µz, where µ, σ as in (20) and z has entries i.i.d.

standard normal. Thus, lower values of the ratio σ2/µ2 correspond to lower values of the error and
the design problem posed in (18) is equivalent to the following simplified one:

(t∗, `∗) = argmin
t,`

σ2(t, `)

µ2(t, `)
. (19)

To be explicit, µ and σ2 above can be easily expressed from (3) after setting g = Qq as follows:

µ := µ(`, t) =

√
2

π

L∑
i=1

`i ·
(
e−t

2
i−1/2 − e−t

2
i /2
)

and σ2 := σ2(`, t) := τ2 − µ2, (20)

where, τ2 := τ2(`, t) = 2

L∑
i=1

`2i · (Q(ti−1)−Q(ti)) and Q(x) =
1√
2π

∫ ∞
x

exp(−u2/2)du.

2.3.3 An Algorithm for Finding Optimal Quantization Levels and Thresholds
In contrast to the initial problem in (18), the optimization involved in (19) is explicit in terms of
the variables ` and t, but, is still hard to solve in general. Interestingly, we show in Appendix C
that the popular Lloyd-Max (LM) algorithm can be an effective algorithm for solving (19), since
the values to which it converges are stationary points of the objective in (19). Note that this is not a
directly obvious result since the classical objective of the LM algorithm is minimizing the quantity
E[‖y −Ax0‖22] rather than E[‖µ−1x̂− x0‖22].
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