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Abstract

The supplementary material contains four parts. First, we provide some sample
images from the three datasets that we tested our method on. Second, we pro-
vide some background material on Hilbert-Schmidt operators. The third and main
part contains the proofs for all mathematical results in the paper. The final part
contains further discussions and interpretations of our framework, including its
computational complexity in the kernel setting.

A Experiments

In this section we give some example images extracted from each of the three datasets that we tested
our method on. Figure 1 shows some samples extracted from the Kylberg Texture dataset. Figure
2 shows 4 samples, 1 for each split, of the KTH-TIPS2b Material dataset. Finally, Figure 3 shows
examples extracted from the Fish Recognition dataset.

Figure 1: Some samples from the Kylberg texture dataset [6].

Figure 2: Samples extracted from the 4 splits of the KTH-TIPS2b dataset [3].
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Figure 3: 3 samples from each of the 23 classes of the Fish Recognition dataset [2].

B Background on Hilbert-Schmidt operators

We briefly give some facts about Hilbert-Schmidt operators that we need in the current work here,
for more detail see e.g. [5]. Let H be a separable Hilbert space. Let L(H) be the Banach space of
bounded linear operators onH. The set of Hilbert-Schmidt operators, denoted by HS(H), is defined
by

HS(H) = {A ∈ L(H) : ||A||2HS = tr(A∗A) =

∞∑
k=1

||Aek||2 <∞},

where {ek}∞k=1 is any orthonormal basis forH. Under the Hilbert-Schmidt inner product,

〈A,B〉HS = tr(A∗B),

the set HS(H) becomes a Hilbert space. It is a non-unital Banach algebra of operators, since it is
also closed under multiplication, with A,B ∈ HS(H)⇒ AB ∈ HS(H) and

||AB||HS ≤ ||A||HS||B||HS.

This is called the Hilbert-Schmidt algebra of operators onH. Furthermore, it is a two-sided ideal in
L(H), that is

A ∈ HS(H), B ∈ L(H)⇒ BA ∈ HS(H), AB ∈ HS(H).

A Hilbert-Schmidt operator is compact and thus has a countable spectrum. In particular, if A is self-
adjoint Hilbert-Schmidt, that isA ∈ Sym(H)∩HS(H), thenA has countably many real eigenvalues
{λk}∞k=1 and we have

||A||2HS =

∞∑
k=1

λ2
k <∞.

Clearly, the identity operator I /∈ HS(H), since

||I||2HS =

∞∑
k=1

||ek||2 =∞.
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C Proofs of main results

For clarity, we restate all the results from the main paper that we prove here.

C.1 Proofs for the Log-Hilbert-Schmidt metric - the general setting

Theorem 1. Under the two operations � and �, (Σ(H),�,�) becomes a vector space, with �
acting as vector addition and � acting as scalar multiplication. The zero element in (Σ(H),�,�)
is the identity operator I and the inverse of (A+ γI) is (A+ γI)−1. Furthermore, the map

ψ : (Σ(H),�,�)→ (HR,+, ·) defined by ψ(A+ γI) = log(A+ γI), (C.1)

is a vector space isomorphism, so that for all (A+ γI), (B + µI) ∈ Σ(H) and λ ∈ R,

ψ((A+ γI)� (B + µI)) = log(A+ γI) + log(B + µI),

ψ(λ� (A+ γI)) = λ log(A+ γI), (C.2)

where + and · denote the usual operator addition and multiplication operations, respectively.

To prove Theorem 1, we need the following result.
Lemma 1. Assume that dim(H) = ∞. For each operator (A + γI) ∈ Σ(H), there exist a unique
operator A1 ∈ HS(H) ∩ Sym(H) and a unique scalar γ1 ∈ R such that

A+ γI = exp(A1 + γ1I). (C.3)

Proof of Lemma 1. It was shown in [7] that for a fixed P ∈ Σ(H), the exponential map ExpP :
TP (Σ(H)) → Σ(H) and its inverse, the logarithm map LogP : Σ(H) → TP (Σ(H)), are diffeo-
morphisms given by

ExpP (U) = P 1/2 exp(P−1/2UP−1/2)P 1/2, U ∈ TP (Σ(H)), (C.4)

LogP (V ) = P 1/2 log(P−1/2V P−1/2)P 1/2, V ∈ Σ(H). (C.5)
The tangent space TP (Σ(H)) at any point P can be identified with HR, that is TP (Σ(H)) ' HR.
Thus in particular, for P = I , the map

ExpI(U) = exp(U), U ∈ HR, (C.6)

and its inverse
LogI(V ) = log(V ), V ∈ Σ(H), (C.7)

are diffeomorphisms. Hence for each operator (A + γI) ∈ Σ(H), there exist a unique operator
A1 ∈ HS(H) ∩ Sym(H) and a unique scalar γ1 ∈ R such that

A+ γI = exp(A1 + γ1I).

This completes the proof.

Proof of Theorem 1. The case dim(H) <∞ was treated by [1]. Let us assume that dim(H) =∞.

(I) First, we need to show that Σ(H) is closed under the operations � and �, that is

(A+ γI)� (B + µI) ∈ Σ(H)

and
λ� (A+ γI) ∈ Σ(H)

for all operators (A+ γI), (B + µI) ∈ Σ(H) and all λ ∈ R.

By Lemma 1, there exist unique A1, B1 ∈ HS(H) ∩ Sym(H) and γ1, µ1 ∈ R such that

A+ γI = exp(A1 + γ1I), B + µI = exp(B1 + µ1I).

It follows that

(A+ γI)� (B + µI) = exp((A1 +B1) + (γ1 + µ1)I) ∈ Σ(H).
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Similarly,

λ� (A+ γI) = exp(λ(A1 + γ1I)) = exp(λA1 + λγ1I) ∈ Σ(H).

Thus Σ(H) are closed under the two operations � and �.

(II) Let us show that (Σ(H),�) is an abelian group by verifying all the axioms.

i) Associativity is satisfied, since

[(A+ γI)� (B + µI)]� (C + ηI) = (A+ γI)� [(B + µI)� (C + ηI)]

= exp(log(A+ γI) + log(B + µI) + log(C + ηI)).

ii) The neutral element is the identity operator I , since it is clear that

(A+ γI)� I = I � (A+ γI) = (A+ γI).

iii) The inverse of (A+ γI) is (A+ γI)−1, since

(A+ γI)� (A+ γI)−1 = exp(0) = I = (A+ γI)−1 � (A+ γI).

iv) Commutativity is satisfied, since

(A+ γI)� (B + µI) = (B + µI)� (A+ γI) = exp(log(A+ γI) + log(B + µI)).

Thus Σ(H) is an abelian group.

(III) Let us now verify the axioms showing that (Σ(H),�,�) is a vector space, with the operation
� acting as vector addition and � acting as scalar multiplication.

(i) First distributive property:

λ� [(A+ γI)� (B + µI)] = exp(λ log[(A+ γI)� (B + µI)])

= exp(λ[log(A+ γI) + log(B + µI)]) = exp(log[(A+ γI)]λ + log[(B + µI)λ])

= exp(log[λ� (A+ γI)] + log[λ� (B + µI)]) = [λ� (A+ γI)]� [λ� (B + µI)].

(ii) Second distributive property:

(λ+ µ) � (A+ γI) = exp((λ+ µ) log(A+ γI)) = exp(λ log(A+ γI) + µ log(A+ γI))

= exp(log[(A+ γI)]λ + log[(A+ γI)µ]) = exp(log[λ� (A+ γI)] + log[µ� (A+ γI)])

= [λ� (A+ γI)]� [µ� (A+ γI)].

(iii) Associativity of scalar multiplication:

λ� [µ� (A+ γI)] = λ� exp(µ log(A+ γI)) = λ� exp(log[(A+ γI)µ])

= λ� [(A+ γI)µ] = exp(λ log[(A+ γI)µ]) = exp(λµ log(A+ γI)) = (λµ) � (A+ γI).

(iv) Multiplication by the unit scalar:

1 � (A+ γI) = exp(log(A+ γI)) = (A+ γI).

These axioms, together with the axioms showing that (Σ(H),�) is abelian, show that (Σ(H),�,�)
is a vector space.

(IV) Consider now the map

ψ : (Σ(H),�,�)→ (HR,+, ·),

defined by

ψ(A+ γI) = log(A+ γI).

We have

ψ([(A+ γI)� (B + µI)]) = log(A+ γI) + log(B + µI),

ψ(λ� (A+ γI)) = λ log(A+ γI).

This shows that ψ is a homomorphism. We already know that the map log : Σ(H) → HR is a
bijection. Thus ψ is a vector space isomorphism. This completes the proof.
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Consider the Log-Hilbert-Schmidt distance between two operators (A+ γI) ∈ Σ(H), (B + µI) ∈
Σ(H), defined by

dlogHS[(A+ γI), (B + µI)] =
∥∥log[(A+ γI)� (B + µI)−1]

∥∥
eHS

. (C.8)

Theorem 2. The Log-Hilbert-Schmidt distance as defined in (C.8) is a metric, making
(Σ(H), dlogHS) a metric space. Let (A + γI) ∈ Σ(H), (B + µI) ∈ Σ(H). If dim(H) = ∞,
then there exist unique operators A1, B1 ∈ HS(H) ∩ Sym(H) and scalars γ1, µ1 ∈ R such that

A+ γI = exp(A1 + γ1I), B + µI = exp(B1 + µ1I), (C.9)

and
d2

logHS[(A+ γI), (B + µI)] = ‖A1 −B1‖2HS + (γ1 − µ1)2. (C.10)
If dim(H) < ∞, then (C.9) and (C.10) hold with A1 = log(A + γI), B1 = log(B + µI), γ1 =
µ1 = 0.

Proof of Theorem 2. If dim(H) <∞, then by definition

dlogHS[(A+ γI), (B + µI)] =
∥∥log[(A+ γI)� (B + µI)−1]

∥∥
HS

= || log(A+ γI)− log(B + µI)||HS,

which is simply the Log-Euclidean metric between (A+ γI) and (B + µI).

Consider now the case dim(H) = ∞. By Lemma 1, for operators (A + γI) ∈ Σ(H), (B + µI) ∈
Σ(H), there exist unique operators A1 ∈ HS(H) ∩ Sym(H) and unique scalars γ1, µ1 ∈ R such
that

A+ γI = exp(A1 + γ1I), B + µI = exp(B1 + µ1I). (C.11)
It follows that

(A+ γI)� (B + µI)−1 = exp(log(A+ γI)− log(B + µI)) = exp((A1 + γ1I)− (B1 + µ1I))

= exp((A1 −B1) + (γ1 − µ1)I).

Consequently,

log[(A+ γI)� (B + µI)−1] = (A1 −B1) + (γ1 − µ1)I ∈ HR.

By definition of the extended Hilbert-Schmidt norm, we have

d2
logHS[(A+ γI), (B + µI)] = || log[(A+ γI)� (B + µI)−1]||2eHS = ||A1 −B1||2HS + (γ1 − µ1)2.

Let us show that dlogHS is indeed a metric by verifying all the axioms of metric space.

i) Positivity: clearly we have

dlogHS[(A+ γI), (B + µI)] =
√
||A1 −B1||2HS + (γ1 − µ1)2 ≥ 0

for all (A+ γI), (B + µI) ∈ Σ(H). Equality happens if and only if A1 = B1 and γ1 = µ1, that is
if and only if A = B and γ = µ.

ii) Symmetry: this is also clear from the above expression.

iii) Triangle inequality: by definition,

dlogHS[(A+ γI), (B + µI)] = || log[(A+ γI)� (B + µI)−1]||eHS

= || log(A+ γI)− log(B + µI)||eHS.

The triangle inequality for dlogHS then follows from the triangle inequality for the extended Hilbert-
Schmidt norm || ||eHS. Thus (Σ(H), dlogHS) is a metric space. This completes the proof of the
theorem.

Consider the Log-Hilbert-Schmidt inner product between (A+ γI) and (B + µI), defined by

〈A+ γI,B + µI〉logHS = 〈log(A+ γI), log(B + µI)〉eHS = 〈A1, B1〉HS + γ1µ1, (C.12)

where A1, B1 ∈ Sym(H) ∩HS(H) and γ1, µ1 ∈ R are such that

(A+ γI) = exp(A1 + γ1I), (B + µI) = exp(B1 + µ1I),

as in Theorem 2.
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Theorem 3. The inner product 〈 , 〉logHS as given in (C.12) is well-defined on (Σ(H),�,�).
Endowed with this inner product, (Σ(H),�,�, 〈 , 〉logHS) becomes a Hilbert space. The corre-
sponding Log-Hilbert-Schmidt norm is given by

||A+ γI||2logHS = || log(A+ γI)||2eHS = ||A1||2HS + γ2
1 . (C.13)

In terms of this norm, the Log-Hilbert-Schmidt distance is given by

dlogHS[(A+ γI), (B + µI)] =
∥∥(A+ γI)� (B + µI)−1

∥∥
logHS

. (C.14)

Proof of Theorem 3. We first need to show that the inner product

〈A+ γI,B + µI〉logHS = 〈A1, B1〉HS + γ1µ1.

is well-defined on (Σ(H),�,�), by verifying all the necessary axioms.

i) Symmetry is obvious.

ii) First linear property:

〈(A+ γI)� (B + µI), (C + ηI)〉logHS = 〈exp(log(A+ γI) + log(B + µI)), C + ηI〉logHS

= 〈exp((A1 +B1) + (γ1 + µ1)I), exp(C1 + η1I)〉logHS

= 〈(A1 +B1), C1〉HS + (γ1 + µ1)η1 = (〈A1, C1〉HS + γ1η1) + (〈B1, C1〉HS + µ1η1)

= 〈(A+ γI), (C + ηI)〉logHS + 〈(B + µI), (C + ηI)〉logHS.

iii) Second linear property:

〈[λ� (A+ γI)], (B + µI)〉logHS = 〈exp(λ log(A+ γI)), (B + µI)〉logHS

= 〈exp(λ(A1 + γ1I)), exp(B1 + µ1I)〉logHS = 〈λA1, B1〉HS + λγ1µ1

= λ[〈A1, B1〉HS + γ1µ1] = λ〈(A+ γI), (B + µI)〉logHS.

iv) Positivity:

〈A+ γI,A+ γI〉logHS = ||A1||2HS + γ2
1 ≥ 0.

Equality happens if and only ifA1 = 0 and γ1 = 0, that is if and onlyA+γI = exp(A1 +γ1I) = I .
Thus 〈 〉logHS is a well-defined inner product, giving rise to the norm

||A+ γI||2logHS = || log(A+ γI)||2eHS = ||A1||2HS + γ2
1 .

By definition, we have

dlogHS[(A+γI), (B+µI) = || log[(A+γI)�(B+µI)−1||eHS = ||(A+γI)�(B+µI)−1||logHS,

as we claimed.

To show that (Σ(H),�,�, 〈 , 〉logHS) is a Hilbert space, we need to show that it is complete under
the norm || ||logHS. This is obvious if dim(H) < ∞. If dim(H) = ∞, let {(An + γnI)}n∈N be a
Cauchy sequence in || ||logHS, that is

lim
n,m→∞

||(An + γnI)� (Am + γmI)−1||2logHS = lim
n,m→∞

||An1 −Am1 ||2HS + (γn1 − γm1 )2 = 0,

where An1 ∈ Sym(H) ∩ HS(H) and γn1 ∈ R are such that (An + γnI) = exp(An1 + γn1 I). The
convergence on the right hand side above implies that there is a unique A1 ∈ Sym(H)∩HS(H) and
a unique γ1 ∈ R such that

lim
n→∞

||An1 −A1||2HS = 0, lim
n→∞

γn1 = γ1.

Hence if (A+ γI) = exp(A1 + γ1I), then

lim
n→∞

||(An + γnI)� (A+ γI)−1||2logHS = lim
n→∞

||An1 −A1||2HS + (γn1 − γ1)2 = 0.

Thus the Cauchy sequence {(An + γnI)}n∈N converges under the || ||logHS norm, showing that
(Σ(H),�,�, 〈 , 〉logHS) is a complete inner product space, that is it is a Hilbert space. This com-
pletes the proof.

6



Corollary 1. The following kernels defined on Σ(H)× Σ(H) are positive definite:

K[(A+ γI), (B + µI)] = (c+ 〈A+ γI,B + µI〉logHS)d, c > 0, d ∈ N, (C.15)

K[(A+ γI), (B + µI)] = exp(−dplogHS[(A+ γI), (B + µI)]/σ2), 0 < p ≤ 2. (C.16)

Proof of Corollary 1. For the first kernel, we have the property that the sum and product of positive
definite kernels are also positive definite. Thus from the positivity of the inner product 〈A+γI,B+
µI〉logHS, it follows thatK[(A+γI), (B+µI)] = (c+〈A+γI,B+µI〉logHS)d is positive definite,
as in the Euclidean setting.

For the second kernel, we have by definition,
dlogHS[(A+ γI), (B + µI) = || log(A+ γI)− log(B + µI)||eHS.

It follows that
exp(−dplogHS[(A+ γI), (B + µI)]/σ2) = exp(−|| log(A+ γI)− log(B + µI)||peHS/σ

2),

which is positive definite for 0 < p ≤ 2 by a classical result due to Schoenberg [9].

C.2 Log-Hilbert-Schmidt metric between regularized positive operators

Theorem 4. Assume that dim(H) = ∞. Let A,B ∈ HS(H) ∩ Sym+(H). Let γ, µ > 0. Then
(A+ γI), (B + µI) ∈ Σ(H) and

d2
logHS[(A+γI), (B+µI)] =

∥∥∥∥log

(
1

γ
A+ I

)
− log

(
1

µ
B + I

)∥∥∥∥2

HS

+ (log γ− logµ)2. (C.17)

In particular, for µ = γ > 0,

dlogHS[(A+ γI), (B + γI)] =

∥∥∥∥log

(
1

γ
A+ I

)
− log

(
1

γ
B + I

)∥∥∥∥
HS

. (C.18)

Their Log-Hilbert-Schmidt inner product is given by

〈(A+ γI), (B + µI)〉logHS =

〈
log

(
1

γ
A+ I

)
, log

(
1

µ
B + I

)〉
HS

+ (log γ)(logµ). (C.19)

The corresponding norm is given by

||(A+ γI)||2logHS =

∥∥∥∥log

(
1

γ
A+ I

)∥∥∥∥2

HS

+ (log γ)2. (C.20)

To prove Theorem 4, we first note that for each compact operator A ∈ Sym+(H), the following
operator is well-defined:

log(I + γA) =

dim(H)∑
k=1

log(1 + γλk(A))φk(A)⊗ φk(A), γ ≥ 0. (C.21)

Furthermore, we have the following result.
Lemma 2. If A ∈ HS(H)∩Sym+(H), then log(I+γA) ∈ HS(H)∩Sym(H) for all γ ≥ 0, with
the Hilbert-Schmidt norm of log(I + γA) given by

|| log(I + γA)||2HS =

dim(H)∑
k=1

[log(1 + γλk(A))]2 ≤ γ2||A||2HS. (C.22)

Proof of Lemma 2. SinceA is compact, self-adjoint, and positive, the operator log(I+γA) is well-
defined for all γ ≥ 0, as noted above. It is also clear that log(I + γA) ∈ Sym(H). To show that
log(I + γA) ∈ HS(H), we make use of the identity

log(1 + x) ≤ x for all x ≥ 0. (C.23)
It follows that

|| log(I + γA)||2HS =

dim(H)∑
k=1

[log(1 + γλk(A))]2 ≤
dim(H)∑
k=1

γ2λ2
k(A) = γ2||A||2HS <∞,

by the assumption that A ∈ HS(H). This completes the proof.
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Proof of Theorem 4. Since the identity operator I commutes with all other operators, from the def-
inition of the log function, we have

log(A+ γI) = log

[
γI

(
1

γ
A+ I

)]
= log(γI) + log

(
1

γ
A+ I

)
, (C.24)

where log
(

1
γA+ I

)
∈ HS(H) ∩ Sym(H) by Lemma 2. It follows that in Theorem 2,

(A+ γI) = exp (A1 + γ1I) ,

where

A1 = log

(
1

γ
A+ I

)
, γ1 = log γ.

Similarly,

(B + µI) = exp (B1 + µ1I) ,

where

B1 = log

(
1

µ
B + I

)
, µ1 = logµ.

Thus from Theorem 2, we have

d2
logHS[(A+ γI), (B + µI)] = ||A1 −B1||2HS + (γ1 − µ1)2

=

∥∥∥∥log

(
1

γ
A+ I

)
− log

(
1

µ
B + I

)∥∥∥∥2

HS

+ (log(γ)− log(µ))2,

which is the desired formula for the distance dlogHS. By definition of the Log-Hilbert-Schmidt inner
product, we have

〈(A+ γI), (B + µI)〉logHS = 〈A1, B1〉HS + γ1µ1

=

〈
log

(
1

γ
A+ I

)
, log

(
1

µ
B + I

)〉
HS

+ (log γ)(logµ),

as we claimed. The formula for the Log-Hilbert-Schmidt norm then follows immediately. This
completes the proof.

Theorem 5. Assume that dim(H) <∞. LetA,B ∈ Sym+(H). Let γ, µ > 0. Then (A+γI), (B+
µI) ∈ Σ(H) and

d2
logHS[(A+ γI), (B + µI)] =

∥∥∥∥log

(
A

γ
+ I

)
− log

(
B

µ
+ I

)∥∥∥∥2

HS

+2(log γ − logµ)tr

(
log

(
A

γ
+ I

)
− log

(
B

µ
+ I

))
+ (log γ − logµ)2 dim(H). (C.25)

The Log-Hilbert-Schmidt inner product between (A+ γI) and (B + µI) is given by

〈(A+ γI), (B + µI)〉logHS =

〈
log

(
A

γ
+ I

)
, log

(
B

µ
+ I

)〉
HS

+(log γ)tr

(
log

(
B

µ
+ I

))
+ (logµ)tr

(
log

(
A

γ
+ I

))
+ (log γ logµ) dim(H). (C.26)

The Log-Hilbert-Schmidt norm of (A+ γI) is given by

||(A+ γI)||2logHS =

∥∥∥∥log

(
1

γ
A+ I

)∥∥∥∥2

HS

+ 2(log γ)tr log

(
1

γ
A+ I

)
+ (log γ)2 dim(H).(C.27)
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Proof of Theorem 5. If dim(H) <∞, then in Theorem 2, we have

(A+ γI) = exp(A1 + γ1I), (B + µI) = exp(B1 + µ1I)

where
A1 = log(A+ γI), B1 = log(B + µI), γ1 = µ1 = 0.

The Log-Hilbert-Schmidt distance is now the Log-Euclidean distance and is given by

d2
logHS[(A+ γI), (B + µI)] = ||A1 −B1||2HS = || log(A+ γI)− log(B + µI)||2HS

=

∥∥∥∥log

(
A

γ
+ I

)
− log

(
B

µ
+ I

)
+ (log γ − logµ)I

∥∥∥∥2

HS

=

∥∥∥∥log

(
A

γ
+ I

)
− log

(
B

µ
+ I

)∥∥∥∥2

HS

+ 2(log γ − logµ)tr

(
log

(
A

γ
+ I

)
− log

(
B

µ
+ I

))
+(log γ − logµ)2 dim(H).

Similarly, the Log-Hilbert-Schmidt inner product is

〈(A+ γI), (B + µI)〉logHS = 〈A1, B1〉HS = 〈log(A+ γI), log(B + µI)〉HS

=

〈
log

(
A

γ
+ I

)
+ (log γI), log

(
B

µ
+ I

)
+ (logµ)I

〉
HS

=

〈
log

(
A

γ
+ I

)
, log

(
B

µ
+ I

)〉
HS

+ (log γ)tr

(
log

(
B

µ
+ I

))
+ (logµ)tr

(
log

(
A

γ
+ I

))
+(log γ logµ) dim(H).

Finally, for the Log-Hilbert-Schdmit norm,

||(A+ γI)||2logHS = || log(A+ γI)||2HS =

∥∥∥∥log

(
1

γ
A+ I

)
+ (log γ)I

∥∥∥∥2

HS

=

∥∥∥∥log

(
1

γ
A+ I

)∥∥∥∥2

HS

+ 2(log γ)tr log

(
1

γ
A+ I

)
+ (log γ)2 dim(H).

This completes the proof.

C.3 Log-Hilbert-Schmidt metric between regularized covariance operators

Let X be an arbitrary non-empty set. Let K be a positive definite kernel on X × X and HK be its
corresponding RKHS. Let x = [xi]

m
i=1, y = [yi]

m
i=1, m ∈ N, be two data matrices sampled from

X and CΦ(x), CΦ(y) be the corresponding covariance operators induced by the kernel K. Let K[x],
K[y], and K[x,y] be the m × m Gram matrices defined by (K[x])ij = K(xi, xj), (K[y])ij =
K(yi, yj), (K[x,y])ij = K(xi, yj), 1 ≤ i, j ≤ m. Let A = 1√

γmΦ(x)Jm : Rm → HK ,

B = 1√
µmΦ(y)Jm : Rm → HK , so that

ATA =
1

γm
JmK[x]Jm, BTB =

1

µm
JmK[y]Jm, ATB =

1
√
γµm

JmK[x,y]Jm. (C.28)

Let NA and NB be the numbers of nonzero eigenvalues of ATA and BTB, respectively. Let ΣA
and ΣB be the diagonal matrices of size NA × NA and NB × NB , respectively, and UA and UB
be the matrices of size m × NA and m × NB , respectively, which are obtained from the spectral
decompositions

1

γm
JmK[x]Jm = UAΣAU

T
A ,

1

µm
JmK[y]Jm = UBΣBU

T
B . (C.29)

In the following, let ◦ denote the Hadamard (element-wise) matrix product. Define

CAB = 1TNA
log(INA

+ ΣA)Σ−1
A (UTAA

TBUB ◦ UTAATBUB)Σ−1
B log(INB

+ ΣB)1NB
. (C.30)
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Theorem 6. Assume that dim(HK) =∞. Let γ > 0, µ > 0. Then

d2
log HS[(CΦ(x) + γI), (CΦ(y) + µI)] = tr[log(INA

+ ΣA)]2 + tr[log(INB
+ ΣB)]2 − 2CAB

+(log γ − logµ)2. (C.31)

The Log-Hilbert-Schmidt inner product between (CΦ(x) + γI) and (CΦ(y) + µI) is

〈(CΦ(x) + γI), (CΦ(y) + µI)〉logHS = CAB + (log γ)(logµ). (C.32)

The Log-Hilbert-Schmidt norm of the operator (CΦ(x) + γI) is given by

||(CΦ(x) + γI)||2logHS = tr[log(INA
+ ΣA)]2 + (log γ)2. (C.33)

Theorem 7. Assume that dim(HK) <∞. Let γ > 0, µ > 0. Then

d2
logHS[(CΦ(x) + γI), (CΦ(y) + µI)] = tr[log(INA

+ ΣA)]2 + tr[log(INB
+ ΣB)]2

−2CAB + 2(log γ − logµ)(tr[log(INA
+ ΣA)]− tr[log(INB

+ ΣB)])

+(log γ − logµ)2 dim(HK). (C.34)

The Log-Hilbert-Schmidt inner product between (CΦ(x) + γI) and (CΦ(y) + µI) is

〈(CΦ(x) + γI), (CΦ(y) + µI)〉logHS = CAB + (logµ)tr[log(INA
+ ΣA)]

+(log γ)tr[log(INB
+ ΣB)] + (log γ logµ) dim(HK). (C.35)

The Log-Hilbert-Schmidt norm of (CΦ(x) + γIHK
) is given by

||(CΦ(x) + γI)||2logHS = tr[log(INA
+ ΣA)]2 + 2(log γ)tr[log(INA

+ ΣA)]

+(log γ)2 dim(HK). (C.36)

To prove Theorems 6 and 7, we need the following results.
Lemma 3. Let H1 and H2 be two separable Hilbert spaces. Let A : H1 → H2 and B : H2 → H1

be two bounded linear operators. Then the nonzero eigenvalues of BA : H1 → H1 and AB :
H2 → H2, if they exist, are the same.

Proof of Lemma 3. Let λ 6= 0 be an eigenvalue forAB with corresponding eigenvector v 6= 0, then

ABv = λv.

Multiplying both sides by B gives

(BA)(Bv) = λ(Bv).

This shows that λ is an eigenvalue of BA, with eigenvector Bv. Note that we also have Bv 6= 0,
since

Bv = 0 =⇒ ABv = 0 = λv =⇒ v = 0,

in contradiction to our assumption that v 6= 0.

Conversely, if µ 6= 0 is an eigenvalue of BA with eigenvector w 6= 0, then it is also an eigenvalue
of AB, with eigenvector Aw 6= 0. Thus the nonzero eigenvalues of AB are the same as those of
BA.

Lemma 4. Let H1 and H2 be two separable Hilbert spaces. Let A : H1 → H2 and B : H2 → H1

be two bounded linear operators such that AB : H2 → H2 and BA : H1 → H1 are positive,
self-adjoint compact operators. IfAB is trace class, thenBA is also trace class. Furthermore, both
log(AB + IH2

) and log(BA+ IH1
) are trace class operators and

tr log(BA+ IH1) = tr log(AB + IH2) <∞. (C.37)

Proof of Lemma 4. Let {λk(AB)}NAB

k=1 be the strictly positive eigenvalues of AB, with 1 ≤
NAB ≤ ∞. Then

tr log(AB + IH2
) =

NAB∑
k=1

log(λk(AB) + 1) ≤
NAB∑
k=1

λk(AB) <∞,
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where we have used the inequality log(1 + x) ≤ x for x ≥ 0 and the assumption that AB is trace
class. Thus log(AB + IH2

) is a trace class operator. By Lemma 3, the nonzero eigenvalues of BA
are the same as those of AB. Thus log(BA+ IH1

) is also a trace class operator and

tr log(BA+ IH1
) = tr log(AB + IH2

) <∞.
This completes the proof.

Lemma 5. Let H1 and H2 be two separable Hilbert spaces. Let A : H1 → H2 and B : H2 → H1

be bounded linear operators such that AB : H2 → H2 and BA : H1 → H1 are positive, self-
adjoint compact operators and that AB is Hilbert-Schmidt. Then BA is also Hilbert-Schmidt and

|| log(IH1
+BA)||2HS = || log(IH2

+AB)||2HS. (C.38)

Proof of Lemma 5. By definition, for A : H1 → H2 and B : H2 → H1,

|| log(IH2
+AB)||2HS =

NAB∑
k=1

[log(1 + λk(AB))]2.

Similarly,

|| log(IH1 +BA)||2HS =

NBA∑
k=1

[log(1 + λk(BA))]2.

Here NAB and NBA denote the numbers of positive eigenvalues of AB and BA, respectively.
We have shown that the nonzero eigenvalues of BA and AB are the same. Thus the above two
expressions are equal to each other.

Lemma 6. Let H be a separable Hilbert space and A : H → H, B : H → H be two self-adjoint,
positive Hilbert-Schmidt operators. Let {λk(A)}NA

k=1 and {λk(B)}NB

k=1 be their positive spectra,
respectively, with corresponding normalized eigenvectors {φk(A)}NA

k=1 and {φk(B)}NB

k=1. Then

tr[log(I +A) log(I +B)] =

NA∑
k=1

NB∑
j=1

log(1 + λk(A)) log(1 + λj(B))|〈φk(A), φj(B)〉|2. (C.39)

Proof of Lemma 6. From the spectral expansions

log(I +A) =

NA∑
k=1

log(1 + λk(A))φk(A)⊗ φk(A),

log(I +B) =

NB∑
k=1

log(1 + λk(B))φk(B)⊗ φk(B),

we have

log(I +A) log(I +B)

= [

NA∑
k=1

log(1 + λk(A))φk(A)⊗ φk(A)][

NB∑
k=1

log(1 + λk(B))φk(B)⊗ φk(B)]

=

NA∑
k=1

NB∑
j=1

log(1 + λk(A)) log(1 + λj(B))〈φk(A), φj(B)〉φk(A)⊗ φj(B).

It follows that

tr[log(I +A) log(I +B)]

=

NA∑
k=1

NB∑
j=1

log(1 + λk(A)) log(1 + λj(B))|〈φk(A), φj(B)〉|2.

This completes the proof of the lemma.
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Lemma 7. LetH1,H2 be separable Hilbert spaces and A : H1 → H2 be a compact operator such
that ATA : H1 → H1 is Hilbert-Schmidt. Let

log(IH1
+ATA) =

NA∑
k=1

log(1 + λk(ATA))φk(ATA)⊗ φk(ATA)

be an orthogonal spectral decomposition for log(IH1 +ATA), with {λk(ATA)}NA

k=1 being the pos-
itive eigenvalues of ATA and {φk(ATA)}NA

k=1 their corresponding normalized eigenvectors. Then

log(IH2 +AAT ) =

NA∑
k=1

log(1 + λk(ATA))
(Aφk(ATA))

||Aφk(ATA)||H2

⊗ (Aφk(ATA))

||Aφk(ATA)||H2

is an orthogonal spectral decomposition for log(IH2 +AAT ), which is equivalent to

log(IH2 +AAT ) =

NA∑
k=1

log(1 + λk(ATA))

λk(ATA)
(Aφk(ATA))⊗ (Aφk(ATA)).

Proof of Lemma 7. By Lemma 3, the positive eigenvalues ofATA andAAT are the same. Further-
more, if

ATAφk(ATA) = λk(ATA)φk(ATA)

with λk(ATA) 6= 0 and φk(ATA) ∈ H1, then multiplying both sides by A gives

AAT [Aφk(ATA)] = λk(ATA)[Aφk(ATA)].

Thus Aφk(ATA) ∈ H2 is an eigenvector of AAT with the same eigenvalue λk(ATA). Its norm is

||Aφk(ATA)||2H2
= 〈Aφk(ATA), Aφk(ATA)〉H2

= 〈φk(ATA), ATAφk(ATA)〉H1

= λk(ATA)||φk(ATA)||2H1
= λk(ATA).

Also, for k 6= j,

〈Aφk(ATA), Aφj(A
TA)〉H2 = 〈φk(ATA), ATAφj(A

TA)〉H1

= λj〈φk(ATA), φj(A
TA)〉H1

= 0.

Thus { 1√
λk(ATA)

Aφk(ATA)}NA

k=1 are theH2-normalized orthonormal eigenvectors of AAT corre-

sponding to the positive eigenvalues {λk(ATA)}NA

k=1. From this fact, we obtain the spectral decom-
position of AAT and hence of log(IH2 +AAT ). This completes the proof of the lemma.

Lemma 8. Let H1, H2 be two separable Hilbert spaces and A : H1 → H2, B : H1 → H2 be
compact operators such that ATA : H1 → H1 and BTB : H1 → H1 are Hilbert-Schmidt. Then

tr[log(AAT + IH2
) log(BBT + IH2

)]

= 1TNA
log(INA

+ ΣA)Σ−1
A (UTAA

TBUB ◦ UTAATBUB)Σ−1
B log(INB

+ ΣB)1NB
. (C.40)

In the above expression, ◦ denotes the Hadamard (element-wise) matrix product, NA, NB are the
numbers of nonzero eigenvalues of ATA and BTB, respectively. The diagonal matrices ΣA, of size
NA×NA, and ΣB , of size NB ×NB , and the matrices UA, of size dim(H1)×NA, and UB , of size
dim(H1)×NB , are obtained from the spectral decompositions

ATA = UAΣAU
T
A , BTB = UBΣBU

T
B , (C.41)

respectively.

Proof of Lemma 8. Let NA be the number of nonzero eigenvalues of AAT , which are the same as
those of ATA, and NB be the number of nonzero eigenvalues of BBT , which are the same as those
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of BTB. Then by applying Lemma 6 and Lemma 7, we get

tr[log(AAT + IH2
) log(BBT + IH2

)]

=

NA∑
k=1

NB∑
j=1

log(1 + λk(AAT )) log(1 + λj(BB
T ))|〈φk(AAT ), φj(BB

T )〉H2
|2

=

NA∑
k=1

NB∑
j=1

log(1 + λk(ATA)) log(1 + λj(B
TB))|〈φk(AAT ), φj(BB

T )〉H2 |2

=

NA∑
k=1

NB∑
j=1

log(1 + λk(ATA)) log(1 + λj(B
TB))

λk(ATA)λj(BTB)
|〈Aφk(ATA), Bφj(B

TB)〉H2 |2

=

NA∑
k=1

NB∑
j=1

log(1 + λk(ATA)) log(1 + λj(B
TB))

λk(ATA)λj(BTB)
|〈φk(ATA), ATBφj(B

TB)〉H1
|2

Consider the following spectral decompositions for ATA and BTB:

ATA = UAΣAU
T
A , BTB = UBΣBU

T
B ,

where the diagonal matrix ΣA is of size NA ×NA, with diagonal consisting of the nonzero eigen-
values of ATA, and the diagonal matrix ΣB is of size NB × NB , with diagonal consisting of the
nonzero eigenvalues of BTB. Then

tr[log(AAT + IH2
) log(BBT + IH2

)]

= 1TNA
log(INA

+ ΣA)Σ−1
A (UTAA

TBUB ◦ UTAATBUB)Σ−1
B log(INB

+ ΣB)1NB
,

where ◦ denotes the Hadamard (element-wise) matrix product. This completes the proof of the
lemma.

Proof of Theorem 6. By Theorem 4, when dim(HK) =∞, we have

d2
logHS[(CΦ(x) + γIHK

), (CΦ(y) + µIHK
)] =

∥∥∥∥log

(
1

γ
CΦ(x) + IHK

)
− log

(
1

µ
CΦ(y) + IHK

)∥∥∥∥2

HS

+(log γ − logµ)2.

Expanding the first term, we have∥∥∥∥log

(
1

γ
CΦ(x) + IHK

)
− log

(
1

µ
CΦ(y) + IHK

)∥∥∥∥2

HS

=

∥∥∥∥log

(
1

γ
CΦ(x) + IHK

)∥∥∥∥2

HS

+

∥∥∥∥log

(
1

µ
CΦ(y) + IHK

)∥∥∥∥2

HS

−2tr

[
log

(
1

γ
CΦ(x) + IHK

)
log

(
1

µ
CΦ(y) + IHK

)]
.

By Lemma 5, the first term is∥∥∥∥log

(
1

γ
CΦ(x) + IHK

)∥∥∥∥2

HS

=

∥∥∥∥log

(
1

γm
Φ(x)J2

mΦ(x)T + IHK

)∥∥∥∥2

HS

=

∥∥∥∥log

(
1

γm
JmΦ(x)TΦ(x)Jm + Im

)∥∥∥∥2

HS

=

∥∥∥∥log

(
1

γm
JmK[x]Jm + Im

)∥∥∥∥2

HS

= tr

[
log

(
1

γm
JmK[x]Jm + Im

)]2

.

Similarly, the second term is∥∥∥∥log

(
1

µ
CΦ(y) + IHK

)∥∥∥∥2

HS

= tr

[
log

(
1

µm
JmK[y]Jm + Im

)]2

.
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For the third term, we have

tr

[
log

(
1

γ
CΦ(x) + IHK

)
log

(
1

µ
CΦ(y) + IHK

)]
= tr

[
log

(
1

γm
Φ(x)J2

mΦ(x)T + IHK

)
log

(
1

µm
Φ(y)J2

mΦ(y)T + IHK

)]
.

Let A = 1√
γmΦ(x)Jm : Rm → HK , B = 1√

µmΦ(y)Jm : Rm → HK , then

AAT =
1

γ
CΦ(x), BBT =

1

µ
CΦ(y),

ATA =
1

γm
JmK[x]Jm, BTB =

1

µm
JmK[y]Jm, ATB =

1
√
γµm

JmK[x,y]Jm.

Applying Lemma 8, we obtain the formula for the cross term CAB . For the first two terms, we have

tr

[
log

(
1

γm
JmK[x]Jm + Im

)]2

= tr[log(ATA+ Im)]2 = tr[log(INA
+ ΣA)]2,

tr

[
log

(
1

µm
JmK[y]Jm + Im

)]2

= tr[log(BTB + Im)]2 = tr[log(INB
+ ΣB)]2.

Combining all the expressions, we obtain the formula for dlogHS. The formulas for 〈 , 〉logHS and
|| ||logHS are obtained similarly.

Proof of Theorem 7. By Theorem 5, when dim(HK) <∞, we have

d2
logHS[(CΦ(x) + γIHK

), (CΦ(y) + µIHK
)]

=
∥∥log

(
CΦ(x) + γIHK

)
− log

(
CΦ(y) + µIHK

)∥∥2

HS

=

∥∥∥∥log

(
1

γ
CΦ(x) + IHK

)
− log

(
1

µ
CΦ(y) + IHK

)∥∥∥∥2

HS

+2(log γ − logµ)tr

(
log

(
1

γ
CΦ(x) + IHK

)
− log

(
1

µ
CΦ(y) + IHK

))
+(log γ − logµ)2 dim(HK).

Let A = 1√
γmΦ(x)Jm : Rm → HK , B = 1√

µmΦ(y)Jm : Rm → HK , then

AAT =
1

γ
CΦ(x), BBT =

1

µ
CΦ(y),

ATA =
1

γm
JmK[x]Jm, BTB =

1

µm
JmK[y]Jm, ATB =

1
√
γµm

JmK[x,y]Jm.

The first term in the expression for d2
logHS follows from the proof of Theorem 6. For the second

term, we have

tr

(
log

(
1

γ
CΦ(x) + IHK

))
= tr log

(
AAT + IHK

)
= tr log(ATA+ Im) by Lemma 4

= tr log

(
1

γm
JmK[x]Jm + Im

)
= tr[log(INA

+ ΣA)].

Similarly

tr

(
log

(
1

γ
CΦ(x) + IHK

))
= tr log

(
1

γm
JmK[y]Jm + Im

)
= tr[log(INB

+ ΣB)].

Combining these expressions, we obtain the formula for d2
logHS. The formulas for 〈 , 〉logHS and

|| ||logHS are obtained similarly. This completes the proof.
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D Further discussions

D.1 Further discussions on the theoretical framework

In this section, we provide a more detailed discussion of Eqs. (12) and (13) in the main paper.
Recall that Eq. (12) defines the manifold of positive definite unitized Hilbert-Schmidt operators on
a Hilbert spaceH:

Σ(H) = P(H) ∩HR = {A+ γI > 0 : A∗ = A, A ∈ HS(H), γ ∈ R}.

If dim(H) =∞, then from the assumption that A is Hilbert-Schmidt, we have limk→∞ λk(A) = 0
and the requirement that A+ γI > 0 automatically implies that γ > 0. However, if dim(H) <∞,
then γ > 0 can take on negative values, since all we need in this case is that the spectrum of A+ γI
be strictly positive.

Furthermore, if γ > 0 is sufficiently large, then we can have A + γI > 0 even if A has negative
eigenvalues.

From Section 4.2 onwards, we deal with the subset (Eq. (26))

Σ+(H) = {A+ γI : A ∈ HS(H) ∩ Sym+(H) , γ > 0},

where A is positive (examples of which are the covariance operators) and γ > 0. This set is a strict
subset of the manifold Σ(H).

We now show that when dim(H) =∞, the affine-invariant metric defined by Eq. (13)

d[(A+ γI), (B + µI)] = || log[(A+ γI)−1/2(B + µI)(A+ γI)−1/2]||eHS

is finite. Since (A + γI) and (B + µI) are both positive definite, the operator (A + γI)−1/2(B +
µI)(A + γI)−1/2 is self-adjoint and positive. Furthermore, it is invertible, with bounded inverse
(A + γI)1/2(B + µI)−1(A + γI)1/2. Thus, it is positive definite, that is it belongs to Σ(H). By
Lemma 1, there exists a unique operator C ∈ HS(H) ∩ Sym(H) and a unique scalar α ∈ R such
that

(A+ γI)−1/2(B + µI)(A+ γI)−1/2 = exp(C + αI),

with
log[(A+ γI)−1/2(B + µI)(A+ γI)−1/2] = C + αI ∈ HR.

By definition of the extended Hilbert-Schmidt norm, we have

d2[(A+ γI), (B + µI)] = ||C + αI||2eHS = ||C||2HS + α2 <∞,

as we claimed.

D.2 Further discussions on the experimental framework

Two-layer kernel machine interpretation: In the kernel setting, our framework can be viewed as a
kernel machine with two nonlinear layers. The kernel in the first layer defines a covariance operator
for each input sample, which is assumed to be generated by its own probability distribution. In our
setting, covariance operators for samples belonging to the same class should be close to each other
under the Log-HS metric, and those corresponding to samples belonging to different classes should
be far apart. After computing the Log-HS distances between the covariance operators, we enter the
second layer where a new kernel is defined using these distances. With this kernel, we can perform
any kernel method, such as KernelPCA, for all the input samples, just like we currently perform
SVM on top of the Log-HS metric computation. Our current experiments clearly demonstrate the
substantial gain in performance of this 2-layer kernel machine over the 1-layer kernel machine, that
is SVM with the Log-Euclidean metric on directCOVs. We will report further numerical experiments
using other kernel methods in a longer version of the paper and in future work.

Comparison with the Support Measure Machine (SMM) of [8]: It would be interesting to com-
pare the performance of our framework in the kernel setting to that of the SMM of [8]. In the SMM
approach, for the present context, each input sample would be represented by a mean vector in an
RKHS, instead of by a covariance operator as in our framework. We note that while the mean vector
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in the feature space may theoretically characterize a distribution, in practice this might not neces-
sarily hold true since we only have finite samples, see e.g. [10]. Thus the performance of the SMM
will also depend on the particular application at hand. Experimental results comparing the SMM
approach and our framework will be reported in the longer version of the current paper.

Computational complexity: Let n be the number of features and m be the number of observations
for each input sample. Computing the Log-Euclidean metric between two n×n covariance matrices
takes time O(n2m + n3), since it takes O(n2m) time to compute the matrices themselves and the
SVD of an n×nmatrix takes timeO(n3). On the other hand, computing the Log-HS metric between
two covariance operators in an infinite-dimensional RKHS, where we deal with Gram matrices of
size m × m, takes time O(m3). This is of the same order as the computational complexity for
computing the Stein and Jeffreys divergences in RKHS in [4].
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