
Supplementary material for “Online Gradient Boosting”

A Competing with convex combinations of the base functions

We give the analysis of Algorithm 2 before that of Algorithm 1 since it is easier to understand
and provides the foundation for the analysis of Algorithm 1. In this section we show that
Algorithm 2 satisfies the regret bound claimed in Theorem 2, restated here for convenience.

Theorem 3. Algorithm 2 is an online learning algorithm for CH(F) for losses in C with
the regret bound

R0(T )  8�DD2

N
T + LDR(T ).

Proof. First, note that for any i = 1, 2, . . . , N , since `it is a linear function, we have

inf
f2CH(F)

T
X

t=1

`it(f(xt)) = inf
f2F

T
X

t=1

`it(f(xt)).

Let f be any function in CH(F). The equality above and the fact that Ai is an online
learning algorithm for F with regret bound R(·) for the 1-Lipschitz linear loss functions
`it(y) =

1
LD

r`t(y
i�1
t ) · y imply that

T
X

t=1

1

LD
r`t(y

i�1
t ) · Ai(xt) 

T
X

t=1

1

LD
r`t(y

i�1
t ) · f(xt) +R(T ). (2)

Now define, for i = 0, 1, 2, . . . , N , �i =
PT

t=1 `t(y
i
t)� `t(f(xt)). We have

�i =
T
X

t=1

`t(y
i�1
t + ⌘i(Ai(xt)� yi�1

t ))� `t(f(xt))


T
X

t=1

`t(y
i�1
t )� `t(f(xt)) + ⌘ir`t(y

i�1
t ) · (Ai(xt)� yi�1

t ) +
⌘2i �D

2
kAi(xt)� yi�1

t k2

(by �D-smoothness of C)


"

T
X

t=1

`t(y
i�1
t )� `t(f(xt)) + ⌘ir`t(y

i�1
t ) · (f(xt)� yi�1

t ) + 2⌘2i �DD2

#

+ ⌘iLDR(T )

(by (2) and using the bound kAi(xt)� yi�1
t k  2D)


"

T
X

t=1

`t(y
i�1
t )� `t(f(xt))� ⌘i(`t(y

i�1
t )� `t(f(xt))) + 2⌘2i �DD2

#

+ ⌘iLDR(T )

�

by convexity, `t(y
i�1
t ) +r`(yi�1

t ) · (f(xt)� yi�1
t )  `t(f(xt))

�

 (1� ⌘i)�i�1 + 2⌘2i �DD2T + ⌘iLDR(T ).

For i = 1, since ⌘1 = 1, the above bound implies that �1  2�DD2T + LDR(T ). Starting

from this base case, an easy induction on i � 1 proves that �i  8�DD2

i T + LDR(T ).
Applying this bound for i = N completes the proof.

We now show that the dependence of the regret bound of Algorithm 2 on the parameter N
is optimal up to constant factors.

Theorem 4. Let N be any specified bound on the total number of calls in each iteration to all
copies of the base online linear learning algorithm. Then there is a setting of 1-dimensional
prediction with a 1-bounded comparator function class F , an online linear optimization
algorithm A over F , and a class C of loss functions that is 1-smooth on R such that any
online boosting algorithm for CH(F) with losses in C respecting the bound N has regret at
least ⌦( T

N ).
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Proof. Consider the following construction. At a high level, the setting is 1-dimensional
regression with C corresponding to squared loss. The domain X = N and true labels of
examples are in [0, 1].

Define p1 = 1
2 + ✏ and p2 = 1

2 � ✏, where ✏ = 1
10

p
N
, and let D1 and D2 be two distri-

butions over {0, 1}N where each bit is Bernoulli random variable with parameter p1 and
p2 respectively, chosen independently of the other bits. Consider a sequence of examples
(xt, y

?
t ) 2 N ⇥ [0, 1] generated as follows: xt = t, and the label y?t is chosen from {p1, p2}

uniformly at random in each round.

Let for c = 1
4000 . The function class F consists of a large number, M = 1

cN , of functions
fi, i 2 [M ]. For each t and i, we set fi(xt) = 1 w.p. y?t , and 0 w.p. 1 � y?t , independently
of all other values of t and i.

The base online linear learning algorithm A is simply Hedge over the M functions. In
each round, the Hedge algorithm selects one of the M functions in F and uses that to
predict the label, and for any sequence of T examples, with high probability, incurs regret
R(T ) = O(

p

log(M)T ).

We set C to be set of squared loss functions, i.e. functions of the form `(y) = 1
2 (y � y?)2

for y? 2 [0, 1]. Note that these loss functions are 1-smooth and D = 1. In round t, the loss
function is `t(y) =

1
2 (y � y?t )

2.

Consider the function f̄ = 1
M

P

i2[M ] fi, which is in CH(F). Given any input sequence

(xt, y
?
t ) for t = 1, 2, . . . , T it is easy to calculate that E[ 12 (f̄(xt) � y?t )

2] = y?
t (1�y?

t )
2M  1

2M ,
and since the examples and predictions of functions on the examples are independent across
iterations, a simple application of the multiplicative Cherno↵ bound implies that if T �
12M , then with probability at least 0.9, we have

PT
t=1

1
2 (f̄(xt)� y?t )

2  T
M .

Now suppose there is an online boosting algorithm making at most N calls total to all
copies of A in each iteration, that for any large enough T and for any sequence (xt, y

?
t )

for t = 1, 2, . . . , T , outputs predictions yt such that with high probability, say at least 0.9,
we have

PT
t=1

1
2 (yt � y?t )

2 
PT

t=1
1
2 (f̄(xt) � y?t )

2 + cT
N . Then by a union bound, with

probability at least 0.8, we have
PT

t=1
1
2 (yt�y?t )

2  cT
N + T

M  2cT
N . By Markov’s inequality

and a union bound, with probability at least 0.7, for a uniform random time ⌧ 2 [T ], we
have

1

2
(y⌧ � y?⌧ )

2  20c

N
=

✏2

2
, (3)

or in other words, y⌧ is on the same side of 1
2 as y?⌧ , and thus can be used to identify y?⌧ .

In the rest of the proof, we will use this fact, along with fact the total variation distance
between D1 and D2, denoted dTV(D1, D2), is small, to derive a contradiction.

Define the random variable Y : {0, 1}N ! R as follows. For any bit string s =
hs1, s2, . . . , sN i 2 {0, 1}N , choose a random round ⌧ 2 [T ], and simulate the online boosting
process until round ⌧ � 1 by sampling y?t ’s and the outputs of fi(xt) for all t  ⌧ � 1 and
i 2 [M ] from the appropriate distributions. In round ⌧ , let fi1 , fi2 , . . . , fiN be the functions
that are obtained from the at most N calls to copies of A (there could be repetitions). As-
sign fij (x⌧ ) = sj for j 2 [N ] (being careful with repeated functions and repeating outputs
appropriately), and run the booster with these outputs to obtain y⌧ , and set Y (s) = y⌧ .
Let Pr[·] denotes probability of events in this process for generating Y (s) given s.

Let E1[X(s)] and E2[X(s)] denote expectation of a random variable X : {0, 1}N ! R when
s is drawn from D1 and D2 respectively, and let E0[X(I, s)] denote expectation of a random
variable X : {1, 2} ⇥ {0, 1}N ! R when I is chosen from {1, 2} uniformly at random and
then s is sampled from DI . The above analysis (inequality (3)) implies that

0.7  E0[Pr[|Y (s)� pI |  ✏]] = 1
2E1[Pr[|Y (s)� p1|  ✏]] + 1

2E2[Pr[|Y (s)� p2|  ✏]].

Now define a random variable X : {0, 1}N ! R as X(s) = Pr[Y (s) � 1
2 ]. Since

Pr[Y (s) � 1
2 ] � Pr[|Y (s)� p1|  ✏] and 1� Pr[Y (s) � 1

2 ] � Pr[|Y (s)� p2|  ✏],
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we conclude, using the above bound, that E1[X(s)]�E2[X(s)] � 0.4. This is a contradiction,
since because X(s) 2 [0, 1], we have

E1[X(s)]� E2[X(s)]  dTV(D1, D2) < 4
p
✏2N = 0.4,

where the bound on dTV(D1, D2) is standard, for e.g. see [15]. This gives us the desired
contradiction.

The above result can be easily extended to any given parameters � and D so that the F
is D-bounded and C is �-smooth on R, giving a lower bound of ⌦(�D

2T
N ) on the regret of

an online boosting algorithm for CH(F) with losses in C: we simply scale all function and
label values by D, and consider the loss functions `(y, y?) = �

2 (y � y?)2. If there were an

online boosting algorithm for CH(F) with these loss functions with regret o(�D
2T

N ), then by
scaling down the predictions by D, we obtain an online boosting algorithm for exactly the
setting in the proof of Theorem 4 with a regret bound of o( T

N ), which is a contradiction.

B Competing with the span of the base functions

In this section we show that Algorithm 1 satisfies the regret bound claimed in Theorem 1,
restated here for convenience.

Theorem 5. Let ⌘ 2 [ 1N , 1] be a given parameter. Let B = min{⌘ND, inf{b � D : ⌘�bb
2 �

✏bD}}. Algorithm 1 is an online learning algorithm for span(F) and losses in C with the
following regret bound for any f 2 span(F):

R0
f (T ) 

✓

1� ⌘

kfk1

◆N

�0 + 3⌘�BB
2kfk1T + LBkfk1R(T ) + 2LBBkfk1

p
T ,

where �0 :=
PT

t=1 `t(0)� `t(f(xt)).

Proof. Let f =
P

g2S wgg, for some finite subset S of F , where wg 2 R. Since F is
symmetric, we may assume that all wg � 0, and let W :=

P

g wg. Furthermore, we may
assume that 0 2 S with weight w0 = max{1�

P

g2S, g 6=0 wg, 0}, so that W � 1. Note that
kfk1 is exactly the infimum of W over all such ways of expressing f as a finite weighted
sum of functions in F . We now prove that bound stated in the theorem holds with kfk1
replaced by W ; the theorem then follows simply by taking the infimum of the bound over
all such ways of expressing f .

Now, for each i 2 [N ], the update in line 14 of Algorithm 1 is exactly online gradient
descent [25] on the domain [0, 1] with linear loss functions � 7! �r`t(y

i�1
t ) · yi�1

t �. Note
that the derivative of this loss function is bounded as follows: |�r`t(y

i�1
t ) · yi�1

t |  LBB.
Since 1

W 2 [0, 1], the standard analysis of online gradient descent then implies that the
sequence �i

t for t = 1, 2, . . . , T satisfies
T
X

t=1

�r`t(y
i�1
t ) · yi�1

t �i
t 

T
X

t=1

�r`t(y
i�1
t ) · yi�1

t
1

W
+ 2LBB

p
T . (4)

Next, since f =
P

g2S wgg with wg � 0, we have

1

W

T
X

t=1

r`t(y
i
t) · f(xt) =

1
P

g2S wg

T
X

t=1

X

g2S

wgr`t(y
i
t) · g(xt) � min

g2S

T
X

t=1

r`t(y
i
t) · g(xt). (5)

Let g? 2 argming2S
PT

t=1 r`t(yi
t) · g(xt). Since Ai is an online learning algorithm for F

with regret bound R(·) for the 1-Lipschitz linear loss functions `it(y) = 1
LB

r`t(y
i�1
t ) · y,

and g? 2 F , multiplying the regret bound (1) by LB we have
T
X

t=1

r`t(y
i�1
t )·Ai(xt) 

T
X

t=1

r`t(y
i�1
t )·g?(xt)+LBR(T )  1

W

T
X

t=1

r`t(y
i�1
t )·f(xt)+LBR(T )

(6)
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by (5). Now, we analyze how much excess loss is potentially introduced due to the projection
in line 8. First, note that if B = ⌘ND, then the projection has no e↵ect since (1 �
�i
t⌘)y

i�1
t + ⌘Ai(xt) 2 Bd(B), and in this case `t(yi

t) = `t((1 � �i
t⌘)y

i�1
t + ⌘Ai(xt)). If

B < ⌘ND, then by the definition of B, ⌘�BB
2 � ✏BD, and since (1 � �i

t⌘)y
i�1
t 2 Bd(B)

and k⌘Ai(xt))k  ⌘D, and we have

`t(y
i
t) = `t(⇧B((1� �i

t⌘)y
i�1
t + ⌘Ai(xt)))  `t((1� �i

t⌘)y
i�1
t + ⌘Ai(xt)) + ⌘✏BD.

In either case, we have

`t(y
i
t)  `t((1� �i

t⌘)y
i�1
t + ⌘Ai(xt)) + ⌘2�BB

2. (7)

We now move to the main part of the analysis. Define for i = 0, 1, 2, . . . , N , �i :=
PT

t=1 `t(y
i
t)� `t(f(xt)). We have

�i 
"

T
X

t=1

`t((1� �i
t⌘)y

i�1
t + ⌘Ai(xt))� `t(f(xt))

#

+ ⌘2�BB
2T

 �i�1 +

"

T
X

t=1

⌘r`t(y
i�1
t ) · (Ai(xt)� �i

ty
i�1
t ) +

�B⌘
2

2
kAi(xt)� �i

ty
i�1
t k2

#

+ ⌘2�BB
2T

(by �B-smoothness)

 �i�1 +

"

T
X

t=1

⌘

W
r`t(y

i�1
t ) · (f(xt)� yi�1

t )

#

+ 3⌘2�BB
2T + ⌘LBR(T ) + 2⌘LBB

p
T

(by (4), (6) and the fact that kAi(xt)� �i
ty

i�1
t k  D +B  2B)


⇣

1� ⌘

W

⌘

�i�1 + 3⌘2�BB
2T + ⌘LBR(T ) + 2⌘LBB

p
T ,

since, by convexity of `t we have `t(y
i�1
t )+r`(yi�1

t ) · (f(xt)�yi�1
t )  `t(f(xt)). Applying

the above bound iteratively, we get

�N 
⇣

1� ⌘

W

⌘N
�0 +

N
X

i=1

⇣

1� ⌘

W

⌘i�1

· (3⌘2�BB
2T + ⌘LBR(T ) + 2⌘LBB

p
T )


⇣

1� ⌘

W

⌘N
�0 + 3⌘�BB

2WT + LBWR(T ) + 2LBBW
p
T .

This completes the proof.

C Variants of the boosting algorithms

In this section we provide the omitted details of two variants of our boosting algorithms:
(a) a variant that work with a di↵erent kind of base learner which does greedy fitting, and
(b) a variant that incorporates a scaling of the base functions to improves performance. We
also show how our algorithmic technique can be used to improve the convergence speed for
batch boosting.

C.1 Fitting to actual loss functions

The choice of an online linear learning algorithm over the base function class in our algo-
rithms was made to ease the analysis. In practice, it is more common to have an online
algorithm which produce predictions with comparable accuracy to the best function in hind-
sight for the actual sequence of loss functions. In particular, a common heuristic in boosting
algorithms such as the original gradient boosting algorithm by Friedman [10] or the match-
ing pursuit algorithm of Mallat and Zhang [18] is to build a linear combination of base
functions by iteratively augmenting the current linear combination by greedily choosing a
base function and a step size for it that minimizes the loss with respect to the residual label.
Indeed, the boosting algorithm of Zhang and Yu [24] also uses this kind of greedy fitting
algorithm as the base learner.
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In the online setting, we can model greedy fitting as follows. We first fix a step size ↵ � 0
in advance. Then, in each round t, the base learner A receives not only the example xt, but
also an o↵set y0

t 2 Rd for the prediction, and produces a prediction A(xt) 2 Rd, after which
it receives the loss function `t and su↵ers loss `t(y0

t +↵A(xt)). The predictions of A satisfy

T
X

t=1

`t(y
0
t + ↵A(xt))  inf

f2F

T
X

t=1

`t(y
0
t + ↵f(xt)) +R(T ),

where R is the regret. We now describe how our algorithms can be made to work with this
kind of base learner as well.

Assume that for some known parameter B > 0, we have ky0
tk  B, for all t. Let B0 =

B+↵D, and assume that the loss functions `t are LB0 Lipschitz and �B0 smooth on Bd(B0).
Then using the convexity and smoothness of the loss functions, we have `t(y0

t + ↵A(xt)) �
`t(y0

t) + ↵r`t(y0
t) · A(xt) and `t(y0

t + ↵f(xt))  `t(y0
t) + ↵r`t(y0

t) · f(xt) +
�B0↵2

2 kf(xt)k2.
Plugging these bounds into the above regret bound we get, for any f 2 F ,

T
X

t=1

r`t(y
0
t) · A(xt) 

T
X

t=1

✓

r`t(y
0
t) · f(xt) +

�B0

2
↵kf(xt)k2

◆

+
1

↵
R(T ).

Since kf(xt)k  D, setting ↵ =
q

2R(T )
�B0D2T , we conclude that

T
X

t=1

r`t(y
0
t) · A(xt) 

T
X

t=1

r`t(y
0
t) · f(xt) +

p

2�B0D2TR(T ). (8)

This regret bound is sublinear in T if R(T ) is sublinear. We can obtain a better regret
bound if we assume that R(T ) scales linearly with ↵: this is a natural assumption since
the functions `t(y0

t + ↵y) are ↵LB0 Lipschitz in the prediction y. In this case, the regret
bound R(T ) = ↵R0(T ) for some fixed R0 : N ! R+ indepedent of ↵, and we can choose

↵ = 2R0(T )
�B0D2T so that

T
X

t=1

r`t(y
0
t) · A(xt) 

T
X

t=1

r`t(y
0
t) · f(xt) + 2R0(T ). (9)

Either the bound (8) or (9) su�ces for the analysis of our boosting algorithms to go through:
to use this kind of base learner A, we again keep N copies A1,A2, . . . ,AN with a suitably
chosen step size ↵, and simply change line 11 of Algorithm 2 and line 13 of Algorithm 1 to
pass the o↵set y0

t = yi�1
t to Ai.

C.2 Improving the regret bound via scaling

Given an online linear learning algorithm A over the function class F with regret R, then
for any scaling parameter � > 0, we trivially obtain an online linear learning algorithm,
denoted �A, over a �-scaling of F , viz. �F := {�f | f 2 F}, simply by multiplying the
predictions of A by �. The corresponding regret scales by � as well, i.e. it becomes �R.

The performance of Algorithm 1 can be improved by using such an online linear learn-
ing algorithm over �F for a suitably chosen scaling � � 1 of the function class F .
Let kfk01 = max{1, kfk1

� } be the 1-norm of f measured with respect to �F , and B0 =
min{⌘N�D, inf{b � �D : ⌘�bb

2 � ✏b�D}}. Then we immediately get the following corol-
lary of Theorem 1:

Corollary 2. For any f 2 span(F), let �0 =
PT

t=1 `t(0) � `t(f(xt)). Algorithm 1, using
�A as the online linear algorithm over �F , is an online learning algorithm for span(F) for
losses in C with the following regret bound for any f 2 span(F):

R0
f (T ) 

✓

1� ⌘

kfk01

◆N

�0 + 3⌘�B0B02kfk01T + LB0kfk01�R(T ) + 2LB0B0kfk01
p
T .
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Choosing large values of � implies that kfk01 can be significantly smaller than kfk1. But B0

becomes bigger than B, and correspondingly, the parameters �B0 and LB0 become bigger
than �B and LB respectively. Also, the (lower order) dependence on the regret term R(T )
increases by a factor of �.

However, it turns out (see Section 3.1) that in several common applications of the algorithm,
B0 can be set to be equal to B or the increase from B is a very slow growing function of
�, such as log(�). In such situations choosing larger values of � leads to improvement
in the higher order terms of the regret bound, while making the lower order term (i.e.
LB0kfk01�R(T )) worse; overall the regret bound can be improved by choosing a suitably
large scaling factor � to balance between the two.

C.3 Improvements for batch boosting

Our algorithmic technique can be used to improve convergence speed for batch boosting
as well, in the setup considered by Zhang and Yu [24]. Since the focus of this paper is on
online boosting, we give a high level comparison of the bounds here, making some simplifying
assumptions to ease the technical details, using our notation as much as possible.

In the setup of Zhang and Yu [24], we have a base set of real valued functions F , which we
assume is symmetric and contains the zero function, 0. Then span(F) is a linear function
space, and let k ·k be some norm defined on span(F). For clarity of presentation, we assume
that for any f 2 F , we have kfk  1. This implies that for any f 2 span(F), we have
kfk  kfk1.
The goal is to minimize a given convex functional ` : span(F) ! R over its domain, span(F).
We assume, for simplicity, that ` is �-smooth over span(F) under the norm k · k, i.e. for
any f, f 0 2 span(F), we have

`(f 0)  `(f) +r`(f) · (f 0 � f) +
�

2
kf � f 0k2.

Zhang and Yu [24] assume4 that we have access to a base learning algorithm A that, given
any f 2 span(F) and a step size ⌘ � 0 can find a function g 2 F that minimizes `(f + ⌘g).
We denote the output of A by A(f, ⌘).

Given such a base learning algorithm, and a sequence of step sizes ⌘1, ⌘2, . . ., the boosting
algorithm of Zhang and Yu [24] computes a sequence of functions f0, f1, f2, . . . 2 span(F)
via greedy fitting as follows: f0 is set to 0, and for any i � 1,

fi := fi�1 + ⌘iA(fi�1, ⌘i).

Define s0 = 1 and si = si�1 + ⌘i for any i � 1.

For any f 2 span(f), for i = 1, 2, . . ., let �i = `(fi)� `(f) denote the optimization errors of
the function fi. Zhang and Yu [24] prove that for any N 2 N, we have

�N  s0 + kfk1
sN + kfk1

�0 +
N
X

i=1

si + kfk1
sN + kfk1

· �
2
⌘2i . (10)

Using the techniques in this paper, we can define a di↵erent boosting algorithm which works
as follows. Given the same sequence of step sizes ⌘1, ⌘2, . . . as above, we set f0 = 0, and for
any i � 1,

fi := (1� �i⌘i)fi�1 + ⌘iA(fi�1, ⌘i),

where

�i :=

⇢

1 if r`(fi�1) · fi�1 � 0
0 otherwise.

4This is a slight simplification of the base learning algorithm considered in [24], which also
performs a search over the step size ⌘. Also, the analysis in [24] allows some optimization error for
the base learning algorithm; to simplify the comparison we assume this error is 0.
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We can analyze this algorithm along the lines of the proof of Theorem 1. First, let gi =
A(fi�1, ⌘i). Then for g 2 F , we have `(fi�1 + ⌘igi)  `(fi�1 + ⌘ig), and by the convexity
and �-smoothness of `, we conclude that

r`(fi�1) · gi  r`(fi�1) · g +
�

2
⌘i.

Using this fact and following the proof of Theorem 1, we get the following bound on the
optimization error �i = `(fi)� `(f) of the function fi:

�N  exp

✓

�sN � s0
kfk1

◆

�0 +
N
X

i=1

exp

✓

�sN � si
kfk1

◆

· �
2
⌘2i (s

2
i + 1). (11)

We can compare our bound (11) to the bound (10) of Zhang and Yu [24], by comparing
corresponding terms in the bound. For each term, we can calculate how large sN needs to
be for the term to be reduced to less than some given bound ✏. To reduce the first term to
less than ✏ our algorithm needs sN � kfk1 log(�0

✏ ) + s0, whereas the algorithm of Zhang

and Yu [24] needs sN � (�0
✏ )(s0 + kfk1)� kfk1. As for the second term, to reduce the i-th

term in the sum to less than ✏, our algorithm needs sN � kfk1 log(�⌘
2
i (s

2
i+1)

2✏ ) + si, whereas

the algorithm of Zhang and Yu [24] needs sN � (�⌘
2
i

2✏ )(si + kfk1) � kfk1. Since in either
case, the dependence on ✏ is log( 1✏ ) for our algorithm, whereas it is 1

✏ for the algorithm of
Zhang and Yu [24], we conclude that our algorithm converges exponentially faster.

D Description of Data Sets and Detailed Experimental Results

The datasets come from the UCI repository and various KDD Cup challenges. Below, d is
the number of unique features in the dataset, and s is the average number of features per
example.

Dataset Number of Total number of Average number of Task Label
instances features features per example range

a9a 48,841 123 14 classification [�1, 1]
abalone 4,177 10 9 regression [1, 29]
activity 165,632 20 18.5 classification [�1, 1]
adult 48,842 105 12 classification [0, 1]
bank 45,211 45 15 classification [�1, 1]

cal housing 20,640 9 9 regression [0, 1]
casp 45,730 10 10 regression [0, 1]
census 299,284 401 32 classification [�1, 1]
covtype 581,011 54 12 classification [�1, 1]

kddcup04 (phy) 50,000 74 32 classification [0, 1]
letter 20,000 16 15.6 classification [�1, 1]
shuttle 43,500 9 8 classification [�1, 1]
slice 53,500 385 135 regression [0, 1]
year 463,715 90 90 regression [0, 1]

The following table provides the online squared losses summarized in Section 5.
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Dataset Baseline Alg 1 Alg 2 Baseline Alg 1 Alg 2 Baseline Alg 1 Alg 2

kddcup04/phy 0.7475 0.7466 0.7470 0.9201 0.7733 0.7924 0.7441 0.7480 0.7446
cal housing 0.0094 0.0094 0.0104 0.0151 0.0138 0.0124 0.0096 0.0096 0.0107
casp 0.0632 0.0631 0.0630 0.0741 0.0741 0.0742 0.0639 0.0632 0.0631
a9a 0.4261 0.4283 0.4249 0.5749 0.5074 0.5758 0.4256 0.4266 0.4246
abalone 3.7263 3.7482 3.7154 6.7791 3.8273 4.2270 3.7380 3.7255 3.7212
activity 0.0334 0.0337 0.0316 0.4492 0.1454 0.3141 0.0192 0.0143 0.0186
adult 0.1055 0.1057 0.1056 0.1388 0.1261 0.1250 0.1081 0.1062 0.1081
bank 0.2971 0.2968 0.2973 0.3774 0.3240 0.3257 0.2962 0.2969 0.2969
census 0.1544 0.1545 0.1553 0.2073 0.1884 0.1789 0.1531 0.1531 0.1523
covtype 0.7256 0.7270 0.7286 0.7910 0.7986 0.7911 0.6807 0.6465 0.6757
letter 0.6441 0.5698 0.6108 0.7420 0.7087 0.7168 0.6542 0.5729 0.6108
shuttle 0.1616 0.1547 0.1577 0.8551 0.3678 0.4354 0.0760 0.0694 0.0802
slice 0.0076 0.0067 0.0065 0.0559 0.0362 0.0410 0.0054 0.0022 0.0044
year 0.0116 0.0119 0.0115 0.0152 0.0140 0.0141 0.0116 0.0119 0.0122
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