A Proof of Lemma [0
Proof. The proof follows a standard argument, which can be found in Bartlett and Mendelson [S, Theorem 8].
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In the third line, we used McDiarmid’s inequality and introduced Rademacher random variables o;,, €
{—1, +1}; the expectation is over both the Rademacher random variables and the training samples (Zipq, Yipq)-
Using the fact that c+1/,/p < c+1 =: c, the last term can be upper bounded by the last term in the statement.

We further analyze the first term. Using the Lipschitz continuity of £ and the bound on |yipq|, we have
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Finally, using the definition of D and Hoélder’s inequality, we have
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which concludes the proof. O

B Proof of Theorem 0
Proof of inequality (): From Tomioka et al. [3, Lemma 1], we have
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where the infimum is over three tensors D), D and D® that sum to the original tensor D, and I lop is

the operator norm (maximal singular value). Since we can take any D 0 equal D, the norm can be upper
bounded as follows:

1Dl overtape < min | Dy o

Since the expectation of minimum over k can be upper bounded by the minimum of expectations, we have
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Now we upper bound each expectation using Theorem 6.1 in Tropp [24, see also Remarks 6.3 and 6.5], which
states that
Dy exp(—3t2/80}), fort < oi/Rs,
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and

]E||D(k)“0p < C(crk\/long + Ry long), (11)

where C' is an absolute constant, and
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Due to our assumption ||&;pq|| < R, we can take Ry, = R/m. Thus the remaining task is to compute o7 for
k=1,2,3.

First for k = 1, the unfolding Z é“;;z is a d X PQ matrix that contains o;pq®ipq/Mpg in the column specified by
(p, q). Therefore, using mpq > m and ||Cpq|| < k/d, we obtain
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from which we have
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Similarly, since the choice of (p, ¢) is uniform over [P] x [Q], we have
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from which we have
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Substituting inequalities (I2) and (I3) into (), we have
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Following a similar line of argument, we have
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Taking the minimum over k and dividing by |S

R
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, we obtain inequality (). |
Proof of inequality (8): From Tomioka et al. [T, Lemma 1], we know that
1Pl ateni= = max [[D)llop-

Combining inequality (IT) with a union bound, we have
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from which we have

ED| atent < C (ml?x Ok \/log(mgx Dy) +log3 + max Rk(log(mgx Dy) + log 3)) 14
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Here we used R = R/m and the simplifying assumption that max Dy, > 3 in the second inequality. Finally,
using o1, < \/K|S| Dk /(mdPQ) as in the proof of inequality (@), we obtain inequality (B).
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Proof of inequality (8): Following the proof of [ZT, Lemma 1], we have
IPlscarea= = max y/nil| Dk fler,

where n1 = d, no = P, and ng = Q. Thus, replacing oy, and Ry, with /noy, and y/ng R/m in inequality
(@), respectively, we have
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Finally, since ny Dy, = n? + dPQ < 2dPQ, we have
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The last claim of the theorem is true, because m|S| > R?(maxy n)(log,, Dx)/~ implies

which gives inequality (H).
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