Supplementary Material:
Fast and Memory Optimal Low-Rank Matrix
Approximation

A Proofs

A.1 Proof of Lemmal[ll

We first recall the Matrix Bernstein inequality (Theorem 6.1 [[Tro12]), a concentration inequality for
the sum of zero mean random matrices. We will apply this inequality to ®.

Proposition 9 (Matrix Bernstein) Consider a finite set {X ) H<i<m of independent random ma-
trices, where every X is self-adjoint with dimension n, E[X)] = 0, and || X||s < R almost
surely. Let p? = || S | E[X W X O] ||y, Then,

}P’{HiX("’)H >z} < nexp 2
pt p=t = P>+ Rx/3)"

With a slight abuse of notation, in the remaining of this proof, we use A instead of Ap). Recall that
A is the i-th low of A and

O —E[®] =) ((A)TA’ — diag((A")TA") — E[(A") " A’ — diag((A")TA")]) .
i=1

Let X() = (A")T A — diag((A%) T A%) —E[(A") T A” — diag((A?) T A%)]. Then X ) is a self-adjoint
¢ x ¢ matrix and E[X "] = 0.

In order to use the Matrix Bernstein inequality, we find upper bounds of || X()|, and p? =
[ E[X®X®]|5. Since every entry of A’ is independently sampled with probability d,
[X®],, = O(1) if both u and v are sampled in A* and O(3?) otherwise. Therefore, since the
number of non-zero entries of A’ is bounded by 10, every row u of X () satisfies, for all 1 < i < m:

ra =Y _[[XP]| = 0(1) + 0(£5%) = O(1).
vFU

From the Gershgorin circle theorem, forall 1 <: < m
XDy =0(1). )
To derive a bound for p?, we need to bound the absolute value of each element of E[.X @) x @),
Since the number of non-zero entries of A® is bounded by 10, we have
EX®X®],,| =0(?) forall u##v and
EX®XO],,| =0(5%0) forall 1<u</.



Again, from the Gershgorin circle theorem, we deduce that:

ZE[X(Z')X(Z')]

i=1

2

2

Therefore, from @), (3), and PropositionEl, with probability 1 — %2,

|® — B[]l = O (v/&milog(?))

from which we conclude the proof as follows:

1@ = 0* (M) " Mpylla < [|8%diag((M(s)) " Mp))ll2 + | @ — E[®]]|2

O(5/mllog(?)).

A.2 Proof of Lemmal[2

The proof exploits Lemma 3.4 [Trol1]], quoted below.

Lemma 10 (Corollary of Lemma 3.4 in [Troll]) Let V be an n x i matrix with orthonormal
columns and define p = nmaxi<j<y, ||V?||3 and o = When the rows of V' are randomly

shuffled, with probability

et alogi € alogi
[T Y
(ig=) o)

there exists an £ X i matrix with orthonormal columns V such that
. { /
|- \f VI <ey/-.
nol, n

. —€ € . .
In Lemma we can Wwrite ufeﬁ and O-&-zﬁ as functions of ¢&2. Since

A (—z — (1 -2)log(l — z)) =log(1 — z) and log(1 — z) is a decreasing function,

ploge*

—&

2
<exp <_Z> . (©)

Analogously, since - (z — (1+ z)log(1 + z)) = —log(1 + z) and —log(1 + z) is a decreasing
function,

eE

Ao =exp (e — (14+¢)log(l +¢))

<exp (f% log(1 + %))

52
< exp (4(1 m) . ™)

Next, we evaluate the parameter ¢ defined in Lemma [T0] for our matrix V;.; and then use (&), (7),

and Lemma [10| applied to V}.; with e = mT3 to prove Lemma [2| Since M is a bounded matrix,
every column of M satisfies:
k

D SNV < M5 < m.

j=1



Therefore, when s 2 S \/mé log(¢), p < 27?17\14 7 5["54 o and thus,
m¥ log

mllog(?) < 1

— . 8
mdlogi ~ mz83 log(m) ®)

Let e = m™ 3. Combining (@), (7), and (8) and the result of Lemma we can conclude that when

0 < m~%/9, with probability 1 —exp(—m'/7), there exists an £ x i matrix with orthonormal columns
V such that
l

n .

A.3 Proof of Lemma[3l

The SPCA (Spectral Principal Component Analysis) algorithm is inspired by the randomized power
iteration algorithm (Algorithm 4.3 in [HMTI11]]). Lemma is an extension of results in [HMT11]]
where we show that 5 log(¢) iterations are sufficient to compute the low-rank approximation of ®.

Lemma 11 After the power method with 5log({) iterations, with probability 1 — 4z,
(I = QQT)®|3 < 2811(®).

Proof: Let & = U®)X(®)(U®)T be the singular value decomposition of & and Ul(s? be the top
k singular vectors of ®. From Edelman’s theorem [Ede88], the ¢ x k Gaussian random matrix ()
whose entries are independent gaussian random values with unit variance satisfies:

P{si(U5)TQ) < ek 3} = 0(e). ©)
From Proposition 2.4 in [RV10], we can bound the largest singular value of 2 as follows:
P{s1(Q) > log(¢)V} < exp(—0). (10)
Then, from (9) and (10), with probability 1 — 7,
% < (4 (11
sk((Ury ) ')

When the inital matrix 2 satisfies (TT)), from Theorem 9.1 and Theorem 9.2 in [HMTITI],

(I — Q|2 1+ (%) Ski1(®P)
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Since ® = LLV P (512 ()T 4y and skH(fo}(z};g,) (VNT) = 0, from Lemmalt 1]
the output @) of the SPCA satisfies with probability 1 — =
I(I-QQT)®[ls < 23k+1(¢’)
< 251(Y). (12)

Therefore,

0% (B — (B 8% (B _ (B

==V (S (R T -T2l < ||fv1<k?<zlk/> (VDT —@fls + | — QQT @2
< Y] + 2800 (@) < 3V ]2,

from which we conclude

2y — o _
(TP O, 1 <NV EEPENT - Q0T ),
1:4 = 52%Si(M)2




3Vl
= 2L, (M)?

since
B 5 J4 526 — (B i B
1QTVEY I ==s:(M)? <= QI V{7 (1) () e

4

(a) = =
QT (QQTfD Ty s .>2<v1€§?f)v1€?)||2

<logTe -~ gvff?@% 2N o,
where (a) stems from the following equations:
0=QIQQ"®
~oI (Zr@ et + (eTe - LB etrm)T) )
~or (St e+ (eore - ZuBettre @) ) v
520

20+ (B) ot o ] ]
LI )T + QT (e@Te - SlnE eI ) WY

A.4 Proof of Lemmald]
We first recall the matrix Chernoff bound (Theorem 2.2 in [Trol1]]) which provides an upper bound
on the largest singular value of a sum of matrices which are randomly sampled from a matrix set

without replacement.

Proposition 12 (Matrix Chernoff) Let X' be a finite set of positive-semidefinite matrices with
dimension d and satisfy maxxex s1(X) < « Let Bmax = %Sl(ZXeX X). When

{X W X (e)} are sampled uniformly at random from X without replacement,

(Z) ee Bmax/a
ZX 1 + E)ﬁmax S d W fOl" Ve Z 0.

Next we prove Lemma Let G = (I — Ul:k/UlT:k,)M(B). Indeed, GG is a sum of matrices
sampled uniformly at random without replacement from

X = {(I~Urw Uy )My (L= U Uy ) M) o (T= Ui Ul ) Moy (I = Urae Uyl ) M) T .

We apply Chernoff bound to GG the dimension is m, o = m and Bpax = %si, 41(M). Then,
from Proposition[12]

B 141 (M)
T E 2 e mn k41
P Sl(GG ) 2 (1 + E)Esk/+1(M) S 14 W for e 2 0. (13)

When we set ¢* = 7&7% and § < m~9, from (7) and (T3], we get:

P {sl(GGT) > Ssi,H(M) + % mﬂlog(ﬁ)} <lexp ((5* —(1+¢e")log(l+¢%)) nf?lsi/ﬂ(M))

s (-7) st
<exp (*ml/“) :



where the last inequality stems from the fact that when * > 1,
(e%)? 14 e\ £ 5 mllog(¢) 1/4
(4(1—1—5*) mnsk (M) 2 8 ) mn’ +1(M) 8om smean
when e* < 1,

(e)? 1y (M2 ¢ _ nlog(?) 174
(4(1—|—€*)) Sk’+1(M)Z(_ S >msk,+1(M)_85252,+1(]\l)>m/'

From the definition of &', we deduce that with probability 1 — exp(—m!/%),

2 14
1T = Ut Ul ) M I3 < 5 /milog(0) + ~ 521 (M),

A.5 Proof of Theorem

Recall that k&' = max{i : s3(M) > £+/mllog({),i < k}. We first consider j > k’. Since
§%s3(M) < %\/mﬂ log(¢) for all j > k', it suffices to show that ||(V1(:?))TQLH2 < 3 which is
rivial since [[V,\5 [l = 1, |Q[|2 = 1.

Consider now i < £’. From Lemma with probability 1 — 4,

3|2 820 - (B) (B
I T QL2 < Trpay e V=)o - — V5 VD Tz
n
Therefore, we can conclude the proof if we show that:
520 520 2
|@ — Vi S () Tl < st (M) + 8P mie + 5y/comelog(6).  (14)
To this aim, we first split & — Ll Vl(f,) (2};’,;1)2(V1€f))7 into 3 parts as follows:
5 g B / B
& — — Vi (S VDT = (@ = 8 (M) " M) +8* (M) " (I = UnieUyr) My +

(B = (B
5 ((M(B))TUW Ul My — Vi) (SH )%VM)T)
15)
Theni from Lemmal[I] the first term in the r.h.s.of the above expression satisfies that with probability

1—
|® — 6*(M()) " M()lla < e16\/mllog(f) (16)

For the second term in the r.h.s., since (I — Ulzk/Ul:k,) is a projection matrix,

2R

-
(I-UUly) = (I -UwUly) (I-UwUl),
we deduce, from the definition of k£’ and LemmaEL that with probability 1 — exp(—ml/ 4),
S(Mp))" (I =UrwUly) Mpyllz = 0% (I = Urw Ulyy) M)l

52 ésk_ﬂ M) + 25y/mllog() 17)

Finally, from Lemma with probability 1 — exp(—m!/7),

IN

Z N —
62“ ) Ui UL wMp) — 7V1(llj’)(2% )2 1(5’))TH2
B . B B — (B
= |V SN T - et )T
g y4 o=
<0?||ViR S (i) T - \/;fo?@%;’;,)?( ST+



¢ (B L — (B ! —(B .k —(B
5 \/;Vﬁk?@};’zo%vlﬁk?f - VR T,
B) ’ (B
<e v ], [T - L] +
n 2
52 \/;fof) 7®) H, SIAE (Vl(:fl))TH2

<26%m3 e, (18)
since [ ]}z < v, [V BEL 2 < Vil and || £(SEE) (VDT < moi
Therefore, (T4) holds with probability 1 — 2, when we combine (T6), (T7), and (I8) with (T3).

A.6 Proof of Theorem

We first state some useful lemmas on the random matrices A — §M and A(Byy — 0M(p).

Lemma 13 (Theorem 3.1 in [AMO07]) When log ) < 5, with probability 1 — exp(— log* m),
1A~ 6Ms = O(/5m 7).

Lemma 14 With probability (A(B,) — E[A(B)])Qukll2 £ V262mn.

Proof: Since entries of A(p,) are randomly sampled with probability § and independent with @, for
alll <i<nandl1l <j <k,

E[(10M T (A(p) ~ ElAmy) @) ]

m L
=B[(63 Y MuilAmy — BlAmy o)

u=1v=1

25222 QUJE A(Bz)_ [A(BQ)]]uv)Q]

u=1v=1
m L
<3S G <o
u=1 v=1
From the above inequality, E[[|6M " (A(g,) — E[A(5,)]) Q%] < 6*kmn. Therefore, by the Markov

inequality,

E[|l6M " (Ap,) — E[A(5,)))Ql|7]
252mn

P {||6M " (A(p,) — E[A(p,)))Qurll3 > 26°mn}

INIA

k6.
|

To prove Theorem [6] we use (T9) to (23], which hold with probability 1 — ké from Lemma
Lemmaf] Theorem [5} Lemma[13} and Lemmal[i4]

n — 1
|\/;fo) ~ VN2 <m7E, 19)
2
(I = Uro U ) M) |15 < 5 v/mllog(f) + 3k+1(M) (20)
_ 362(s2 (M) +2min) + 3(2 + ¢1)8% /mllog(f)
VT Qe < == 5252(M) e ’ @D

|A—6M|ls = O(/6(m+n)), and (22)



IE[AD T ((A(s,) — E[A5,))Qu)ll2 < V282mn. (23)

Now since [[V;7 V. o = /1~ [V, Py l2 = se((T — ViV )Py,

P (O AVE]P
a:[|z[>>0 V|2

Vi Vi2 =

9

to complete the proof of Theorem |§|, we need to show that for all 7 < &/, there exists a unit vector
(%) such that:

(I =V, VT V@, _0 (sﬁﬂ( ) + nlog(m)y/m/8 +m/nlog(m )/5) o

||f/gc<z‘>||2 s2(M)

K3

To this aim, for all i < &/, we set (Y as a ¢ x 1 unit vector (i.e., [|z(? l2 = 1) such that

17T QePly > /1 (V)T Qa3 @5)
IV 0T < (V)T Qa2 and (26)
IVEP)TQeM ]y = 0 when i>2. o7

We further write V as a sum of a signal matrix .S and noise matrices Z1, Z5, Z3, and Z, defined
below.

V o= MW 4+ (A-sM)"W

{
= \/7MTU1 ST ( fo/) Q+ 0 M Uy St (Vi — \/; 1(]13/)) Q+

M7 (1 — Urge Uy )M (3)Q + SM T (A () — OM(5))Q + (A — M)W
= S+Zl+Zz+Z3+Z4, (28)

where S = 52\/>V1 ke ( Vl(f,))TQ
0 _
= M U SEE (VL — \/;fo))TQ, Zy = 82MT (1 — Urp U ) M3 Q,
Z3=6M" (Ap,) — 0M(p)Q,  and Zy=(A—-5M)TW.
Then, the signal and noise matrices amplify z(*) in their directions as follows:
o from @3). |V, 5201y > \/Lo22 (M1 — (7)) -QLH%;

e from @6) and @7), ||(I — V,"V;)Sz@ || < \[62 2 BN Q|
e from (I9) and s; (M) < /mn,

Y )
112 l> <0l M T Urae SR (Vi — \f VDT l211Qa 1
2?3/t
e from the definition of k" and (20),
1220l < 18°MT (1= Vs U)o H(lfUlzk/UImM(B)uznczx@nz

¢
828 11(M) \/ siH(M)—i— 3 ml log(¢)

2n
= s (M \/>\/Sk’+1 Sk+1(M)+ 57 mflog(f))

(52\/>sk+1 M) + 25+y/mnlog(¢)

IN

IN



e from @2, | Z32@ ||y = O(6y/mn);
e finally, since [|[Wz( ||y = O(v/dm) thanks to the trimming process corresponding to the
line 3 in the pseudo-code and ||A — §M||2 = O(1/d(m + n)) from 23),

1242l = O(8y/m(m + n)).
From the above conditions, when § < m~8/9, there exists a constant C' such that

Zac()2<C’ 52 éSQ M) + 6/ mnlog(f) + dm and (29)
o k1

362(s71 (M) + 2m3n) + 3(2 + ¢1)0% \/ml log(l)

C (525§+1<M) + 62\ /mllog(l) + 5%\@)

since 45 +/mllog(f) = nlog(m) ﬁi‘;%%g > nmis > nms.

M=

1

<.
Il

IA

(30)

e
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We are now ready to establish (24). When
4
\/;62512(M) <20 (52\[sk+1 M) + §y/mnlog(l) + 6m> ,

V.V YV s2 nlog(m)y/m m+/nlog(m
(29) is trivial since % < 1 and Sk los i?(MgéJr log(m)/0 _ Q(1).
When

\/Z(S%?(M) > 20 (52\/Zsi+1(M) + dy/mnlog(f) + (5m) :
from 1), (29), and (30),
4
o o . . 7
IVa@llz 2 ViV, VD]l > [ViViT Szl = Y 1|1 Z;2 W] = @ (\/;528?(]\4)) and

j=1

I = ViV, )V

4
< U =ViTVi)SaWllz + ) 11222
j=1

i _ Y4
< \/;62s$+1<M>|<vff>>T Qull+C (#ﬁszﬂ(m +6y/mnlog(6) + 6m>

L 1
m log(é) _ m log(é m n log(m)
which implies (24), since % < nlog(m),/5 and %,/ <m .

A.7 Proof of Theorem 7]

The proof exploits the fact that the statements of Lemma [I3] and Theorem [6| hold with probability
1 — k6.

With probability 1 — k4, from Theorem[6] for all i < k:
l[s: (MU V" (I = Py) |3 =s:(M)*|V;" (I — Py) |7

71 (M) + nlog(m)/% +m\/"1°g(m)

s7(M)

<s;(M)?* | min< 1, ¢y




sc <5i+1(M) + nlog(m)\/?+ m\/@> )

Therefore, since || M — %fl”g = 0(y/d6(m + n)) from Lemma
. 1- 15
MO —GVTIE = IM® = ZAP I = M) - MPy + (M - AP

1 -
MO = Py) = (O = MOWPy + (O = DR

B Matrix completion

The SLA algorithm can be extended to tackle matrix completion problems. In these problems, we
wish to recover a rank-k matrix M from a matrix A obtained by randomly erasing each entry of
M with probability 0. We present this extended algorithm, referred to as SMC (Streaming Matrix
Completion), in Algorithm[I] The only notable difference compared to SLA is that SMC has to first
estimate the sampling rate &, and if the estimated sampling rate is larger than (log(m))*/m, SMC
further samples the entries of A so that the probability for each entry of the resulting matrix to be
non-zero is equal to (log(m))*/m. We provide more explanations below.

Algorithm 1 Streaming Matrix Completion (SMC)
Input: {A;,..., A} k
1. A(py < [A1, ..., Ag]: store columns until the number of observed entries exceeds
2.0 ﬁ Z(i,j) 1([14(3)]1'3' > O)
3. A(p) ¢ sample [Ap Ag+1,AL
4, A(Bl)a A(Bz) — Spllt(A (B)> 2,2, 5)
5. (PCA for the first block)Q) <— SPCA(Ag,), k)

6. (Trimming rows and columns)
A(B,) < make the rows having more than two observed entries to zero rows

m
logm

_ ] with rate min{1, log” syl

m))

A(B,) + make the columns having more than 10/mé non-zero entries to zero columns
7. (Reference Columns) W <+ A(p,)Q
8. (Principle row vectors) V1 « (A(p,)) "W
9. (Principle column vectors) I+ A B])VM
Remove A(py, A(B,), A(B,), and Q from the memory space

fort: I\mj‘i—ltondo

10. A; < sample A; with rate min{1, %}
11. A; < Split(4,, 1,2, 6)
12. (Principle row vectors) Vit (At)TW
13. (Principle column vectors) I+ 1+ A, vt
Remove A; from the memory space
end for
14. R + find R using the Gram-Schmidt process such that V R is an orthonormal matrix.
15. U « ;I RRT

Output: [TV |}

In SLA algorithm, § is an important parameter which controls the batch size ¢ = 51 — and the

output matrix U = (151 RRT. Therefore, SMC should include some additional steps to set ¢ and



Algorithm 2 Split
Input: A:a,b, )
Initial: A, ..., A < zero matrices having the same size as A
for every [A],, do
v < s C{1,...,b} which is randomly selected over all subsets of {1, ..., b} with probability

3 (%)‘Sl (1- %)b *Iif s is not the empty set and with probability 1 — 2(1 — (1 — £)¥) if s is
the empty set
fori € vdo
[A(l)]uu — [A]uu
end for
end for

Output: A,..., A©@

compute %IA RRT without prior knowledge on 4. The lines 1 and 2 of Algorithm are the additional
part. First, in Line 1, we store columns until the number of observed entries exceeds % so that the

required memory space becomes O(m). Then, in Line 2, we compute 8, an estimate of the sampling
rate §. Since the number of observed entries is large enough, one can easily show Lemma [I5] from
the Chernoff bound.

Lemma 15 With probability 1 — 5, 6%5‘ =0 (m~/%log(m)).

4
Then, to handle the case where § > %, the SMC algorithm undersamples the input matrix A
4
with rate %. From the undersampling process, the sampling rate of the input matrix changes to

m

log®(m)
m log® (m)

4
. Since the sampling is updated to w, SMC receives more columns and stores
columns to run the first step of the SLA algorithm.

Another non-trivial part in the SLA algorithm is the two independently sampled matrix Ap,) and
A(B,)- In Line 4 of SMC, we construct 2 undersampled copies of A(py so that we have two in-

dependently sampled matrices A(p,) and A(p,) with rate g. Note that for the matrix completion
problem, a simple undersampling procedure does not produce independently sampled matrices. The
Split algorithm explains how to make such matrices and its pseudo code is give in Algorithm [2]
With these additional steps, the matrix completion algorithm become similar to the SLA algorithm

with sampling with rate %. Since M is of rank k (i.e., sx1+1(M) = 0), from Theoremand
Lemma|[T3] we conclude that:

PN N2 A
pr-@uT 1M SOVTIE+ (- §) IO TR

T ol ) o)
= (% (g * gt

Corollary 16 When § > W, with probability 1 — k%, the output of the SMC algorithm

satisfies: 1M — [:Z:TBH% —0 (k2 (logtm) + n(log?m))3>) .

The complexity of SMC is O (kn(log(m))*) and its memory requirement is O(km + kn).

References

[AMO7] Dimitris Achlioptas and Frank Mcsherry. Fast computation of low-rank matrix approxi-
mations. Journal of the ACM (JACM), 54(2):9, 2007.

10



[Ede88] Alan Edelman. Eigenvalues and condition numbers of random matrices. SIAM Journal
on Matrix Analysis and Applications, 9(4):543-560, 1988.

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM review, 53(2):217-288, 2011.

[RV10] Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: ex-
treme singular values. arXiv preprint arXiv:1003.2990, 2010.

[Troll] Joel A Tropp. Improved analysis of the subsampled randomized hadamard transform.
Advances in Adaptive Data Analysis, 3(01n02):115-126, 2011.

[Trol2]  Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389-434, 2012.

11



	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	Matrix completion

