
A Some Special Cases of Interest

Finally, before proving our main results, we illustrate and discuss a few special instances of the
considered setting and related quantities.

Linear and Functional Regression In classical linear regression, data are described by the fol-
lowing model

yi = wT
⇤ xi + �i, i = 1, . . . , n

where �i, i = 1, . . . , n, are i.i.d. sample from a normal distribution and w⇤, x1, . . . , xn 2 Rd,
d 2 N⇤. In fixed design regression, the inputs x1, . . . , xn are assumed to be fixed, while in random
design regression they are random sample according to some fixed unknown distribution [30]. It
is easy to see that this latter setting is a special case of the framework in the paper (indeed the
analysis in the paper can be also adapted with minor modifications to the fixed design setting).
The regression model can be further complicated assuming the function of interest to be non linear
(while we might still restrict the search of a solution to linear estimators). This can be dealt with for
example considering kernel methods as we discuss below. Another special case of the setting in the
paper is that of functional regression, where the input points are assumed to be infinite dimensional
objects, for example curves, and they are formally described as functions in a Hilbert space. Clearly
also this example is subsumed as a special case of our setting.

Learning with Kernels The setting in the paper reduces to nonparametric learning in RKHS as a
special case. Let ⌅⇥R be a probability space with distribution µ, that be can seen as the input/output
space. The goal is then to minimize the risk, that, considering the square loss function, is given by

E(f) =
Z

⌅⇥R
(y � f(⇠))2dµ(⇠, y) (21)

and is well defined for all measurable functions. A common way to build an estimator is to consider
a symmetric kernel K : ⌅ ⇥ ⌅ ! R which is positive definite, that is for which the matrix with
entries K(⇠i, ⇠j), i, j = 1 . . . n, is positive semidefinite for all in ⇠1, . . . , ⇠n 2 ⌅, n 2 N⇤. Such
a kernel defines a unique Hilbert space of function HK with inner product h·, ·iK and such that for
all ⇠ 2 ⌅, K⇠(·) = K(⇠, ·) 2 HK and the following reproducing property holds for all f 2 HK ,
f(⇠) = hf,K⇠iK . To see how this setting is subsumed by the one in the paper, it is useful to
introduce the (feature) map � : ⌅ ! HK , where �(⇠) = K⇠, for ⇠ 2 ⌅ and further consider
� : ⌅ ⇥ R ! HK ⇥ R, where �(⇠, y) = (K⇠, y), for ⇠ 2 ⌅ and y 2 R. Assuming the kernel to
be measurable, we can view � as a random variable. If we denote its distribution on HK ⇥ R by
µ�, then we can let H = HK and ⇢ = µ�. It is known that the functions in a RKHS a measurable
provided that the kernel is measurable [30], hence if we consider the risk of a function f 2 HK we
have
Z

⌅⇥R
(y � f(⇠))2dµ(⇠, y) =

Z

⌅⇥R
(y � hf,K⇠iK)

2dµ(⇠, y) =

Z

H⇥R
(y � hf, xi)2d⇢(x, y),

where we made the change of variables (x, y) = (K⇠, y) = �µ(⇠, y). As is well known in machine
learning, we can view learning a function using a kernel as learning a linear function in suitable
Hilbert space.

Integral and Covariance Operators. The operator L defined in (4) can be seen as an integral
operator associated to a linear kernel and is closely related to the covariance operator, or rather the
second moment operator defined by ⇢. This connections allows to interpret Assumption 2 in terms
of the principal components. To see this recall the definition of the linear operator

S : H ! L2
(H, ⇢X) : w 7! hw, ·iH,

introduced in Section 3.2.

Under Assumption 1 it is easy to see that S is bounded, and its adjoint is given by

S⇤
: L2

(H, ⇢X) ! H, S⇤f =

Z

H
xf(x)d⇢X(x), 8f 2 L2

(H, ⇢X).
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Then a straightforward calculation shows that L = SS⇤. Moreover we can define T : H ! H as
T = S⇤S and check that

Tw =

Z

hx,wixd⇢X(x), 8w 2 H.

The operator T is the second moment operator associated to ⇢ and its eigenfunctions are the principal
components. Under Assumption 1, the operators T, L are linear, positive, sef-adjoint and trace
class, S, S⇤ are bounded and Hilbert Schmidt, hence compact. The operators T, L have the same
non zero eigenvalues (�j)j which are the square of the singular values of S. If we denote by
(vj)j the eigenfunctions of T , the eigenfunctions of L can be chosen to be (uj)j with uj(x) =

��1
j hvj , xiH, ⇢X -almost surely. This latter observation allows an interpretation of Condition (5).

By considering higher fractional power we are essentially assuming that the regression function
can be linearly approximated and its approximation can be effectively represented considering the
principal components associated to large eigenvalues.

Binary Classification The results in the paper can be directly applied to binary classification.
Indeed, in this setting the outputs are binary valued i.e. {�1, 1} and the goal is to learn a classifier
c : H ! {�1, 1} with small misclassification risk

R(c) = P (c(X) 6= Y ) . (22)

The above risk is minimized by the so called Bayes decision rule defined by b⇢(x) = sign(2⇢(1|x)�
1), ⇢H - almost surely, and where for a 2 R, sign(a) = 1, if a � 1 and sign(a) = �1 otherwise. A
relaxation approach is usually considered to learn a classification rule, which is based on replacing
the risk R with a convex error functional defined over real valued functions, e.g. considering (21).
A classification rule is then obtained by taking the sign.

So called comparison results quantify the cost of the relaxation. In particular, it is known that the
following inequality relates R and E defined in (22) and (21), respectively,

R(sign(f))�R(b⇢) 
q

E(f)� E(f⇢)

for all measurable functions f . The latter inequality allows to derive excess misclassification risk and
can be improved under additional assumption. We refer to [34] for further details in this direction.

B Proofs

In this appendix we prove the main results. The proof is quite long, and will be given relying on a
series of lemmas.

B.1 Preliminary Results

We collect very general results that will be applied to our setting.

Let B be a normed space. For every r 2 N, let Ar : B ! B be a linear operator, let (Br)r2N be a
sequence in B, and define the sequence (Xr)r2N in B recursively as

Xr+1 = ArXr +Br. (23)

We repeatedly use the following well-known equality, which is valid for every r 2 N⇤ and for every
integer s  r,

Xr =

 

r�1
Y

i=s

Ai

!

Xs +

r�1
X

k=s

 

r�1
Y

i=k+1

Ai

!

Bk . (24)

We next state an auxiliary lemma, establishing the minimizing property of the gradient descent
iteration also when the infimum is not attained. Despite the result is a basic property of a very
classical algorithm, we were not able to find the proof of this fact. Convergence properties of
gradient descent are usually studied in two settings: for differentiable functions (not necessarily
convex) and for convex functions. In the first case, the typical results do not assume existence of
a minimizer and establish convergence to zero of the gradient of the function [24]. In the convex
setting, the minimizing property is established assuming the existence of a minimizer [24].
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Lemma 1. Let H be a Hilbert space, and F : H ! R be a convex and differentiable function with
�-Lipschitz continuous gradient. Let v0 2 H, let (⌘)k2N be such that, for every k 2 N, ⌘k 2 ]0, 2/�[
and define, for every k 2 N, vk+1 = vk � ⌘krF (vk). Then

(8u 2 H) F (vk)� F (u)  ku� v0kH
2

Pk
j=0 ⌘j

(25)

In particular, if
P

k2N ⌘k = +1, F (vk) ! inf F .

Proof. Since F is convex and differentiable,

(8k 2 N)(8u 2 H) F (u)� F (vk) � hrF (vk), u� vkiH
= ⌘�1

k hvk � vk+1, u� vkiH. (26)

Therefore,

(8k 2 N) 2⌘k(F (u)� F (vk) � �2hvk+1 � vk, u� vkiH
= ku� vk+1k2H � kvk+1 � vkk2H � ku� vkk2H
= ⌘2kkrF (vk)k2H + ku� vk+1k2H � ku� vkk2H (27)

Let t 2 N and define �t =
Pt

k=0 ⌘k. Summing (27) for k = 0, . . . , t we obtain

2�tF (u)� 2

t
X

k=0

⌘kF (vk) �
t
X

k=0

⌘2kkrF (vk)kH + ku� vt+1k2H � ku� v0k2H. (28)

Using the Lipschitz continuity of the gradient of F (see [24, Equation (15) p.6]),

(8k 2 N) F (vk)� F (vk+1) � ⌘k

✓

1� ⌘k�

2

◆

krF (vk)k2H

Therefore,

(8k 2 N) �kF (vk)� �k+1F (vk+1) + ⌘k+1F (vk+1) � �k⌘k

✓

1� ⌘k�

2

◆

krF (vk)k2H (29)

Summing (29) for k = 0, . . . , t� 1 we get, for every t 2 N

��tF (vt) +
t
X

k=0

⌘kF (vk) �
t�1
X

k=0

�k⌘k

✓

1� ⌘k�

2

◆

krF (vk)k2H (30)

Adding (30) to (28) we get, for every u 2 H

2�t(F (u)� F (vt)) �
t
X

k=0

⌘2kkrF (vk)kH + ku� vt+1k2H

� ku� v0k2H + 2

t�1
X

k=0

�k⌘k

✓

1� ⌘k�

2

◆

krF (vk)k2H

and hence,

(8u 2 H) F (vt)� F (u)  ku� v0k2H
2�t

.

We next recall a probabilistic inequality for martingales [23, Theorem 3.4] (see also [32, Lemma
A.1 and Corollaries A.2 and A.3]).
Theorem 4. Let (⇠i,Fi)1in be an adapted family of random vectors taking values in a Hilbert
space with norm k · k, such that E[⇠i|Fi�1] = 0 a.s. Assume that there exist M 2 R++ such that
k⇠ik  M . Then, for every � 2 ]0, 1[ the following holds

P
 (

sup

1jn

�

�

�

1

n

j
X

i=1

⇠i

�

�

�

 8M

3

p
n
log

2

�

)!

� 1� � .
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B.2 Proof of STEP 1

Here we first introduce a recursive expression which is satisfied by the sequence (ŵt)t2N, that allows
to interpret the incremental gradient iteration as a gradient descent iteration with errors. To do so,
we start by introducing some further notation and then show that the iteration presented in (7)-(8)
results from the application of the incremental gradient method to the empirical risk.

Consider the operators S and Sx : H ! R introduced in Section 3.2. Then Sx is a bounded linear
operator and kSxk  kxkH. Using these linear operators, Problems (1) and (9) can be expressed as
convex quadratic minimization problems. The empirical risk can be written as

ˆE(w) = 1

n

n
X

i=1

(Sxiw � yi)
2, (31)

and recalling Assumption 2 and (19), we have

E(w) =
Z

H⇥R
(Sw(x)� y)2d⇢(x, y) = kSw � g⇢k2⇢ + inf

H
E . (32)

Using the operators T and Tx introduced in Section refsec:dec, and computing the gradients of E
and ˆE respectively, (7)-(8) can be rewritten as

û0
t = ŵt; ûi

t = ûi�1
t � �

n
(Txi û

i�1
t � S⇤

xi
yi), i = 1, . . . , n (33)

and (17)-(18) can be expressed as

u0
t = wt; ui

t = ui�1
t � �

n
(Tui�1

t � S⇤g⇢) . (34)

It is apparent from (33) that the considered iteration is derived from the application of the incremen-
tal gradient algorithm to the empirical error (see [4, 19]). At the same time (34) shows that iteration
(17)-(18) can be seen as the result of applying the incremental gradient descent algorithm to the
expected loss, which clearly, for fixed n, can be written as

w 7! 1

n

n
X

i=1

E(w) .

Lemma 2. Let t 2 N, and let wt be defined as in (17)-(18), with w0 = 0. Let ⌘ = �/n. Then

wt = ⌘
nt�1
X

j=0

�

I � ⌘T
�nt�j�1

S⇤g⇢. (35)

Proof. Let, for every k 2 N,
vk+1 = (I � ⌘T )vk + ⌘S⇤g⇢.

Then, by (34), wt = vnt, and (35) follows.

In other words, the statement of Lemma 2 states that the t-th epoch of the incremental gradient
descent iteration in (17)-(18) coincides with n steps of gradient descent with stepsize �/n.

Next, we relate the iteration (7)-(8) to the gradient descent iteration on the empirical error. These
will be used in the error analysis and provide some useful comparison between these two methods.
Hereafter, we will use the operator ˆT intorduced in Section 3.2.

The following lemma provides an alternative expression for the composition of linear operators.
Lemma 3. Let n 2 N⇤, let (Ti)1in be a family of linear operators from H to H, and let
(wi)1in 2 Hn. Then

n
Y

i=1

(I � Ti) = I �
n
X

j=1

Tj +

n
X

k=2

✓ n
Y

i=k+1

(I � Ti)

◆

Tk

k�1
X

j=1

Tj (36)

and
n
X

i=1

⇣

n
Y

k=i+1

(I � Tk)

⌘

wi =

n
X

i=1

wi �
n
X

k=2

⇣

n
Y

i=k+1

(I � Ti)

⌘

Tk

k�1
X

j=1

wj (37)
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Proof. By induction. Equality (36) is trivially satisfied for n = 1. Suppose now that n � 2, and that
(36) holds for n� 1. Then

n
Y

i=1

(I � Ti) = (I � Tn)

n�1
Y

i=1

(I � Ti)

= (I � Tn)

✓

I �
n�1
X

j=1

Tj +

n�1
X

k=2

✓ n�1
Y

i=k+1

(I � Ti)

◆

Tk

k�1
X

j=1

Tj

◆

= I �
n
X

j=1

Tj + Tn

n�1
X

j=1

Tj +

n�1
X

k=2

✓ n
Y

i=k+1

(I � Ti)

◆

Tk

k�1
X

j=1

Tj

= I �
n
X

j=1

Tj +

n
X

k=2

✓ n
Y

i=k+1

(I � Ti)

◆

Tk

k�1
X

j=1

Tj ,

and the validty of (36) for every n 2 N⇤ follows by induction.

Equality (37) is trivially satisfied for n = 1. Suppose now that n � 2 and that (36) holds for n� 1.
Then

n
X

i=1

⇣

n
Y

k=i+1

(I � Tk)

⌘

wi =

n�1
X

i=1

⇣

n
Y

k=i+1

(I � Tk)

⌘

wi + wn

= (I � Tn)

⇣

n�1
X

i=1

wi �
n�1
X

k=2

⇣

n�1
Y

i=k+1

(I � Ti)

⌘

Tk

k�1
X

j=1

wj

⌘

+ wn

=

n
X

i=1

wi � Tn

n�1
X

j=1

wj �
n�1
X

k=2

⇣

n
Y

i=k+1

(I � Ti)

⌘

Tk

k�1
X

j=1

wj

=

n
X

i=1

wi �
n
X

k=2

⇣

n
Y

i=k+1

(I � Ti)

⌘

Tk

k�1
X

j=1

wj ,

and the conclusion follows.

The following lemma establishes an equivalent expression for the iterates (7)-(8).
Lemma 4. Let t 2 N. Then,

ŵt+1 =

n
Y

i=1

⇣

I � �

n
Txi

⌘

ŵt +
�

n

n
X

i=1

n
Y

k=i+1

⇣

I � �

n
Txk

⌘

S⇤
xi
yi (38)

Proof. For every i 2 {1, . . . , n}, the update of v̂it in (8) can be equivalently written as in (33),
and is of the form (23), with Ar = I � (�/n)Txr+1 , and Br = (�/n)S⇤

xr+1
yr+1, for every r 2

{0, . . . , n� 1}, and X0 = ŵt. Equation (38) follows by writing (24) for r = n� 1.

Proposition 1. For every t 2 N, the iteration (7)-(8) can be written as

ŵt+1 = (I � � ˆT )ŵt + �

✓

1

n

n
X

j=1

S⇤
xj
yj

◆

+ �2
⇣

ˆAŵt � ˆb
⌘

, (39)

with

ˆA =

1

n2

n
X

k=2

n
Y

i=k+1

⇣

I � �

n
Txi

⌘

Txk

k�1
X

j=1

Txj ,
ˆb =

1

n2

n
X

k=2

n
Y

i=k+1

⇣

I � �

n
Txi

⌘

Txk

k�1
X

j=1

S⇤
xj
yj .

(40)

The iteration (17)-(18) applied to E can be expressed as

wt+1 = (I � �T )wt + �S⇤g⇢ + �2(Awt � b). (41)
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with

A =

1

n2

n
X

k=2

"

n
Y

i=k+1

⇣

I � �

n
T
⌘

#

T
k�1
X

j=1

T, b =
1

n2

n
X

k=2

"

n
Y

i=k+1

⇣

I � �

n
T
⌘

#

T
k�1
X

j=1

S⇤g⇢. (42)

Proof. Equations (39) and (40) follow from Lemma 3 and Lemma 4 applied with (8i 2 {1, . . . , n})
Ti = (�/n)Txi . Equations (41) and (42) follow from Lemma 3 and Lemma 4 applied with (8i 2
{1, . . . , n}) Ti = (�/n)T .

Note that, although not explicitly specified, the operator A and the element b 2 H in Proposition 1
depend on n. Equation (39) allows to compare the update resulting from one epoch of the iteration
(7)-(8) with the one of a standard gradient descent on the empirical error with stepsize �, which is
given by

v̂t+1 =

0

@I � �

n

n
X

j=1

Txj

1

A v̂t +
�

n

n
X

j=1

S⇤
xj
yj (43)

for an arbitrary v̂0 2 H. As can be seen comparing (39) and (43), In particular, the incremental
gradient descent can be interpreted as a perturbed gradient descent step, with perturbation

êt = �2
⇣

ˆAŵt � ˆb
⌘

.

B.3 Proof of STEP 2

The following recursive expression is key to get sample bounds estimates, and is at the basis of
Lemma 7.
Lemma 5. In the setting of Section 2, let t 2 N and let ŵt and wt be defined as in (7)-(8) and wt

be defined as (17)-(18), respectively. Define ˆA and ˆb as in (40), and A and b as in (42). Then

ŵt � wt =

⇣

I � � ˆT + �2 ˆA
⌘t

(ŵ0 � w0) + �
t�1
X

k=0

⇣

I � � ˆT + � ˆA
⌘t�k+1

⇣k (44)

with

⇣k = (T � ˆT )wk + �( ˆA�A)wk +

✓

1

n

n
X

i=1

ˆS⇤
xi
yi � S⇤g⇢

◆

+ �(b� ˆb). (45)

Proof. We have

ŵt+1 = (I � � ˆT + �2 ˆA)ŵt +
�

n

n
X

i=1

ˆS⇤
xi
yi � �2ˆb . (46)

Adding and subtracting (�� ˆT + �2 ˆA)wt it follows from (41) that

ŵt+1 � wt+1 = (I � � ˆT + �2 ˆA)(ŵt � wt) + �(T � ˆT )wt + �2( ˆA�A)wt

+ �
⇣

1

n

n
X

i=1

ˆS⇤
xi
yi � S⇤g⇢

⌘

+ �2(b� ˆb)

Relying on equation (23) we get (50).

B.4 Proof of STEP 3

Next we provide a lemma to bound the norm of the operator appearing in (50), and acting on the
random variable ⇣k in (51).
Lemma 6. In the setting of Section 2, let � 2 ]0, n�1

]. Then

kI � � ˆT + �2 ˆAk  1 . (47)
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Proof. It follows from Lemma 3, equation (36) applied with Ti = Txi and the definition of ˆAk in
(40) that

I � � ˆT + �2 ˆA =

n
Y

i=1

⇣

I � �

n
Txi

⌘

. (48)

Since kTxik   and by assumption �/n  �1, kI � (�/n)Txik  1 and the statement follows.

We next provide a first inequality for the sample error.
Lemma 7. Let t 2 N and let ŵt and wt be defined as in (7)-(8) and in (17)-(18), respectively. Define
ˆA and ˆb as in (40), and A and b as in (42). Then

kŵt � wtkH  �
�

kT� ˆTk+�k ˆA�Ak
�

t�1
X

k=0

kwkkH+�t
⇣

�

�

1

n

n
X

i=1

ˆS⇤
xi
yi�S⇤g⇢

�

�

+�kb�ˆbk
⌘

. (49)

Proof. By Lemma 5 we derive that

ŵt � wt =

⇣

I � � ˆT + �2 ˆA
⌘t

(ŵ0 � w0) + �

t�1
X

k=0

⇣

I � � ˆT + � ˆA
⌘t�k+1

⇣k (50)

with

⇣k = (T � ˆT )wk + �( ˆA�A)wk +

✓

1

n

n
X

i=1

ˆS⇤
xi
yi � S⇤g⇢

◆

+ �(b� ˆb). (51)

Since w0 = ŵ0, we have

kŵt � wtkH  �

t�1
X

k=0

kI � � ˆT + �2 ˆAkk+1k⇣kk (52)

By Lemma 6, for every j 2 N, kI � � ˆT + �2 ˆAk  1, and therefore

kŵt � wtkH  �(kT � ˆTk+ �k ˆA�Ak)
t�1
X

k=0

kwkk+
⇣

�
�

�

1

n

n
X

i=1

ˆS⇤
xi
yi � S⇤g⇢

�

�

+ �2kb� ˆbk
⌘

t

B.5 Proof of STEP 4

Here, we provide a bound for kwtkH. The proof technique is similar to that of known results in
inverse problems [15], although the bound obtained in (53) is novel.
Lemma 8. In the setting of Section 2, let Assumption 1 hold, let n 2 N⇤, and let � 2

⇤

0, n�1
⇥

. Let
w0 = 0, and let t 2 N. Then the following hold:

(i) Let Assumption 2 hold with r 2 [0, 1/2]. Then

kwtkH  max{r�1/2,
�

�t)1/2�r} kgk⇢ . (53)

(ii) Suppose that O is nonempty. Then there exist w† as in (3) and � 2 ]0,+1[ such that

kwt+1kH  �.

(iii) Let Assumption 2 hold with r 2 ]1/2,+1[. Then w† is well defined and

kwt+1kH  r�1/2 kgk⇢ . (54)
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Proof. Let ✏ 2 ]0,] and set ⌘ = �/n. By Lemma 2 and by the spectral theorem [15, equation
(2.43)], we derive

wt+1 =

nt�1
X

j=0

S⇤⌘
nt�1
Y

i=j+1

�

I � ⌘L
�

g⇢ . (55)

(i): By (55)

kwt+1kH  ⌘

�

�
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nt�1
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�

�

�

kgk⇢ (56)
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�2[0,]
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⌘
�

1� ⌘�
�nt�j+1

�

�
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�

kgk⇢

= max

⇢

sup

�2[0,✏]
nt⌘�1/2+r, sup

�2[✏,]
�r�1/2

⇣

1�
�

1� ⌘�
�nt
⌘

�

kgk⇢

  (✏) kgk⇢

where (8✏ 2 R+)  (✏) = max

⇢

✏1/2+rnt⌘, ✏r�1/2

�

. Since ✏ is arbitrary,

kwt+1kH  inf

✏2]0,]
 (✏) kgk⇢ . (57)

Now note that ✏ 2 ]0,+1] 7! nt⌘✏1/2+r is strictly increasing, and has limit equal to zero at zero.
On the contrary, ✏ 2 ]0,+1] 7! ✏r�1/2 is strictly decreasing and lim✏!0+ ✏

r�1/2
= +1. Hence,

there exists a unique point ✏ 2 ]0,+1] such that

nt⌘✏ 1/2+r
= ✏ r�1/2 and  (✏) =

⇢

✏r�1/2 if ✏ 2 ]0, ✏]

nt⌘✏1/2+r if ✏ 2 [✏,+1] ,
(58)

therefore ✏ is the unique minimizer of  . Solving for ✏ in (58), we get ✏ = (nt⌘)�1. We derive,
again from (58), that

min

✏2]0,]
 (✏) = max{r�1/2, (�t)1/2�r}.

Finally, (57) yields

kwt+1kH 
⇣

�t
⌘1/2�r

kgk⇢ .

(ii): First note that, by Fermat’s rule, S⇤g⇢ = Tw†. It follows form Lemma 2 that

wt � w†
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⌘T
�

I � ⌘T
�nt�j+1 � I

◆

w†

=

�

I � ⌘T
�nt

w†.

Let (�m, hm)m2N be an eigensystem of T . Since w† 2 N(T )? (see [15, Proposition 2.3]), it follows
that w†

=

P

m2Nhw†, hmihm. Therefore,

kwt � w†k2H =

X

m2N

�

�

�

(1� ⌘�m)

nthw†, hmi
�

�

�

2
(59)

Since, for every m 2 N, each summand is bounded by |hw†, hmi|2, and
P

m2N |hw†, hmi|2, the
Dominated Convergence Theorem yields

lim

t!+1
kwt � w†k2H =

X

m2N
lim

t!+1

�

�

�

(1� ⌘�m)

nthw†, hmi
�

�

�

2
= 0. (60)

Hence, the sequence (kwtkH)t2N is bounded.

(iii): Arguing as in the proof of (i), it follows from (55) and Assumption 2 that

kwt+1kH  sup

�2[0,]
�r�1/2

⇣

1�
�

1� ⌘�
�nt
⌘

�
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 r�1/2 kgk⇢
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B.6 Proof of STEP 5

The main novel probabilistic estimates are given in the following proposition. This is the more
involved part of the proof, where many tricks are needed in order to get a manageable expression.
The proof is based on writing the terms ˆA � A and ˆb � b as a sum of martingales and then apply
Theorem 4 to derive concentration inequalities. We start with the following well-known lemma,
which is a direct consequence of Theorem 4 (see also [13]).
Lemma 9. In the Setting of Section 2, let Assumption 1 hold. For every � 2 ]0, 1]
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X
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p
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� 1� �, (61)

and
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H
 16

p
M
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p
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log
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� 1� �. (62)

Proof. Equation 61 follows from Theorem 4, since (Txi � T )1in is a family of i.i.d. random
operators taking values in the space of Hilbert-Schmidt operators satisfying kTkHS   and
kTxikHS   (see also [13]). Equation 62 follows from Theorem 4 applied to the i.i.d. random
vectors (S⇤

xi
yi � S⇤f⇢)1in in H whose norms are bounded by 2M .

Proposition 2. In the Setting of Section 2, let Assumption 1 hold, let � 2
⇤

0, n�1
⇥

, and let � 2
]0, 1]. Then

P
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and
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3

p
n

log

4

�

◆

� 1� �. (64)

Proof. We first show a useful decomposition. Recall that

ˆA =

1

n

n
X

j=2

1

n

n
Y

i=j+1

(I � �Txi)Txj

j�1
X

l=1

Txl A =

1

n

n
X

j=2

1

n

n
Y

i=j+1

(I � �T )T

j�1
X

l=1

T .

For every j 2 {2, . . . , n}, set
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with

Qn =

n
X

j=2

(

ˆBj �Bj) . (66)

We next bound each term appearing in (65). By Lemma 9, with probability greater than 1� �,
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On the other hand
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n
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kTxjk  . (68)

Note that
Pn

j=2
ˆBj

⇣

1/n
Pj�1

l=1 (Txl � T )
⌘

is Hilbert-Schmidt, for Txl and T are Hilbert-Schmidt
operators, with kTxlkHS   and kTkHS  , and the family of Hilbert-Schmidt operators is an
ideal with respect to the composition in L(H). Therefore, by (67) and (68),
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holds with probability greater than 1��, for any � 2 ]0, 1[. Next we write the quantity Qn appearing
in the second term in (65) as the sum of a martingale. For short, we set ⌘ =

�
n and for all j 2

{2, . . . , n} we denote
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so that from the definition of Qn in (66),
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n
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We can derive a recursive update that determine a different expression for the quantity Qn as follows.
Let s 2 {1, . . . , n� 1}.
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Applying equation (23), since Q1 = 0, we get
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n
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⇥l (70)

where, ⇥1 = 0 and, for every l 2 {2, . . . , n},
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For every l = 1, . . . , n
E[⇥l] = 0,

being Tx2 , . . . , Txn independent and E[(Txl � T )] = 0. Moreover the conditional expectation

E[⇥l |⇥l+1, . . . ,⇥n] = 0,
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since Txl is independent from Txl+1 , . . . , Txn . Therefore the sequence (⇥l)1ln is a martingale
difference sequence. The operator ⇥l is Hilbert-Schmidt, since it is the composition of a Hilbert-
Schmidt operator with a continuous one. Moreover, k⇥1k = 0. Next, since the operator T is
compact and self-adjoint and 0  �/n  1/kTk, from the spectral mapping theorem, for every
l 2 {2, . . . , n}
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Using the last inequality, we derive
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Then, Theorem 4 applied to (⇥l)iln, yields
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with probability greater than 1� �. Therefore, with probability greater than 1� �
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The statement then follows recalling the decomposition in (65), and summing (72) with (69). From
the definition of ˆb and b in equations (39) and (42) respectively, we have

ˆb� b =
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1
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X
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S⇤g⇢ , (73)

and equation (64) follows reasoning as in the previous part of the proof.

B.7 Sample error

The proof of the bound on the sample error easily follows from the above results.
Theorem 5 (Sample error). Let Assumption 1 hold. Let n 2 N⇤, suppose that � 2

⇤

0, n�1
⇤

, and
let ŵ0 = w0 = 0. Let � 2 ]0, 1[, and, for every t 2 N⇤, let ŵt and wt be defined as in (7)-(8) and
(17)-(18), respectively. Then the following hold:

(i) Let Assumption 2 hold, for some r 2 [0, 1/2], and let t 2 N⇤. Then, with probability
greater than 1� �
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(ii) Let t 2 N⇤, and let Assumption 2 hold for some r 2 [1/2,+1]. Then, with probability
greater than 1� �

kŵt � wtkH  log(16/�)
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p
n

h

16

p
M + 32M2� + (16+ 322�)kgk⇢r�1/2
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�t.

(75)

Proof. Substituting the bounds obtained in Lemma 9 and Proposition 2 with �/4 into (49), and
applying Lemma 7, we obtain yield that with probability bigger than 1� �
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Statements (i) and (ii) directly follow from the bound on kwkkH obtained in Lemma 8.

B.8 Proof of STEP 6 – approximation error

The proof of this result is similar to that of the approximation error bounds obtained in [34, 35], and
uses spectral techniques, which are classical in linear inverse problems [15].
Theorem 6 (Approximation error). In the setting of Section 2, let Assumption 1 hold, let n 2 N⇤,
let w0 2 H, let � 2

⇤

0, n�1
⇥

and let (wt)t2N be defined as in (17)-(18). Then the following hold:

(i) The approximation error E(wt)� infH E ! 0.

(ii) Suppose that O is nonempty. Then w† in (3) exists and kwt � w†kH ! 0.

(iii) Let Assumption 2 hold for some r 2 ]0,+1[. Then
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(iv) Let Assumption 2 hold for some r 2 ]1/2,+1[. Then w† in (3) is well-defined and
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Proof. (i): This is a direct consequence of Lemma 1.

(ii): The proof is the same lines as that of Lemma 8-(ii). See in particular (60).

(iii): It follows from Lemma 2 that
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Note that, the last term is maximized at � = rn/(�(r + nt+ 1)), hence for every � 2 [0,+1[,
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Finally, the equality
E(wt)� inf

H
E = kSwt � g⇢k2⇢,
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yields the statement.

(iv): Since L1/2 is a partial isometry between L2
(H, ⇢X) and S(H) and g⇢ = L1/2

�

Lr�1/2g
�

by Assumption (2), it follows that g⇢ 2 S(H), and thus O is nonempty, and w† is well defined.
Moreover, since S⇤g⇢ = Tw†, we also get that Tw†

= S⇤Lrg = T rS⇤g, implying that w†
=

T †T rS⇤g. It follows from Lemma 2 and [15, Equation 2.24] that
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where the last inequality can be derived proceeding as in (iii).

B.9 STEP 7: proof of the main results

Let us denote by S(t, n, �) the right hand side of (74). Then, combining the sample error estimate
with the error decomposition (19), we can immediately derive the following inequalities

E(ŵt)� inf

H
E  2(S(t, n, �))2 + 2A(t, �, n)

kŵt � w†kH  S(t, n, �) + kwt � w†k
with probability greater than 1 � �. Note that analogous inequalities hold for the case r > 1/2 and
with respect to the norm in H. We are now ready to prove the Theorems stated in Section 3. The
proof of universal consistency is a consequence of the sample and approximation error bounds, and
of the application of Borel-Cantelli Lemma.

Proof of Theorem 1. (i): Recalling the error decomposition in (19), we have

E(ŵt)� inf

H
E  2kŵt � wtk2H + 2(E(wt)� inf

H
E).

Suppose that t > 1. Theorem 5 applied with r = 0 yields that there exists c 2 R++ such that, with
probability greater than 1� �
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p
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. (76)

Since
P

k2N � = +1 and �  �1  n�1, by Theorem 6(i), A(t) = E(wt) � infH E ! 0.
Moreover, A(t⇤(n)) ! 0 since t⇤(n) ! +1. Let ⌘ 2 ]0,+1[ and let ↵ 2 ]1,+1[. By (10), there
exists n̄ 2 N such that, for every n � n̄, ⌘n/t⇤(n)3 > ↵ log n. Define

An,⌘ =

n

E(ŵt⇤(n))� inf
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o
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By (76), for every n � n̄, P(An,⌘)  16 exp(�⌘n/t⇤(n)3(1�✓)
)  exp(�↵ log n). Therefore,
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n�↵ < +1,

hence the Borel-Cantelli lemma yields P(
T

k�n̄

S

n�k An,⌘) = 0, and almost sure convergence
follows.

(ii): Since O is nonempty, it follows that there g⇢ 2 S(H) = L1/2
(H). Therefore, Assumption 2

is satisfied with r = 1/2. From Theorem 5(ii), that there exists c1 2 ]0,+1[ such that, with
probability greater than 1� �

kŵt � wtkH  c1t log(16/�)

3

p
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(78)

Moreover, since
P

k2N � = +1 and �  n�1, by Theorem 6(ii), kwt � w†kH ! 0. Reasoning
as in (i), we obtain (12).
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Proof of Theorem 2. (i): It follows from Theorem 5(ii), that with probability greater than 1� �
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Moreover, Theorem 6(iv) yields
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Inequality (13) follows by adding (79) with (80).

(ii): Let ↵ 2 ]0,+1[ and let t⇤(n) = dn↵e. Minimizing the right hand side in (13), we get

↵� 1/2 = ↵(1/2� r)

leading to the expression of t⇤(n). Now, let n 2 N⇤ and � 2 [1, 2[ be such that n↵  t⇤(n) =
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+ 1. Then, by (13) we get
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and
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Equation (14) follows recalling that � 2 [1, 2[ in (i).

Proof of Theorem 3. (i): Recalling (19), it follows from Theorem 5(i) and Theorem 6(iii), that
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(ii): As in the proof of Theorem 2(ii), set t = dn↵e. Then, minimizing the right hand side in (83),
we derive

2↵� 1 = �2↵r

which gives ↵ = 1/(2r+2). Let n 2 N⇤ and � 2 [1, 2[ be such that n↵  t⇤(n) = �n↵  n↵
+1.

Then, plugging the expression of t⇤(n) into (83). we get
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A Non attainable case

Theorem 7 (Finite sample bounds for the risk – non attainable case). In the setting of Section 2, let
Assumption 1 hold, and let � 2

⇤

0,�1
⇤

. Let Assumption 2 be satisfied for some r 2 ]0, 1/2]. Then
the following hold:

(i) For every t 2 N⇤, with probability greater than 1� �,

E(ŵt)� inf

H
E 8

⇣

32 log(16/�)
⌘2

n

✓

M + 2M2�1/2
+

6kgk⇢�1/2

3� 2r

◆

t3/2�r

+3r
1� 2r

3� 2r
kgk⇢

�2

+ 2

✓

r

�t

◆2r

kgk2⇢ (84)

(ii) For the stopping rule t⇤ : N⇤ ! N⇤

t⇤(n) =
⌃

n
1
3
⌥

(85)

23



with probability greater than 1� �,

E(ŵt⇤(n))� inf

H
E



8

⇣

32 log
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M + 2M2�1/2
+

6kgk⇢
3� 2r

+

3� 6r

3� 2r
rkgk⇢

◆2
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r

�
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kgk2⇢

#

n�2r/3

(86)

As for the attainable case, equation (84) arises from a form of bias-variance (sample-approximation)
decomposition of the error. Choosing the number of epochs that optimize the bounds in (84), we de-
rive a priori stopping rules (85) and corresponding bound (86). Again, these results confirm that the
number of epochs acts as a regularization parameter and the best choice follows from equation (84).

Proof of Theorem 7. (i): This follows from Theorem 5(i) and Theorem 6(iii).

(ii): It follows plugging the expression of t⇤(n) into the inequality in (i).
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