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Abstract

We consider the following multi-component sparse PCA problem: given a set of
data points, we seek to extract a small number of sparse components with disjoint
supports that jointly capture the maximum possible variance. Such components
can be computed one by one, repeatedly solving the single-component problem
and deflating the input data matrix, but this greedy procedure is suboptimal. We
present a novel algorithm for sparse PCA that jointly optimizes multiple disjoint
components. The extracted features capture variance that lies within a multiplica-
tive factor arbitrarily close to 1 from the optimal. Our algorithm is combinatorial
and computes the desired components by solving multiple instances of the bipar-
tite maximum weight matching problem. Its complexity grows as a low order
polynomial in the ambient dimension of the input data, but exponentially in its
rank. However, it can be effectively applied on a low-dimensional sketch of the
input data. We evaluate our algorithm on real datasets and empirically demon-
strate that in many cases it outperforms existing, deflation-based approaches.

1 Introduction

Principal Component Analysis (PCA) reduces data dimensionality by projecting it onto principal
subspaces spanned by the leading eigenvectors of the sample covariance matrix. It is one of the
most widely used algorithms with applications ranging from computer vision, document clustering
to network anomaly detection (see e.g. [1, 2, 3, 4, 5]). Sparse PCA is a useful variant that offers
higher data interpretability [6, 7, 8] a property that is sometimes desired even at the cost of statistical
fidelity [5]. Furthermore, when the obtained features are used in subsequent learning tasks, sparsity
potentially leads to better generalization error [9].

Given a real n× d data matrix S representing n centered data points in d variables, the first sparse
principal component is the sparse vector that maximizes the explained variance:

x⋆ , argmax
‖x‖2=1,‖x‖0=s

x
⊤
Ax, (1)

where A = 1/n ·S⊤
S is the d× d empirical covariance matrix. Unfortunately, the directly enforced

sparsity constraint makes the problem NP-hard and hence computationally intractable in general. A
significant volume of prior work has focused on various algorithms for approximately solving this
optimization problem [3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17], while some theoretical results have
also been established under statistical or spectral assumptions on the input data.

In most cases one is not interested in finding only the first sparse eigenvector, but rather the first k,
where k is the reduced dimension where the data will be projected. Contrary to the single-component
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problem, there has been very limited work on computing multiple sparse components. The scarcity
is partially attributed to conventional wisdom stemming from PCA: multiple components can be
computed one by one, repeatedly solving the single-component sparse PCA problem (1) and deflat-
ing [18] the input data to remove information captured by previously extracted components. In fact,
multi-component sparse PCA is not a uniquely defined problem in the literature. Deflation-based
approaches can lead to different output depending on the type of deflation [18]; extracted compo-
nents may or may not be orthogonal, while they may have disjoint or overlapping supports. In the
statistics literature, where the objective is typically to recover a “true” principal subspace, a branch
of work has focused on the “subspace row sparsity” [19], an assumption that leads to sparse com-
ponents all supported on the same set of variables. While in [20] the authors discuss an alternative
perspective on the fundamental objective of the sparse PCA problem.

We focus on the multi-component sparse PCA problem with disjoint supports, i.e., the problem of
computing a small number of sparse components with non-overlapping supports that jointly maxi-
mize the explained variance:

X⋆ , argmax
X∈Xk

TR
(
X

⊤
AX

)
, (2)

Xk ,
{
X ∈ R

d×k : ‖Xj‖2 = 1, ‖Xj‖0 = s, supp(Xi) ∩ supp(Xj) = ∅, ∀ j ∈ [k], i < j
}
,

with X
j denoting the jth column of X. The number k of the desired components is considered a

small constant. Contrary to the greedy sequential approach that repeatedly uses deflation, our algo-
rithm jointly computes all the vectors in X and comes with theoretical approximation guarantees.
Note that even if we could solve the single-component sparse PCA problem (1) exactly, the greedy
approach could be highly suboptimal. We show this with a simple example in Sec. 7 of the appendix.

Our Contributions:

1. We develop an algorithm that provably approximates the solution to the sparse PCA problem (2)
within a multiplicative factor arbitrarily close to optimal. Our algorithm is the first that jointly
optimizes multiple components with disjoint supports and operates by recasting the sparse PCA
problem into multiple instances of the bipartite maximum weight matching problem.

2. The computational complexity of our algorithm grows as a low order polynomial in the ambient
dimension d, but is exponential in the intrinsic dimension of the input data, i.e., the rank of A.
To alleviate the impact of this dependence, our algorithm can be applied on a low-dimensional
sketch of the input data to obtain an approximate solution to (2). This extra level of approx-
imation introduces an additional penalty in our theoretical approximation guarantees, which
naturally depends on the quality of the sketch and, in turn, the spectral decay of A.

3. We empirically evaluate our algorithm on real datasets, and compare it against state-of-the-art
methods for the single-component sparse PCA problem (1) in conjunction with the appropriate
deflation step. In many cases, our algorithm significantly outperforms these approaches.

2 Our Sparse PCA Algorithm

We present a novel algorithm for the sparse PCA problem with multiple disjoint components. Our
algorithm approximately solves the constrained maximization (2) on a d × d rank-r Positive Semi-
Definite (PSD) matrix A within a multiplicative factor arbitrarily close to 1. It operates by recasting
the maximization into multiple instances of the bipartite maximum weight matching problem. Each
instance ultimately yields a feasible solution to the original sparse PCA problem; a set of k s-sparse
components with disjoint supports. Finally, the algorithm exhaustively determines and outputs the
set of components that maximizes the explained variance, i.e., the quadratic objective in (2).

The computational complexity of our algorithm grows as a low order polynomial in the ambient
dimension d of the input, but exponentially in its rank r. Despite the unfavorable dependence on
the rank, it is unlikely that a substantial improvement can be achieved in general [21]. However,
decoupling the dependence on the ambient and the intrinsic dimension of the input has an interesting
ramification; instead of the original input A, our algorithm can be applied on a low-rank surrogate to
obtain an approximate solution, alleviating the dependence on r. We discuss this in Section 3. In the
sequel, we describe the key ideas behind our algorithm, leading up to its guarantees in Theorem 1.
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Let A = UΛU
⊤ denote the truncated eigenvalue decomposition of A; Λ is a diagonal r× r whose

ith diagonal entry is equal to the ith largest eigenvalue of A, while the columns of U coincide with
the corresponding eigenvectors. By the Cauchy-Schwartz inequality, for any x ∈ R

d,

x
⊤
Ax =

∥∥Λ1/2
U

⊤
x
∥∥2
2
≥

〈
Λ

1/2
U

⊤
x, c

〉2
, ∀ c ∈ R

r : ‖c‖2 = 1. (3)

In fact, equality in (3) can always be achieved for c colinear to Λ
1/2

Ux ∈ R
r and in turn

x
⊤
Ax = max

c∈S
r−1
2

〈
x, UΛ

1/2
c
〉2
,

where S
r−1
2 denotes the ℓ2-unit sphere in r dimensions. More generally, for any X ∈ R

d×k,

TR
(
X

⊤
AX

)
=

k∑

j=1

X
j⊤

AX
j = max

C:Cj∈S
r−1
2 ∀j

k∑

j=1

〈
X

j , UΛ
1/2

C
j
〉2
. (4)

Under the variational characterization of the trace objective in (4), the sparse PCA problem (2) can
be re-written as a joint maximization over the variables X and C as follows:

max
X∈Xk

TR
(
X

⊤
AX

)
= max

X∈Xk

max
C:Cj∈S

r−1
2 ∀j

k∑

j=1

〈
X

j , UΛ
1/2

C
j
〉2
. (5)

The alternative formulation of the sparse PCA problem in (5) may be seemingly more complicated
than the original one in (2). However, it takes a step towards decoupling the dependence of the
optimization on the ambient and intrinsic dimensions d and r, respectively. The motivation behind
the introduction of the auxiliary variable C will become more clear in the sequel.

For a given C, the value of X ∈ Xk that maximizes the objective in (5) for that C is

X̂ , argmax
X∈Xk

k∑

j=1

〈
X

j ,Wj
〉2

, (6)

where W,UΛ
1/2

C is a real d× k matrix. The constrained, non-convex maximization (6) plays a
central role in our developments. We will later describe a combinatorial O(d · (s · k)2) procedure to

efficiently compute X̂, reducing the maximization to an instance of the bipartite maximum weight
matching problem. For now, however, let us assume that such a procedure exists.

Let X⋆, C⋆ be the pair that attains the maximum in (5); in other words, X⋆ is the desired solution
to the sparse PCA problem. If the optimal value C⋆ of the auxiliary variable were known, then
we would be able to recover X⋆ by solving the maximization (6) for C = C⋆. Of course, C⋆ is
not known, and it is not possible to exhaustively consider all possible values in the domain of C.
Instead, we examine only a finite number of possible values of C over a fine discretization of its
domain. In particular, let Nǫ/2(S

r−1
2 ) denote a finite ǫ/2-net of the r-dimensional ℓ2-unit sphere; for

any point in S
r−1
2 , the net contains a point within an ǫ/2 radius from the former. There are several

ways to construct such a net. Further, let [Nǫ/2(S
r−1
2 )]⊗k ⊂ R

d×k denote the kth Cartesian power
of the aforementioned ǫ/2-net. By construction, this collection of points contains a matrix C that is
column-wise close to C⋆. In turn, it can be shown using the properties of the net, that the candidate
solution X ∈ Xk obtained through (6) at that point C will be approximately as good as the optimal
X⋆ in terms of the quadratic objective in (2).

All above observations yield a procedure for approximately solving the sparse PCA problem (2).
The steps are outlined in Algorithm 1. Given the desired number of components k and an accuracy
parameter ǫ ∈ (0, 1), the algorithm generates a net [Nǫ/2(S

r−1
2 )]⊗k and iterates over its points. At

each point C, it computes a feasible solution for the sparse PCA problem – a set of k s-sparse
components – by solving maximization (6) via a procedure (Alg. 2) that will be described in the
sequel. The algorithm collects the candidate solutions identified at the points of the net. The best
among them achieves an objective in (2) that provably lies close to optimal. More formally,

Theorem 1. For any real d× d rank-r PSD matrix A, desired number of components k, number s
of nonzero entries per component, and accuracy parameter ǫ ∈ (0, 1), Algorithm 1 outputs X ∈ Xk

such that

TR
(
X

⊤
AX

)
≥ (1− ǫ) · TR

(
X

⊤
⋆ AX⋆

)
,

where X⋆, argmaxX∈Xk
TR

(
X

⊤
AX

)
, in time TSVD(r) +O

((
4
ǫ

)r·k
· d · (s · k)2

)
.
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Algorithm 1 Sparse PCA (Multiple disjoint components)

input : PSD d× d rank-r matrix A, ǫ ∈ (0, 1), k ∈ Z+.

output : X ∈ Xk {Theorem 1}
1: C ← {}
2: [U,Λ]← EIG(A)
3: for each C ∈ [Nǫ/2(S

r−1
2 )]⊗k do

4: W← UΛ
1/2

C {W ∈ R
d×k}

5: X̂← argmax
X∈Xk

∑k
j=1

〈
X

j ,Wj
〉2

{Alg. 2}

6: C ← C ∪
{
X̂
}

7: end for
8: X← argmax

X∈C TR
(
X

⊤
AX

)

Algorithm 1 is the first nontriv-
ial algorithm that provably approx-
imates the solution of the sparse
PCA problem (2). According to
Theorem 1, it achieves an objective
value that lies within a multiplica-
tive factor from the optimal, arbi-
trarily close to 1. Its complexity
grows as a low-order polynomial in
the dimension d of the input, but ex-
ponentially in the intrinsic dimen-
sion r. Note, however, that it can be
substantially better compared to the
O(ds·k) brute force approach that
exhaustively considers all candidate supports for the k sparse components. The complexity of our
algorithm follows from the cardinality of the net and the complexity of Algorithm 2, the subroutine
that solves the constrained maximization (6). The latter is a key ingredient of our algorithm, and is
discussed in detail in the next subsection. A formal proof of Theorem 1 is provided in Section 9.2.

2.1 Sparse Components via Bipartite Matchings

In the core of Alg. 1 lies a procedure that solves the constrained maximization (6) (Alg. 2). The
latter breaks down the maximization into two stages. First, it identifies the support of the optimal
solution X̂ by solving an instance of the maximum weight matching problem on a bipartite graph G.
Then, it recovers the exact values of its nonzero entries based on the Cauchy-Schwarz inequality. In
the sequel, we provide a brief description of Alg. 2, leading up to its guarantees in Lemma 2.1.

Let Ij,supp(X̂j) be the support of the jth column of X̂, j = 1, . . . , k. The objective in (6) becomes

k∑

j=1

〈
X̂

j ,Wj
〉2

=

k∑

j=1

(∑

i∈Ij

X̂ij ·Wij

)2

≤
k∑

j=1

∑

i∈Ij

W 2
ij . (7)

The inequality is due to Cauchy-Schwarz and the constraint ‖Xj‖2 = 1 ∀ j ∈ {1, . . . , k}. In fact,
if an oracle reveals the supports Ij , j = 1, . . . , k, the upper bound in (7) can always be achieved

by setting the nonzero entries of X̂ as in Algorithm 2 (Line 6). Therefore, the key in solving (6) is
determining the collection of supports to maximize the right-hand side of (7).

u
(1)

1

u
(1)
s

...

u
(k)

1

u
(k)
s

...

v1

vd

vi

...

...

...

W
2
i1

W
2
i1

W
2
ik

W
2
ik

U1

Uk

V

Figure 1: The graph G generated by
Alg. 2. It is used to determine the support
of the solution X̂ in (6).

By constraint, the sets Ij must be pairwise disjoint,
each with cardinality s. Consider a weighted bipartite
graph G =

(
U = {U1, . . . , Uk}, V, E

)
constructed as

follows1 (Fig. 1):

• V is a set of d vertices v1, . . . , vd, corresponding to
the d variables, i.e., the d rows of X̂.

• U is a set of k · s vertices, conceptually partitioned
into k disjoint subsets U1, . . . , Uk, each of cardinal-
ity s. The jth subset, Uj , is associated with the sup-
port Ij ; the s vertices u(j)

α , α = 1, . . . , s in Uj serve
as placeholders for the variables/indices in Ij .

• Finally, the edge set is E = U × V . The edge
weights are determined by the d×k matrix W in (6).
In particular, the weight of edge (u(j)

α , vi) is equal
to W 2

ij . Note that all vertices in Uj are effectively
identical; they all share a common neighborhood
and edge weights.

1The construction is formally outlined in Algorithm 4 in Section 8.
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Algorithm 2 Compute Candidate Solution

input Real d× k matrix W

output X̂ = argmaxX∈Xk

∑k
j=1

〈
X

j ,Wj
〉2

1: G
(
{Uj}

k
j=1, V, E

)
← GENBIGRAPH(W) {Alg. 4}

2: M← MAXWEIGHTMATCH(G) {⊂ E}

3: X̂← 0d×k

4: for j = 1, . . . , k do
5: Ij ← {i ∈ {1, . . . , d} : (u, vi) ∈M, u ∈ Uj}

6: [X̂j ]Ij ← [Wj ]Ij/‖[W
j ]Ij‖2

7: end for

Any feasible support {Ij}
k
j=1 corre-

sponds to a perfect matching in G
and vice-versa. Recall that a match-
ing is a subset of the edges con-
taining no two edges incident to the
same vertex, while a perfect match-
ing, in the case of an unbalanced
bipartite graph G = (U, V,E) with
|U | ≤ |V |, is a matching that con-
tains at least one incident edge for
each vertex in U . Given a per-
fect matching M ⊆ E, the dis-
joint neighborhoods of Ujs under
M yield a support {Ij}

k
j=1. Con-

versely, any valid support yields a unique perfect matching in G (taking into account that all vertices
in Uj are isomorphic). Moreover, due to the choice of weights in G, the right-hand side of (7) for
a given support {Ij}

k
j=1 is equal to the weight of the matchingM in G induced by the former, i.e.,

∑k
j=1

∑
i∈Ij

W 2
ij=

∑
(u,v)∈M w(u, v). It follows that determining the support of the solution in (6),

reduces to solving the maximum weight matching problem on the bipartite graph G.

Algorithm 2 readily follows. Given W ∈ R
d×k, the algorithm generates a weighted bipartite

graph G as described, and computes its maximum weight matching. Based on the latter, it first
recovers the desired support of X̂ (Line 5), and subsequently the exact values of its nonzero entries
(Line 6). The running time is dominated by the computation of the matching, which can be done in
O
(
|E||U |+ |U |2 log |U |

)
using a variant of the Hungarian algorithm [22]. Hence,

Lemma 2.1. For any W ∈ R
d×k, Algorithm 2 computes the solution to (6), in time O

(
d · (s · k)2

)
.

A more formal analysis and proof of Lemma 2.1 is available in Sec. 9.1. This completes the descrip-
tion of our sparse PCA algorithm (Alg. 1) and the proof sketch of Theorem 1.

3 Sparse PCA on Low-Dimensional Sketches

Algorithm 3 Sparse PCA on Low Dim. Sketch

input : Real n× d S, r ∈ Z+, ǫ ∈ (0, 1), k ∈ Z+.

output X(r) ∈ Xk. {Thm. 2}
1: S← SKETCH(S, r)

2: A← S
⊤
S

3: X(r) ← ALGORITHM 1 (A, ǫ, k).

Algorithm 1 approximately solves the
sparse PCA problem (2) on a d × d rank-r
PSD matrix A in time that grows as a
low-order polynomial in the ambient dimen-
sion d, but depends exponentially on r. This
dependence can be prohibitive in practice.
To mitigate its effect, we can apply our
sparse PCA algorithm on a low-rank sketch
of A. Intuitively, the quality of the extracted
components should depend on how well that low-rank surrogate approximates the original input.

More formally, let S be the real n × d data matrix representing n (potentially centered) datapoints

in d variables, and A the corresponding d×d covariance matrix. Further, let S be a low-dimensional
sketch of the original data; an n × d matrix whose rows lie in an r-dimensional subspace, with r
being an accuracy parameter. Such a sketch can be obtained in several ways, including for example

exact or approximate SVD, or online sketching methods [23]. Finally, let A = 1/n · S
⊤
S be the

covariance matrix of the sketched data. Then, instead of A, we can approximately solve the sparse

PCA problem by applying Algorithm 1 on the low-rank surrogate A. The above are formally out-

lined in Algorithm 3. We note that the covariance matrix A does not need to be explicitly computed;
Algorithm 1 can operate directly on the (sketched) input data matrix.

Theorem 2. For any n × d input data matrix S, with corresponding empirical covariance matrix
A = 1/n · S⊤

S, any desired number of components k, and accuracy parameters ǫ ∈ (0, 1) and r,
Algorithm 3 outputs X(r) ∈ Xk such that

TR
(
X

⊤
(r)AX(r)

)
≥ (1− ǫ) · TR

(
X

⊤
⋆ AX⋆

)
− 2 · k · ‖A−A‖2,

where X⋆, argmaxX∈Xk
TR

(
X

⊤
AX

)
, in time TSKETCH(r) + TSVD(r) +O

((
4
ǫ

)r·k
· d · (s · k)2

)
.
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The error term ‖A−A‖2 and in turn the tightness of the approximation guarantees hinges on the
quality of the sketch. Roughly, higher values of the parameter r should allow for a sketch that more
accurately represents the original data, leading to tighter guarantees. That is the case, for example,
when the sketch is obtained through exact SVD. In that sense, Theorem 2 establishes a natural
trade-off between the running time of Algorithm 3 and the quality of the approximation guarantees.
(See [24] for additional results.) A formal proof of Theorem 2 is provided in Appendix Section 9.3.

4 Related Work

A significant volume of work has focused on the single-component sparse PCA problem (1); we
scratch the surface and refer the reader to citations therein. Representative examples range from
early heuristics in [7], to the LASSO based techniques in [8], the elastic net ℓ1-regression in [5],
ℓ1 and ℓ0 regularized optimization methods such as GPower in [10], a greedy branch-and-bound
technique in [11], or semidefinite programming approaches [3, 12, 13]. Many focus on a statistical
analysis that pertains to specific data models and the recovery of a “true” sparse component. In prac-
tice, the most competitive results in terms of the maximization in (1) seem to be achieved by (i) the
simple and efficient truncated power (TPower) iteration of [14], (ii) the approach of [15] stemming
from an expectation-maximization (EM) formulation, and (iii) the (SpanSPCA) framework of [16]
which solves the sparse PCA problem through low rank approximations based on [17].

We are not aware of any algorithm that explicitly addresses the multi-component sparse PCA prob-
lem (2). Multiple components can be extracted by repeatedly solving (1) with one of the afore-
mentioned methods. To ensure disjoint supports, variables “selected” by a component are removed
from the dataset. However, this greedy approach can result in highly suboptimal objective value (see
Sec. 7). More generally, there has been relatively limited work in the estimation of principal sub-
spaces or multiple components under sparsity constraints. Non-deflation-based algorithms include
extensions of the diagonal [25] and iterative thresholding [26] approaches, while [27] and [28] pro-
pose methods that rely on the “row sparsity for subspaces” assumption of [19]. These methods yield
components supported on a common set of variables, and hence solve a problem different from (2).
In [20], the authors discuss the multi-component sparse PCA problem, propose an alternative ob-
jective function and for that problem obtain interesting theoretical guarantees. In [29] they consider
a structured variant of sparse PCA where higher-order structure is encoded by an atomic norm reg-
ularization. Finally, [30] develops a framework for sparse matrix factorizaiton problems, based on
an atomic norm. Their framework captures sparse PCA –although not explicitly the constraint of
disjoint supports– but the resulting optimization problem, albeit convex, is NP-hard.

5 Experiments

We evaluate our algorithm on a series of real datasets, and compare it to deflation-based approaches
for sparse PCA using TPower [14], EM [15], and SpanSPCA [16]. The latter are representative
of the state of the art for the single-component sparse PCA problem (1). Multiple components are
computed one by one. To ensure disjoint supports, the deflation step effectively amounts to removing
from the dataset all variables used by previously extracted components. For algorithms that are
randomly initialized, we depict best results over multiple random restarts. Additional experimental
results are listed in Section 11 of the appendix.

Our experiments are conducted in a Matlab environment. Due to its nature, our algorithm is easily
parallelizable; its prototypical implementation utilizes the Parallel Pool Matlab feature to exploit
multicore (or distributed cluster) capabilities. Recall that our algorithm operates on a low-rank ap-
proximation of the input data. Unless otherwise specified, it is configured for a rank-4 approximation
obtained via truncated SVD. Finally, we note that our algorithm is slower than the deflation-based
methods. We set a barrier on the execution time of our algorithm at the cost of the theoretical ap-
proximation guarantees; the algorithm returns the best result at the time of termination. This “early
termination” can only hurt the performance of our algorithm.

Leukemia Dataset. We evaluate our algorithm on the Leukemia dataset [31]. The dataset com-
prises 72 samples, each consisting of expression values for 12582 probe sets. We extract k = 5
sparse components, each active on s = 50 features. In Fig. 2(a), we plot the cumulative explained
variance versus the number of components. Deflation-based approaches are greedy: the leading
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Figure 2: Cumul. variance captured by k s-sparse extracted components; Leukemia dataset [31]. We
arbitrarily set s = 50 nonzero entries per component. Fig. 2(a) depicts the cumul. variance vs the
number of components, for k = 5. Deflation-based approaches are greedy; first components capture
high variance, but subsequent contribute less. Our algorithm jointly optimizes the k components and
achieves higher objective. Fig. 2(b) depicts the cumul. variance achieved for various values of k.

components capture high values of variance, but subsequent ones contribute less. On the contrary,
our algorithm jointly optimizes the k = 5 components and achieves higher total cumulative vari-
ance; one cannot identify a top component. We repeat the experiment for multiple values of k.
Fig. 2(b) depicts the total cumulative variance capture by each method, for each value of k.

Additional Datasets. We repeat the experiment on multiple datasets, arbitrarily selected from [31].
Table 1 lists the total cumulative variance captured by k = 5 components, each with s = 40 nonzero
entries, extracted using the four methods. Our algorithm achieves the highest values in most cases.

Bag of Words (BoW) Dataset. [31] This is a collection of text corpora stored under the “bag-of-
words” model. For each text corpus, a vocabulary of d words is extracted upon tokenization, and
the removal of stopwords and words appearing fewer than ten times in total. Each document is then
represented as a vector in that d-dimensional space, with the ith entry corresponding to the number
of appearances of the ith vocabulary entry in the document.

We solve the sparse PCA problem (2) on the word-by-word cooccurrence matrix, and extract k = 8
sparse components, each with cardinality s = 10. We note that the latter is not explicitly constructed;
our algorithm can operate directly on the input word-by-document matrix. Table 2 lists the variance
captured by each method; our algorithm consistently outperforms the other approaches.

Finally, note that here each sparse component effectively selects a small set of words. In turn, the
k extracted components can be interpreted as a set of well-separated topics. In Table 3, we list the

TPower EM sPCA SpanSPCA SPCABiPart

AMZN COM REV (1500×10000) 7.31e+ 03 7.32e+ 03 7.31e+ 03 7.79e+ 03

ARCENCE TRAIN (100×10000) 1.08e+ 07 1.02e+ 07 1.08e+ 07 1.10e+ 07

CBCL FACE TRAIN (2429×361) 5.06e+ 00 5.18e+ 00 5.23e+ 00 5.29e+ 00

ISOLET-5 (1559×617) 3.31e+ 01 3.43e+ 01 3.34e+ 01 3.51e+ 01

LEUKEMIA (72×12582) 5.00e+ 09 5.03e+ 09 4.84e+ 09 5.37e+ 09

PEMS TRAIN (267×138672) 3.94e+ 00 3.58e+ 00 3.89e+ 00 3.75e+ 00

MFEAT PIX (2000×240) 5.00e+ 02 5.27e+ 02 5.08e+ 02 5.47e+ 02

Table 1: Total cumulative variance captured by k = 5 40-sparse extracted components on various
datasets [31]. For each dataset, we list the size (#samples×#variables) and the value of variance
captured by each method. Our algorithm operates on a rank-4 sketch in all cases.
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TPower EM sPCA SpanSPCA SPCABiPart

BOW:NIPS (1500×12419) 2.51e+ 03 2.57e+ 03 2.53e+ 03 3.34e+ 03 (+29.98%)

BOW:KOS (3430×6906) 4.14e+ 01 4.24e+ 01 4.21e+ 01 6.14e+ 01 (+44.57%)

BOW:ENRON (39861×28102) 2.11e+ 02 2.00e+ 02 2.09e+ 02 2.38e+ 02 (+12.90%)

BOW:NYTIMES (300000×102660) 4.81e+ 01 − 4.81e+ 01 5.31e+ 01 (+10.38%)

Table 2: Total variance captured by k = 8 extracted components, each with s = 15 nonzero entries
– Bag of Words dataset [31]. For each corpus, we list the size (#documents×#vocabulary-size) and
the explained variance. Our algorithm operates on a rank-5 sketch in all cases.

topics extracted from the NY Times corpus (part of the Bag of Words dataset). The corpus consists
of 3 · 105 news articles and a vocabulary of d = 102660 words.

6 Conclusions

We considered the sparse PCA problem for multiple components with disjoint supports. Existing
methods for the single component problem can be used along with an appropriate deflation step to
compute multiple components one by one, leading to potentially suboptimal results. We presented
a novel algorithm for jointly computing multiple sparse and disjoint components with provable ap-
proximation guarantees. Our algorithm is combinatorial and exploits interesting connections be-
tween the sparse PCA and the bipartite maximum weight matching problems. Its running time grows
as a low-order polynomial in the ambient dimension of the input data, but depends exponentially on
its rank. To alleviate this dependency, we can apply the algorithm on a low-dimensional sketch of
the input, at the cost of an additional error in our theoretical approximation guarantees. Empirical
evaluation showed that in many cases our algorithm outperforms deflation-based approaches.
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