7 Appendix

Theorem 1. With the condition p > p*, the optimal value OPT of the problem 5 coincides with the
optimal value OPT in the problem 8 of interest, where p* is a problem dependent threshold.

Proof. We start by rewriting formulation 4 to the equivalent form:

. 1 ;
min — 7, > U(T" Ao, A) + M| 21|l + Bl Z2]l, Ao, A>0,Aq=Z1,A=Z5. (8)
TwieO
We can observe that the optimal solutlon of 8 is a feasible solution of 5 with the same objective

function value, so it is evident that OPT < OPT. On the other hand, suppose (A§, A*, Z{, Z3)
is an optimal solution of 5 with Aj§ # Z7, A* # Zj3 in general. Since Aj, A* > 0, they are also
feasible for 8, so we can find a p’ such that )\HZT [« +5||Z§‘ |+ 0 || AG— Zf |2 +0|A* = Z3||% >

A A« ||l«. Therefore, under the condition that
A (AG] = N1 Z3]1) + B (A"l = ||Z§||*)}
pzp =max * * * * ’ (9)
{ 1AG = Z1 1% + [ A" = Z3][%
we have OPT > *ﬁZTw‘eo C(T™ A, A*) + A|AG|l« + B A* |« = OPT and readily arrive
at the theorem. O
Theorem 2. Let {Y"*} be the sequence generated by Algorithm 1, 6* = 2/(k + 1), and n* =
(6¥)~1/L, Dy and D4 some problem dependent constants. Then for k > 1, we have
4LD, 2L Dy
F(Y") - F(X*) < : 10
") (X%) k(k+1) k+1 (10)
Proof. Consider the following general optimization problem
;cng(le(X) = f(X1; Xo) + ¥ (Xo), (1D

where X = [X1; X3], Q = Q; x Qo, f is L-smooth and convex, and ¥(-) is convex. Let §* = %H
and * = (6%)~'/L. First Note that Y* — U*~! = §¥(X* — X*~1). By the smoothness of f

where f(y) < f(x) + (f'(z),y — @) + £[ly — ]2, we have
JOYR) < fUE) 4 VAURYT (YE - UY) 4 B62IX - X |2

(by the definition of Y'*)

— (1 _ 5k) (f(Uk—l) 4 Vf(Uk—l)T (Yk—l _ Uk—l))
+0F (FURY) + VAU (X —UY)) + 262 Xk — X (12)
(by the convexity of f)

(1 _ 5k) (Yk—l) + 5k (f(Uk—l) + vf(Uk—l)T (Xk _ Ulc—l))
+5 071 Xk — X ||

N

Note the proximal mapping Prox,,(§) = argmin,cx{V(z,z0) + (§,2)}, where V(z,2’) =
w(z) —w(z') — (Vw(a'),x — 2’) is the Bregman distance, and w(x) is 1-strongly convex. For
any X; € €3, we have the following well-known inequality [20] :

ViU HH(XT = X0) < () VX0, XPTY - VXL, XT) - VX, XD 33)
Besides, by our linear minimization oracle
LMOg (Vo f(U*™1)) = argmin {{Vo f(UF™1), X)) + ¥(X)}, (14)
we have
Vof(UF T XE + 0(X5) < Vof (U7 Xy + T(X). (15)
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As a consequence,
5/@ (f(Ulcfl) + Vf(kal)T (ch _ Ulcfl))

= F(fUYH + VLU (XE - UF) + Vo r(UYHT (X5 —US))

(by equation 15)

< F(FUMH 4 VIFURY)T (XE U+ X - XT)
+Vo f(UFNT X5 + U(X3) — U(X5) - Vo f (U1 TUF ™))
< U A VU T (XT - UF) + Vo f (U T(X5 - Us ™) + W(X3)
+VIfURHT (XT - XT) — ¥(X5))
(by the convexity of f)
< SUF(XY) 48PV U (X - X7) - 50 (XE)
(by equation 13)
< SER(X) 485 V(X XET) - VIXE XE) - VXE XET) - 6hw(xE)

(by the definition of Bregman distance)

— * k)2 c—
< ORF(X) + LR (V(XT XETY) - VX X)) - HERIXE - X - ot (xy)
Plugging into the previous inequality 12, we end up with
FOYE) (=) (Y1) + 8" F(X7) + L") (V(XT, X{7Y) - V(X7 XT))
(5’“)

+ 1X5 — X577 — 6" (X3), (16)

where we have used the fact | X = (X1; X2)|%? = | X1]|? + | X2||?>. Adding ¥(Y) to the both
sides, we have
F(Y*) < (1 5 VE(YE) + 65 F(X) + L(8%)*(V(XT, X{71) = VX7, X))
k
+ 2O X — X2+ (YY) - 0RO (XE) - (1 M) w(Y )

(by the convexity of ¥ and the definition of Y'*) amn
< (1=6MF(YF 1) + 0" F(X*) + L(6")*(V(X7, X771 - V(X XF)
FHEE )k - X4
Subtracting F'(X*) from both sides of the above inequality, we have
F(Y") = F(X") (1 =" )(F(Y*™!) = F(X)) + L(8")*(V(X{, X7 71) = V(XT, X7))

L(* _
+ 2Ot xpye 1s)
By the fact ' = 1 and invokmg the Lemma 1 of [18&], the above inequality implies that
4L
FY®) - FP(X*) < ——— | V(X], X)) + Xy X112, 19
(V") - F(X") WH)( i an 5 (19)

Let Dy = V(X7,X}) > 0and Dy = max, yeq, ||z — y||*, we have
4L D, 2LD,
KktD) T REL

F(Y") - F(X*) < (20)
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