
APPENDIX: SUPPLEMENTARY MATERIAL FOR
CLAMPING VARIABLES AND APPROXIMATE INFERENCE

In this Appendix, we provide:

• Figure 6 showing examples of thefc(x) function introduced in Lemma 6;
• In Section 7, theoretical results on the Hessian leading to proofs of Theorem 8 and (a

stronger version of) Theorem 9 from§4.1, and Lemma 11 from§6; and
• In Section 8, additional illustrative experimental results with details on the Mpower selec-

tion heuristic.
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Figure 6:Plots of upper boundfc(x) againstx for various values ofc

7 The Hessian and Proofs of Earlier Results

In this Section, we first discuss properties of the Hessian in§7.1, then use these in§7.2 to prove
Theorems 8 and 9, and Lemma 11. Define theinterior to be all pointsq ∈ (0, 1)n. Recall that
r∗(x) = (r∗1(qi), . . . , r

∗
i−1(qi), r

∗
i+1(qi), . . . , r

∗
n(qi)) with corresponding pairwise terms{ξ∗ij}, is an

argmax of G(q) = −F(q) whereqi is held fixed at a particular value. For notational convenience,
definer∗i = qi.

7.1 Properties of the Hessian

From (Weller and Jebara, 2013), we have all terms of the Hessian matrixHjk = ∂2F
∂qj∂qk

:

Hjk =

{

qjqk−ξjk
Tjk

if (j, k) ∈ E

0 if (j, k) /∈ E
, Hjj = −

dj − 1

qj(1− qj)
+

∑

k∈N (j)

qk(1− qk)

Tjk
, (5)

wheredj = |N (j)| is the degree ofj, andTjk = qjqk(1 − qj)(1 − qk)− (ξjk − qjqk)
2 ≥ 0, with

equality only at an edge (i.e.qj or qk ∈ {0, 1}). For an attractive edge(j, k), in the interior, as
shown in (Weller and Jebara, 2013, Lemma 14 in Supplement),ξjk − qjqk > 0 and henceHjk < 0.

Now write

Hjj =
1

qj(1− qj)
+

∑

k∈N (j)

(

qk(1− qk)

Tjk
−

1

qj(1− qj)

)

. (6)

Consider the term in large parentheses for somek ∈ N (j). First observe that the term is≥ 0,
strictly> 0 in the interior, whether the edge is attractive or repulsive. SinceHjj > 0, on the surface
∂F
∂qj

∣

∣

∣

r∗
= 0, we have

∂r∗j
∂r∗k

= −
Hjk

Hjj

∣

∣

∣

r∗
, (7)

which also holds fork = i where we definer∗i = qi.
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Further, we may incorporate the term fork to obtain

Hjj ≥
1

qj(1− qj)
+

qk(1 − qk)

Tjk
−

1

qj(1 − qj)
=

qk(1 − qk)

Tjk
,

with equality iff j has no neighbor other thank (again allowingk = i), in which case,

∂r∗j
∂r∗k

=
ξ∗jk − r∗j r

∗
k

r∗k(1 − r∗k)
. (8)

We also show the following results, though the remainder of this Section§7.1 is not used until later
when we prove Theorem 9 in§7.2.1.

Considering the term in large parentheses from (6), using the definition ofTjk, we may write
(

qk(1− qk)

Tjk
−

1

qj(1− qj)

)

=

(

ξjk − qjqk
Tjk

)(

ξjk − qjqk
qj(1− qj)

)

= −Hjkβj→k, (9)

where we defineβj→k =
ξjk−qjqk
qj(1−qj)

, which as mentioned in the main paper after Theorem 8, is equal

to Covq(Xj ,Xk)
Varq(Xj)

, called in finance the beta ofXk with respect toXj . This is clearly positive for an
attractive edge. We next show that the range ofβj→k is bounded, as would be expected for beta.

Lemma 12. In the interior, for an edge(j, k): if attractive,0 < βj→k ≤ αjk

αjk+1 = 1− e−Wjk < 1;

if repulsive,−1 < eWjk − 1 = αjk ≤ βj→k < 0. In either case,|βj→k| =
∣

∣

∣

ξjk−qjqk
qj(1−qj)

∣

∣

∣ ≤

1− e−|Wjk| < 1.

Proof. This follows from (Weller and Jebara, 2013, Lemma 6) and the corresponding flipped result
(Weller and Jebara, 2014, Lemma 10 in Supplement; consider each of the 2 cases forpjk therein).

Defineβ∗
j→k = βj→k

∣

∣

r∗
. Regarding (8), note thatβ∗

j→k ≥ ∂r∗k
∂r∗

j

with equality iffN (k) = {j}. This

notation will become clear when we use it in§7.2.1 to prove Theorem 9.

7.2 Derivation of earlier results

Using the results of§7.1, we first provide a general Theorem from which Lemma 11 follows as an
immediate corollary.

Theorem 13. For any binary pairwise MRF where the Bethe free energy is convex, adding fur-
ther variables to the model and holding them at fixed singleton marginal values (optimum pairwise
marginals are computed using the formula of Welling and Teh,2001), leaves the Bethe free energy
over the original variables convex.

Proof. The Bethe free energy is convex⇔ the Hessian is everywhere positive semi-definite. When
new variables are added to the system, considering (5) and (6), the only effect on the sub-Hessian
restricted to the original variables is potentially to increase the diagonal termsHjj for any original
variablej which is adjacent to a new variable. By Weyl’s inequality, this can only increase the
minimum eigenvalue of the sub-Hessian, and the result follows.

Since the Bethe free energy is convex for any model whose entire topology contains at most one
cycle (Pakzad and Anantharam, 2002), Lemma 11 follows.

We next turn to Theorem 8, then use this to prove a stronger version of Theorem 9. Keep in mind
that, as shown in (Weller and Jebara, 2013), each stationarypoint lies in an open region in the
interior q ∈ (0, 1)n. Further, as discussed in§4.1, we assume that at anyargmax point r∗(qi), the
reduced HessianH\i is non-singular. Hence, writing∇n−1F

∣

∣

qi
for the (n − 1)-vector of partial

derivatives∂F(q)
∂qj

∣

∣

∣

qi
∀j 6= i, there is an open region around any(qi, r∗(qi)) where the function

∇n−1F
∣

∣

qi
= 0 may be well approximated by an invertible linear function, allowing us to solve
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(as in the implicit function theorem) for the total derivatives
dr∗j
dqi

as the unique solutions to the

linear system
dr∗j
dqi

=
∂r∗j
∂qi

+
∑

k/∈{i,j}

∂r∗j
∂r∗

k

dr∗k
dqi

∀j 6= i, where here
∂r∗j
∂r∗

k

always means on the surface

∇n−1F
∣

∣

qi
= 0. In addition, sinceH\i is real, symmetric, positive definite, with all main diagonal

≥ 0 and all off-diagonal≤ 0, it is an M-matrix (indeed a Stieltjes matrix), which we shall use in
§7.2.1. We assume these points for the rest of this Section.

Notation: LetDj =
dr∗j
dqi

, and∂jk =
∂r∗j
∂r∗

k

, soDj =
∑

k/∈{i,j} ∂jkDk + ∂ji ∀j 6= i. For notational

convenience, definer∗i = qi and takeDi = 1. Let [n] = {1, . . . , n} and[n] \ i = {1, . . . , n} \ {i}.

Note that∂jk =
∂r∗j
∂r∗

k

≤ β∗
k→j (equality iff j has no neighbor other thank), as defined above. We

shall write Hessian terms such asHjk to meanHjk

∣

∣

r∗
where this is implied by the context.

We first need the following Lemma.

Lemma 14. Consider a MRF withn variables, where then one more variableXn+1 is added with
singleton marginalr∗n+1, adjacent to exactly one of the originaln variables, sayXa with a ∈ [n]

(note we allowa = i), then:D1, . . . , Dn are unaffected, andDn+1 =
ξ∗a,n+1−r∗ar

∗

n+1

r∗a(1−r∗a)
Da.

Proof. We have the linear systemDj =
∑

k/∈{i,j} ∂jkDk + ∂ji ∀j ∈ [n] \ i. WhenXn+1 is added,

this yields a new equation forDn+1, which as shown in (8), isDn+1 =
ξ∗a,n+1−r∗ar

∗

n+1

r∗a(1−r∗a)
Da, and

the only other equation that changes is the one forDa, where we write∂′
ak and∂′

ai for the new
coefficients. Hence, it is sufficient to show that the earliersolutions forD1, . . . , Dn satisfy the new
equation forDa, i.e. if Da =

∑

k∈[n+1]\{i,a} ∂
′
akDk + ∂′

ai.

Observe from (7) that∂′
ak = ∂akHaa/H

′
aa ∀k ∈ [n], whereH ′

aa incorporates the newXn+1

variable. Hence,

∑

k∈[n+1]\{i,a}

∂′
akDk + ∂′

ai =
Haa

H ′
aa





∑

k/∈{i,j}

∂akDk + ∂ai



+ ∂′
a,n+1Dn+1

=
Haa

H ′
aa

Da +
ξ∗a,n+1 − r∗ar

∗
n+1

Ta,n+1H ′
aa

ξ∗a,n+1 − r∗ar
∗
n+1

r∗a(1 − r∗a)
Da by (7), (5) and just above

=
Da

H ′
aa

[

Haa +

(

ξ∗a,n+1 − r∗ar
∗
n+1

)2

Ta,n+1r∗a(1− r∗a)

]

=
Da

H ′
aa

[

Haa +

(

r∗n+1(1− r∗n+1)

Ta,n+1
−

1

r∗a(1 − r∗a)

)]

(definition ofTa,n+1)

=
Da

H ′
aa

[Haa + (H ′
aa −Haa)] = Da

Theorem 8 may now be proved by induction on|Ck|. The base case|Ck| = 1 follows from (8). The
inductive step follows from Lemma 14 by considering a leaf.

7.2.1 Proof of (stronger version of) Theorem 9:

As above, we have the linear system given by the following equations:

Dj =
∑

k/∈{i,j}

∂jkDk + ∂ji ∀j 6= i ⇔ −∂ji =
∑

k 6=i

[∂jk − δjk]Dk (10)

with ∂jk =
∂r∗j
∂rk∗

= −
Hjk

Hjj
k /∈ {i, j}, ∂jj := 0, ∂ji =

∂r∗j
∂qi

= −
Hji

Hjj
, δjk =

{

1 j = k

0 j 6= k
.

Hence we may rewrite (10), multiplying by−Hjj , to give the equivalent system
∑

k 6=i

HjkDk = −Hji ∀j 6= i (11)
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Note equation (11) makes intuitive sense: for each variableXj , we haveFj = 0 at a stationary
point, then taking the total derivative with respect toqi givesHji +

∑

k 6=i HjkDk = 0.

By Theorem 8, we have the complete solution vectorDk ∀k 6= i provided the topology is
acyclic. In this setting, we rewrite the result of Theorem 8 using theβ∗ notation from above:
Dk =

∏

(s→t)∈P (i k) β
∗
s→t, where hereP (i k) is theuniquepath fromi to k.

For a general graph, there may be many paths fromi to k. Let Π(i  k) be the set of all such
directed paths. For anyr∗, for any particular pathP (i  k) ∈ Π(i  k), define itsweight to be
W [P (i k)] =

∏

(s→t)∈P (i k) β
∗
s→t. We shall prove the following result:

Dk ≥ max
P (i k)∈Π(i k)

W [P (i k)]. (12)

Note this is clearly stronger than Theorem 9 since∀j ∈ N (i), the path going directlyi → j is one
member ofΠ(i j), though in general there may be many others.

For any particularr∗, letG′ be the weighted directed graph formed from the topology of the MRF
by replacing each undirected edges− t by two directed edges:s → t with weightβ∗

s→t andt → s
with weightβ∗

t→s. Note that in an attractive model, allβ∗
s→t ∈ (0, 1), see Lemma 12.

It is a simple application of Dijkstra’s algorithm to construct fromG′ a tree of all maximum weight
directed paths fromi to each vertexj 6= i, which we callT .6 (For our purpose we just need to know
that such a treeT exists.)

We want to solve (11), which we write asH\iD = −Hi, where we want to solve forD, which is
the vector ofDk ∀k 6= i, andHi is theith column ofH without its ith element. LetHT

\i be the

reduced Hessian for the model onT (which is missing some edges), andHT
i be theith column of

the Hessian for the model onT without itsith element. In the sub-model with only the edges ofT ,
by construction and Theorem 8,DT

k = maxP (i k)∈Π(i k) W [P (i k)]. Hence, it is sufficient to
show that adding the extra edges fromT toG cannot decrease anyDk. This forms the remainder of
the proof, where we shall require the following nonsingularM-matrix property ofH\i: its inverse is
elementwise non-negative (Fan, 1958, Theorem 5’).

Let ∆ = H\i − HT
\i (this accounts for edges inE(G) \ E(T ) not incident toi), η = Hi − HT

i

(this accounts for edges inE(G) \E(T ) incident toi) andδ = D−DT . We must show thatδ ≥ 0
elementwise. We haveHT

\iD
T = −HT

i andH\iD = −Hi, henceHT
\iD

T − η = −HT
i − η =

−Hi = H\iD = (HT
\i +∆)(DT + δ), hence−η = (HT

\i +∆)δ + ∆DT ⇔ δ = (H\i)
−1(−η −

∆DT ). Thus, it is sufficient to show that the(n−1) vector−η−∆DT is elementwise non-negative.

Recall (5) and (9).−η−∆DT may be written as the sum of−ηe −∆eD
T , with oneηe and∆e for

each edgee = (s, t) in E(G) \ E(T ). For each such edgee, we have 2 cases:

Case 1,i /∈ {s, t}: ηe = 0;∆e has only 4 non-zero elements, at locations(s, s), (s, t), (t, s), (t, t).
Showing only these elements,

∆e =

(

s t

s −Hstβ
∗
s→t Hst

t Hst −Hstβ
∗
t→s

)

= −Hst

(

s t

s β∗
s→t −1

t −1 β∗
t→s

)

,where−Hst > 0 for an attractive edge.

Hence,−ηe−∆eD
T is 0 everwhere except elements which is−Hst(D

T
t −DT

s β
∗
s→t), and element

t which is−Hst(D
T
s −DT

t β∗
t→s). Observe that both expressions are≥ 0 by construction ofT (for

example, considering the first bracketed term, observe thatDT
t is the maximum weight of a path

from i to t, whereasDT
s β

∗
s→t is the weight of a path tot going throughs).

Case 2,i ∈ {s, t}: WLOG suppose the edge is(i, s). −ηe is zero everywhere except elements
which is−His (positive).∆e has just one non-zero element at(s, s) which is−Hisβ

∗
s→i. Hence,

−ηe −∆eD
T is 0 everwhere except elements which is−His(1−DT

s β
∗
s→i) > 0 by Lemma 12.

This completes the proof.

6We want the max of the prod of edge weights⇔ max of the log of the prod of edge weights⇔ max of the
sum of the log of edge weights (all negative)⇔ min of the sum of - log of the edge weights (all positive); so
really we construct the usual shortest directed paths tree using - log of the edge weights, which are all positive.
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(d) general margs,Tmax = 0.1

Figure 7:Average errors vs true,complete graph on n = 10. Consistent legend throughout.
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Figure 8:Average errors vs true,random graph on n = 10, p = 0.5. Consistent legend throughout.
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(d) general margs,Tmax = 0.1

Figure 9:Average errors vs true,random graph on n = 50, p = 0.1. Consistent legend throughout.
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Figure 10:‘Lamp’ topology.
maxW is likely to choosex6 since it has the
highest degree, butx4 is typically a better
choice since it lies on cycles. Mpower can rec-
ognize this and make a better choice.

8 Additional Experiments

All of the experiments reported in§5 were also run at other settings. In particular, the earlierresults
show the poor performance of the standard Bethe approximation in estimating singleton marginals
for attractive models with low singleton potentials, and indicate how clamping repairs this. Here, in
Figures 7-9, we show results for the same topologies using the higher singleton potentialsTmax = 2
for attractive models, and also show results with low singleton potentialsTmax = 0.1 for general
(non-attractive) models.

Note that in some examples of attractive models, when the ‘worst clamp’ variable was clamped, the
resulting Bethe approximation tologZ appears to worsen (see Figure 9a), which seems to conflict
with Theorem 5. The explanation is that in these examples, Frank-Wolfe is failing to find the global
Bethe optimum, as was confirmed by spot checking.

Next we show results for a particular fixed topology we call a ‘lamp’, see Figure 10, which illus-
trates how maxW can sometimes select a poor variable to clamp. We explain the Mpower selection
heuristic and demonstrate that it performs much better on this topology.
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(c) generallogZ, Tmax = 2
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(d) general margs,Tmax = 2

Figure 11: Average errors vs true,‘lamp’ topology Tmax = 2. Consistent legend throughout. Mpower
performs well, significantly better than maxW.
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Figure 12:Average errors vs true,‘lamp’ topology Tmax = 0.1. Consistent legend throughout. Mpower
performs well, significantly better than maxW forlogZ.

8.1 Mpower heuristic

We would like an efficient way to select a variable to clamp which lies on many heavy simple cycles.
One problem is how to define heavy. Even with a good definition,it is still NP-hard to search over
all simple cycles. The idea for Mpower is as follows: assign each edge(i, j) a weight based on
|Wij | and create a matrixM of these weights. IfM is raised to thekth power, then theith diagonal
element inMk is the sum over all paths of lengthk from i to i of the product of the edge weights
along the path. Ideally, we might consider the sum

∑∞
k=1 M

k and use the diagonal elements to rank
the vertices, choosing the one with highest total score. Recalling (12), it is sensible to assign edge
weightsMij based on possibleβ∗

i→j values. Given Lemma 12, a first idea is to use1− e−|Wij |.

However, we’d like to be sure that the matrix series
∑∞

k=1 M
k is convergent, allowing it to be

computed as(I −M)−1 − I (since we shall be interested only in ranking the diagonal terms, in fact
there is no need to subtractI at the end). Thus, we need the spectral radiusρ(M) < 1. A sufficient
condition is that all row sums are< 1. Since each term1 − e−|Wij | < 1 and there at mostn − 1
such elements in any row, our first heuristic was to setMij =

1
n−1 (1− e−|Wij |). We then made two

adjustments.

First, note that the series
∑∞

k=1 M
k overcounts all cycles, though at an exponentially decayingrate.

It is hard to repair this. However, it also includes relatively high value terms coming from paths
from i to any neighborj and straight back again, along with all powers of these. We should like
to discard all of these, hence from eachith diagonal term of(I −M)−1, we subtractsi/(1 − si),
wheresi is theith diagonal term ofM2. This is very similar to the final version we used, and gives
only very marginally worse results on the examples we considered.

For our final version, we observe that1− e−|Wij | decays rapidly, and≈ tanh
|Wij |

2 . Given the form

of the loop series expansion for a single cycle, which containstanh Wij

4 terms (Weller et al., 2014,

Lemma 5), we tried instead usingMij = 1
n−1 tanh

|Wij |
4 , and it is for this heuristic that results

are shown in Figures 11 (forTmax = 2) and 12 (forTmax = 0.1). Observe that for this topol-
ogy, Mpower performs close to optimally (almost the same results as for best Clamp), significantly
outperforming maxW in most settings. Note, however, that inthe experiments on random graphs
reported in§5, Mpower did not outperform the simpler maxW heuristic. In future work, we hope to
improve the selection methods.
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