Using Convolutional Neural Networks to Recognize Rhythm Stimuli from Electroencephalography Recordings

Part of Advances in Neural Information Processing Systems 27 (NIPS 2014)

Bibtex Metadata Paper Reviews


Sebastian Stober, Daniel J. Cameron, Jessica A. Grahn


Electroencephalography (EEG) recordings of rhythm perception might contain enough information to distinguish different rhythm types/genres or even identify the rhythms themselves. We apply convolutional neural networks (CNNs) to analyze and classify EEG data recorded within a rhythm perception study in Kigali, Rwanda which comprises 12 East African and 12 Western rhythmic stimuli – each presented in a loop for 32 seconds to 13 participants. We investigate the impact of the data representation and the pre-processing steps for this classification tasks and compare different network structures. Using CNNs, we are able to recognize individual rhythms from the EEG with a mean classification accuracy of 24.4% (chance level 4.17%) over all subjects by looking at less than three seconds from a single channel. Aggregating predictions for multiple channels, a mean accuracy of up to 50% can be achieved for individual subjects.