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Abstract

In this paper we investigate the computational complexity of learning the
graph structure underlying a discrete undirected graphical model from i.i.d.
samples. Our first result is an unconditional computational lower bound
of �(pd/2) for learning general graphical models on p nodes of maximum
degree d, for the class of so-called statistical algorithms recently introduced
by Feldman et al. [1]. The construction is related to the notoriously di�cult
learning parities with noise problem in computational learning theory. Our
lower bound suggests that the ÂO(pd+2) runtime required by Bresler, Mossel,
and Sly’s [2] exhaustive-search algorithm cannot be significantly improved
without restricting the class of models.
Aside from structural assumptions on the graph such as it being a tree,
hypertree, tree-like, etc., many recent papers on structure learning assume
that the model has the correlation decay property. Indeed, focusing on fer-
romagnetic Ising models, Bento and Montanari [3] showed that all known
low-complexity algorithms fail to learn simple graphs when the interaction
strength exceeds a number related to the correlation decay threshold. Our
second set of results gives a class of repelling (antiferromagnetic) models
that have the opposite behavior: very strong interaction allows e�cient
learning in time ÂO(p2). We provide an algorithm whose performance in-
terpolates between ÂO(p2) and ÂO(pd+2) depending on the strength of the
repulsion.

1 Introduction

Graphical models have had tremendous impact in a variety of application domains. For
unstructured high-dimensional distributions, such as in social networks, biology, and finance,
an important first step is to determine which graphical model to use. In this paper we
focus on the problem of structure learning: Given access to n independent and identically
distributed samples ‡(1), . . . ‡(n) from an undirected graphical model representing a discrete
random vector ‡ = (‡1, . . . , ‡p), the goal is to find the graph G underlying the model. Two
basic questions are 1) How many samples are required? and 2) What is the computational
complexity?
In this paper we are mostly interested in the computational complexity of structure learning.
We first consider the problem of learning a general discrete undirected graphical model of
bounded degree.

1



1.1 Learning general graphical models

Several algorithms based on exhaustively searching over possible node neighborhoods have
appeared in the last decade [4, 2, 5]. Abbeel, Koller, and Ng [4] gave algorithms for learning
general graphical models close to the true distribution in Kullback-Leibler distance. Bresler,
Mossel, and Sly [2] presented algorithms guaranteed to learn the true underlying graph.
The algorithms in both [4] and [2] perform a search over candidate neighborhoods, and for
a graph of maximum degree d, the computational complexity for recovering a graph on p
nodes scales as ÂO(pd+2) (where the ÂO notation hides logarithmic factors).
While the algorithms in [2] are guaranteed to reconstruct general models under basic
nondegeneracy conditions using an optimal number of samples n = O(d log p) (sample
complexity lower bounds were proved by Santhanam and Wainwright [6] as well as [2]), the
exponent d in the ÂO(pd+2) run-time is impractically high even for constant but large graph
degrees. This has motivated a great deal of work on structure learning for special classes of
graphical models. But before giving up on general models, we ask the following question:

Question 1: Is it possible to learn the structure of general graphical models on p
nodes with maximum degree d using substantially less computation than pd?

Our first result suggests that the answer to Question 1 is negative. We show an uncon-
ditional computational lower bound of p

d
2 for the class of statistical algorithms introduced

by Feldman et al. [1]. This class of algorithms was introduced in order to understand the
apparent di�culty of the Planted Clique problem, and is based on Kearns’ statistical query
model [7]. Kearns showed in his landmark paper that statistical query algorithms require
exponential computation to learn parity functions subject to classification noise, and our
hardness construction is related to this problem. Most known algorithmic approaches (in-
cluding Markov chain Monte Carlo, semidefinite programming, and many others) can be
implemented as statistical algorithms, so the lower bound is fairly convincing.
We give background and prove the following theorem in Section 4.

Theorem 1.1. Statistical algorithms require at least �(p d
2 ) computation steps in order to

learn the structure of a general graphical models of degree d.

If complexity pd is to be considered intractable, what shall we consider as tractable? Writing
algorithm complexity in the form c(d)pf(d), for high-dimensional (large p) problems the
exponent f(d) is of primary importance, and we will think of tractable algorithms as having
an f(d) that is bounded by a constant independent of d. The factor c(d) is also important,
and we will use it to compare algorithms with the same exponent f(d).

In light of Theorem 1.1, reducing computation below p�(d) requires restricting the class
of models. One can either restrict the graph structure or the nature of the interactions
between variables. The seminal paper of Chow and Liu [8] makes a model restriction of
the first type, assuming that the graph is a tree; generalizations include to polytrees [9],
hypertrees [10], and others. Among the many possible assumptions of the second type,
the correlation decay property is distinguished: to the best of our knowledge all existing
low-complexity algorithms require the correlation decay property [3].

1.2 Correlation decay property

Informally, a graphical model is said to have the correlation decay property (CDP) if any
two variables ‡s and ‡t are asymptotically independent as the graph distance between s and
t increases. Exponential decay of correlations holds when the distance from independence
decreases exponentially fast in graph distance, and we will mean this stronger form when
referring to correlation decay. Correlation decay is known to hold for a number of pairwise
graphical models in the so-called high-temperature regime, including Ising, hard-core lattice
gas, Potts (multinomial) model, and others (see, e.g., [11, 12, 13, 14, 15, 16]).
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Bresler, Mossel, and Sly [2] observed that it is possible to e�ciently learn models with (ex-
ponential) decay of correlations, under the additional assumption that neighboring variables
have correlation bounded away from zero (as is true, e.g., for the ferromagnetic Ising model
in the high temperature regime). The algorithm they proposed for this setting pruned the
candidate set of neighbors for each node to roughly size O(d) by retaining only those variables
with su�ciently high correlations, and then within this set performed the exhaustive search
over neighborhoods mentioned before, resulting in a computational cost of dO(d) ÂO(p2). The
greedy algorithms of Netrapali et al. [17] and Ray et al. [18] also require the correlation de-
cay property and perform a similar pruning step by retaining only nodes with high pairwise
correlation; they then use a di�erent method to select the true neighborhood.
A number of papers consider the problem of reconstructing Ising models on graphs with
few short cycles, beginning with Anandkumar et al. [19]. Their results apply to the case of
Ising models on sparsely connected graphs such as the Erdös-Renyi random graph G(p, d

p ).
They additionally require the interaction parameters to be either generic or ferromagnetic.
Ferromagnetic models have the benefit that neighbors always have a non-negligible correla-
tion because the dependencies cannot cancel, but in either case the results still require the
CDP to hold. Wu et al. [20] remove the assumption of generic parameters in [19], but again
require the CDP.
Other algorithms for structure learning are based on convex optimization, such as Raviku-
mar et al.’s [21] approach using regularized node-wise logistic regression. While this
algorithm does not explicitly require the CDP, Bento and Montanari [3] found that the
logistic regression algorithm of [21] provably fails to learn certain ferromagnetic Ising model
on simple graphs without correlation decay. Other convex optimization-based algorithms
such as [22, 23, 24] require similar incoherence or restricted isometry-type conditions that
are di�cult to verify, but likely also require correlation decay. Since all known algorithms
for structure learning require the CDP, we ask the following question (paraphrasing Bento
and Montanari):

Question 2: Is low-complexity structure learning possible for models which do not
exhibit the CDP, on general bounded degree graphs?

Our second main result answers this question a�rmatively by showing that a broad class of
repelling models on general graphs can be learned using simple algorithms, even when the
underlying model does not exhibit the CDP.

1.3 Repelling models

The antiferromagnetic Ising model has a negative interaction parameter, whereby neighbor-
ing nodes prefer to be in opposite states. Other popular antiferromagnetic models include
the Potts or coloring model, and the hard-core model.
Antiferromagnetic models have the interesting property that correlations between neighbors
can be zero due to cancellations. Thus algorithms based on pruning neighborhoods using
pairwise correlations, such as the algorithm in [2] for models with correlation decay, does not
work for anti-ferromagnetic models. To our knowledge there are no previous results that
improve on the pd computational complexity for structure learning of antiferromagnetic
models on general graphs of maximum degree d.
Our first learning algorithm, described in Section 2, is for the hard-core model.
Theorem 1.2 (Informal). It is possible to learn strongly repelling models, such as the hard-
core model, with run-time ÂO(p2).

We extend this result to weakly repelling models (equivalent to the antiferromagnetic Ising
model parameterized in a nonstandard way, see Section 3). Here — is a repelling strength
and h is an external field.
Theorem 1.3 (Informal). Suppose — Ø (d ≠ –)(h + ln 2) for an integer 0 Æ – < d. Then
it is possible to learn a repelling model with interaction —, with run-time ÂO(p2+–).
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The computational complexity of the algorithm interpolates between ÂO(p2), achievable for
strongly repelling models, and ÂO(pd+2), achievable for general models using exhaustive
search. The complexity depends on the repelling strength of the model, rather than struc-
tural assumptions on the graph as in [19, 20].
We remark that the strongly repelling models exhibit long-range correlations, yet the algo-
rithmic task of graph structure learning is possible using a local procedure.
The focus of this paper is on structure learning, but the problem of parameter estimation
is equally important. It turns out that the structure learning problem is strictly more
challenging for the models we consider: once the graph is known, it is not di�cult to
estimate the parameters with low computational complexity (see, e.g., [4]).

2 Learning the graph of a hard-core model

We warm up by considering the hard-core model. The analysis in this section is straightfor-
ward, but serves as an example to highlight the fact that correlation decay is not a necessary
condition for structure learning.
Given a graph G = (V, E) on |V | = p nodes, denote by I(G) ™ {0, 1}p the set of independent
set indicator vectors ‡, for which at least one of ‡i or ‡j is zero for each edge {i, j} œ E(G).
The hardcore model with fugacity ⁄ > 0 assigns nonzero probability only to vectors in I(G),
with

P(‡) = ⁄|‡|

Z
, ‡ œ I(G) . (2.1)

Here |‡| is the number of entries of ‡ equal to one and Z =
q

‡œI(G) ⁄|‡| is the normalizing
constant called the partition function. If ⁄ > 1 then more mass is assigned to larger
independent sets. (We use indicator vectors to define the model in order to be consistent
with the antiferromagnetic Ising model in the next section.)
Our goal is to learn the graph G = (V, E) underlying the model (2.1) given access to inde-
pendent samples ‡(1), . . . , ‡(n). The following simple algorithm reconstructs G e�ciently.

Algorithm 1 simpleHC(‡(1), . . . , ‡(n))
1: FOR each i, j, k:
2: IF ‡(k)

i = ‡(k)
j = 1, THEN S = S fi {i, j}

3: OUTPUT Ê = Sc

The idea behind the algorithm is very simple. If {i, j} belongs to the edge set E(G), then
for every sample ‡(k) either ‡(k)

i = 0 or ‡(k)
j = 0 (or both). Thus for every i, j and k such

that ‡(k)
i = ‡(k)

j = 1 we can safely declare {i, j} not to be an edge. To show correctness of
the algorithm it is therefore su�cient to argue that for every non-edge {i, j} there is a high
likelihood that such an independent set ‡(k) will be sampled.
Before doing this, we observe that simpleHC actually computes the maximum-likelihood
estimate for the graph G. To see this, note that an edge e = {i, j} for which ‡(k)

i = ‡(k)
j = 1

for some k cannot be in Ĝ, since P(‡(k)|Ĝ+e) = 0 for any Ĝ. Thus the ML estimate contains
a subset of those edges e which have not been ruled out by ‡(1), . . . , ‡(n). But adding any
such edge e to the graph decreases the value of the partition function in (2.1) (the sum is
over fewer independent sets), thereby increasing the likelihood of each of the samples.
The sample complexity and computational complexity of simpleHC is as follows, with proof
in the Supplement.
Theorem 2.1. Consider the hard-core model (2.1) on a graph G = (V, E) on |V | = p nodes
and with maximum degree d. The sample complexity of simpleHC is

n = O((2⁄)2d≠2 log p) , (2.2)
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i.e. with this many samples the algorithm simpleHC correctly reconstructs the graph with
probability 1 ≠ o(1). The computational complexity is

O(np2) = O((2⁄)2d≠2p2 log p) . (2.3)

We next show that the sample complexity bound in Theorem 2.1 is basically tight:
Theorem 2.2 (Sample complexity lower bound). Consider the hard-core model (2.1). There
is a family of graphs on p nodes with maximum degree d such that for the probability of
successful reconstruction to approach one, the number of samples must scale as

n = �
1

(2⁄)2d log p

d

2
.

Lemma 2.3. Suppose edge e = (i, j) /œ G, and let I be an independent set chosen according
to the Gibbs distribution (2.1). Then P({i, j} ™ I) Ø (9 · max{1, (2⁄)2d≠2})≠1 , “ .

The Supplementary Material contains proofs for Theorem 2.2 and Lemma 2.3.

3 Learning anti-ferromagnetic Ising models

In this section we consider the anti-ferromagnetic Ising model on a graph G = (V, E). We
parametrize the model in such a way that each configuration has probability

P(‡) = 1
Z

exp
)

H(‡)
*

, ‡ œ {0, 1}p , (3.1)

where
H(‡) = ≠—

ÿ

(i,j)œE

‡i‡j +
ÿ

iœV

hi‡i . (3.2)

Here — > 0 and {hi}iœV are real-valued parameters, and we assume that |hi| Æ h for all i.
Working with configurations in {0, 1}p rather than the more typical {≠1, +1}p amounts to
a reparametrization (which is without loss of generality as shown for example in Appendix 1
of [25]). Setting hi = h = ln ⁄ for all i, we recover the hard-core model with fugacity ⁄ in
the limit — æ Œ, so we think of (3.2) as a “soft” independent set model.

3.1 Strongly antiferromagnetic models

We start by considering the situation in which the repelling strength — is su�ciently large
that we can modify the approach used for the hard-core model. We require some notation
to work with conditional probabilities: for each vertex b œ V , let

Bb = {‡(i) : ‡(i)
b = 1} ,

and
P̂(‡a = 1|‡b = 1) := 1

|B| |{i œ B : ‡(i)
a = 1}| .

Of course, E
!
P̂(‡a = 1|‡b = 1)

"
= P(‡a = 1|‡b = 1). The algorithm, described next,

determines whether each edge {a, b} is present based on comparing P̂ to a threshold.

Algorithm 2 StrongRepelling
Input: —, h, d, and n samples ‡(1), . . . , ‡(n) œ {0, 1}p. Output: edge set Ê.
1: Let ” = (1 + 2deh(d≠1))≠2

2: FOR each possible edge {a, b} œ
!

V
2
"
:

3: IF P̂ (‡a = 1|‡b = 1) Æ (1 + e—≠h)≠1 + ” THEN add edge (a, b) to Ê
4: OUTPUT Ê

Algorithm StrongRepelling obtains the following performance. The proof of Proposi-
tion 3.1 is similar to that of Theorem 2.1, replacing Lemma 2.3 by Lemma 3.2 below.
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Proposition 3.1. Consider the antiferromagnetic Ising model (3.2) on a graph G = (V, E)
on p nodes and with maximum degree d. If

— Ø d(h + ln 2) ,

then algorithm StrongRepelling has sample complexity

n = O
1

22de2h(d+1) log p
2

,

i.e. this many samples are su�cient to reconstruct the graph with probability 1 ≠ o(1). The
computational complexity of StrongRepelling is

O(np2) = O
1

22de2h(d+1)p2 log p
2

.

When the interaction parameter — Ø d(h+ln 2) it is possible to identify edges using pairwise
statistics. The next lemma, proved in the Supplement, shows the desired separation.
Lemma 3.2. We have the following estimates:

(i) If (a, b) /œ E(G), then P(‡a = 1|‡b = 1) Ø 1
1+2deg(a)eh(deg(a)+1) .

(ii) Conversely, if (a, b) œ E(G), then P(‡a = 1|‡b = 1) Æ 1
1+e—≠h .

(ii) For any b œ V , P(‡b = 1) Ø 1
1+2deg(b)eh(deg(b)+1) .

3.2 Weakly antiferromagnetic models

In this section we focus on learning weakly repelling models and show a trade-o� between
computational complexity and strength of the repulsion. Recall that for strongly repelling
models our algorithm has run-time O(p2 log p), the same as for the hard-core model (infinite
repulsion).
For a subset of nodes U ™ V , let G\U denote the graph obtained from G by removing nodes
in U (as well as any edges incident to nodes in U). The following corollary is immediate
from Lemma 3.2.
Corollary 3.3. We have the conditional probability estimates for deleting subsets of nodes:

(i) If (a, b) /œ E(G), then for any subset of nodes U µ V \ {a, b},

PG\U (‡a = 1|‡b = 1) Ø 1
1 + 2degG\U (a)eh(degG\U (a)+1) .

(ii) Conversely, if (a, b) œ E(G), then for any subset of nodes U ™ V \ {a, b}

PG\U (‡a = 1|‡b = 1) Æ 1
1 + e—≠h

.

We can e�ectively remove nodes from the graph by conditioning: The family of models (3.2)
has the property that conditioning on ‡i = 0 amounts to removing node i from the graph.
Fact 3.4 (Self-reducibility). Let G = (V, E), and consider the model 3.2. Then for any
subset of nodes U ™ V , the probability law PG(‡ œ · |‡U = 0) is equal to PG\U (‡V \U œ · ).

The final ingredient is to show that we can condition by restricting attention to a subset of
the observed data, ‡(1), . . . , ‡(n), without throwing away too many samples.
Lemma 3.5. Let U ™ V be a subset of nodes and denote the subset of samples with variables
‡U equal to zero by AU = {‡(i) : ‡(i)

u = 0 for all u œ U}. Then with probability at least
1 ≠ exp(n/2(1 + eh)2|U |) the number |AU | of such samples is at least n

2 · (1 + eh)≠|U |.

We now present the algorithm. E�ectively, it reduces node degree by removing nodes (which
can be done by conditioning on value zero), and then applies the strong repelling algorithm
to the residual graph.

6



Algorithm 3 WeakRepelling
Input: —, h, d, and n samples ‡(1), . . . , ‡(n) œ {0, 1}p. Output: edge set Ê.
1: Let ” = (1 + 2deh(d≠1))≠2

2: FOR each possible edge (a, b) œ
!

V
2
"
:

3: FOR each U ™ V \ {a, b} of size |U | Æ Ád ≠ —/(h + ln 2)Ë
4: Compute P̂G\U (‡a = 1|‡b = 1)
5: IF minU :|U |= P̂G\U (‡a = 1|‡b = 1) Æ (1 + e—≠h) + ” THEN add edge (a, b) to Ê

6: OUTPUT Ê

Theorem 3.6. Let – be a nonnegative integer strictly smaller than d, and consider the
antiferromagnetic Ising model 3.2 with

— Ø (d ≠ –)(h + ln 2)
on a graph G. Algorithm WeakRepelling reconstructs the graph with probability 1 ≠ o(1)
as p æ Œ using

n = O
1

(1 + eh)–22de2h(d+1) log p
2

i.i.d. samples, with run-time
O

!
np2+–

"
= ÂOh,d(p2+–) .

4 Statistical algorithms and proof of Theorem 1.1

We start by describing the statistical algorithm framework introduced by [1]. In this section
it is convenient to work with variables taking values in {≠1, +1} rather than {0, 1}.

4.1 Background on statistical algorithms

Let X = {≠1, +1}p denote the space of configurations and let D be a set of distributions
over X . Let F be a set of solutions (in our case, graphs) and Z : D æ 2F be a map taking
each distribution D œ D to a subset of solutions Z(D) ™ F that are defined to be valid
solutions for D. In our setting, since each graphical model is identifiable, there is a single
graph Z(D) corresponding to each distribution D. For n > 0, the distributional search
problem Z over D and F using n samples is to find a valid solution f œ Z(D) given access
to n random samples from an unknown D œ D.
The class of algorithms we are interested in are called unbiased statistical algorithms, defined
by access to an unbiased oracle. Other related classes of algorithms are defined in [1], and
similar lower bounds can be derived for those as well.
Definition 4.1 (Unbiased Oracle). Let D be the true distribution. The algorithm is given
access to an oracle, which when given any function h : X æ {0, 1}, takes an independent
random sample x from D and returns h(x).

These algorithms access the sampled data only through the oracle: unbiased statistical
algorithms outsource the computation. Because the data is accessed through the oracle, it
is possible to prove unconditional lower bounds using information-theoretic methods. As
noted in the introduction, many algorithmic approaches can be implemented as statistical
algorithms.
We now define a key quantity called average correlation. The average correlation of a subset
of distributions DÕ ™ D relative to a distribution D is denoted fl(DÕ, D),

fl(DÕ, D) := 1
|DÕ|2

ÿ

D1,D2œDÕ

----

=
D1
D

≠ 1,
D2
D

≠ 1
>

D

---- , (4.1)

where Èf, gÍD := Ex≥D[f(x)g(x)] and the ratio D1/D represents the ratio of probability
mass functions, so (D1/D)(x) = D1(x)/D(x).
We quote the definition of statistical dimension with average correlation from [1], and then
state a lower bound on the number of queries needed by any statistical algorithm.
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Definition 4.2 (Statistical dimension). Fix “ > 0, ÷ > 0, and search problem Z over set
of solutions F and class of distributions D over X. We consider pairs (D, DD) consisting
of a “reference distribution” D over X and a finite set of distributions DD ™ D with the
following property: for any solution f œ F , the set Df = DD \ Z≠1(f) has size at least
(1 ≠ ÷) · |DD|. Let ¸(D, DD) be the largest integer ¸ so that for any subset DÕ ™ Df with
|DÕ| Ø |Df |/¸, the average correlation is |fl(DÕ, D)| < “ (if there is no such ¸ one can take
¸ = 0). The statistical dimension with average correlation “ and solution set bound ÷ is
defined to be the largest ¸(D, DD) for valid pairs (D, DD) as described, and is denoted by
SDA(Z, “, ÷).
Theorem 4.3 ([1]). Let X be a domain and Z a search problem over a set of solutions F
and a class of distributions D over X . For “ > 0 and ÷ œ (0, 1), let ¸ = SDA(Z, “, ÷). Any
(possibly randomized) unbiased statistical algorithm that solves Z with probability ” requires
at least m calls to the Unbiased Oracle for

m = min
;

¸(” ≠ ÷)
2(1 ≠ ÷) ,

(” ≠ ÷)2

12“

<
.

In particular, if ÷ Æ 1/6, then any algorithm with success probability at least 2/3 requires at
least min{¸/4, 1/48“} samples from the Unbiased Oracle.

In order to show that a graphical model on p nodes of maximum degree d requires
computation p�(d) in this computational model, we therefore would like to show that
SDA(Z, “, ÷) = p�(d) with “ = p≠�(d).

4.2 Soft parities

For any subset S µ [p] of cardinality |S| = d, let ‰S(x) =
r

iœS xi be the parity of variables
in S. Define a probability distribution by assigning mass to x œ {≠1, +1}p according to

pS(x) = 1
Z

exp(c · ‰S(x)) . (4.2)

Here c is a constant, and the partition function is

Z =
ÿ

x

exp(c · ‰S(x)) = 2p≠1(ec + e≠c) . (4.3)

Our family of distributions D is given by these soft parities over subsets S µ [p], and |D| =!
p
d

"
. The following lemma, proved in the supplementary material, computes correlations

between distributions.
Lemma 4.4. Let U denote the uniform distribution on {≠1, +1}p. For S ”= T , the corre-
lation È pS

U ≠ 1, pT

U ≠ 1Í is exactly equal to zero for any value of c. If S = T , the correlation
È pS

U ≠ 1, pS

U ≠ 1Í = 1 ≠ 4
(ec+e≠c)2 Æ 1.

Lemma 4.5. For any set DÕ ™ D of size at least |D|/pd/2, the average correlation satisfies
fl(DÕ, U) Æ ddp≠d/2 .

Proof. By the preceding lemma, the only contributions to the sum (4.1) comes from choosing
the same set S in the sum, of which there are a fraction 1/|DÕ|. Each such correlation is at
most one by Lemma 4.4, so fl Æ 1/|DÕ| Æ pd/2/|D| = pd/2/

!
p
d

"
Æ dd/pd/2. Here we used the

estimate
!

n
k

"
Ø ( n

k )k.

Proof of Theorem 1.1. Let ÷ = 1/6 and “ = ddp≠d/2, and consider the set of distributions
D given by soft parities as defined above. With reference distribution D = U , the uniform
distribution, Lemma 4.5 implies that SDA(Z, “, ÷) of the structure learning problem over
distribution (4.2) is at least ¸ = pd/2/dd. The result follows from Theorem 4.3.
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