
Supplementary Material: Learning Distributed
Representations for Structured Output Prediction

Vivek Srikumar
University of Utah

svivek@cs.utah.edu

Christopher D. Manning
Stanford University

manning@cs.stanford.edu

Details of Alternating Minimization

This supplement gives details about the alternating minimization algorithm employed for training.
Recall that the objective function is

f(w,A) =
λ1

2
wTw + λ2||A||∗ +

1

N

∑
i

L(xi,yi;w,A) (1)

In this paper, we instantiate L to be the hinge loss, defined as

L(xi,yi;w,A) = max
y

(
wT ΦA(xi,y) + ∆(y,yi)−wT ΦA(xi,yi)

)
(2)

Solving for the weight vector w

In steps 2 and 5 of the algorithm, when A is fixed to At, the minimization of the function f(w,At)
is the same training a structural SVM. The objective function for these steps can be written as

min
w

λ1

2
wTw +

1

N

∑
i

L(xi,yi;w,At)

We use the stochastic sub-gradient descent algorithm for this minimization. Given a single example
xi labeled with the structure yi, the sub-gradient can be computed by performing standard loss-
augmented inference as follows: ŷ = maxy w

T ΦA(xi,y) + ∆(y,yi). The sub-gradient for this
the objective defined over the single example with respect w is λw + ΦA(xi, ŷ) − ΦA(xi,yi).
Note that gradient computation does not change from standard structural SVM because the feature
representations are fixed. Loss-augmented inference also does not change because both w and A
are fixed at inference time.

Solving for the label matrix A

In Step 4 of the algorithm, we minimize f with respect A when w is fixed to wt−1. The objective
function for this minimization is

f ′(A) = λ2||A||∗ +
1

N

∑
i

L(xi,yi;wt−1,A) (3)

The objective f ′(A) can be written as g(A)+λ2||A||∗. The algorithm proceeds by taking a stochas-
tic gradient step for g followed by a proximal mapping to account for the regularizer, which we write
as h(A) = ||A||∗. The update has the following form:

A← proxth (A− t∇g(A))

Here, proxth is the proximal operator, defined as

proxth(X) = arg min
U

(
||U ||∗ +

1

2t
||U −X||2F

)
.

1



We will first look at the proximal operator before addressing the gradient computation.

We refer the reader to the monograph on proximal algorithms [1] for details about the method. In
our case, the proximal operator with respect to the nuclear norm can be computed by performing
singular value decomposition of the matrix X = UΣV T , where Σ is the diagonal matrix of singular
values diag(σ1, σ2, · · · ). We have proxth(X) = U Σ̂V T . Here Σ̂ is obtained by thresholding the
singular values as follows:

σ̂i =

{
σi − t when σi ≥ t,

0 when |σi| ≤ t,
σi + t when σi ≤ −t.

Even though the proximal mapping requires an SVD in the innermost loop, since the matrix is very
small (of the order of the number of labels), this does not influence the training time adversely.

For the gradient step, we need to compute the gradient of L(xi,yi;wt−1,A) with respect to A.
Since we are using the structured hinge loss, we use sub-gradient descent. As for the w case, we
need to solve loss-augmented inference to get ŷ. This leaves us with the problem of computing
the gradient of wT ΦA

(
xi, ŷ

)
− wT ΦA

(
xi,yi

)
with respect to A. We can compute the gradient

symbolically by unrolling the recursive definition of the feature tensor function from Section 3.1.

Effectively, we need to compute the gradient of functions such as wT ΦA(x,y) with respect to A.
From Equation (4), we have

wT ΦA(x,y) =
∑
p∈Γx

wT vec (Ψp (x,yp,A))

The term in the summation can be expanded as:

wT vec (Ψp (x,yp,A)) =

{
wT vec

(
alyφ

T
)
, p is atomic,

wT vec
(
alyp ⊗Ψp

(
x,y1:

p ,A
))
, p is compositional.

=

{ ∑
i

∑
j wdj+ialy,iφj , p is atomic,∑

i

∑
j wdj+ialyp ,i

[
vec

(
Ψp

(
x,y1:

p ,A
))]

j
, p is compositional.

The final expression is simply the multi-linear expansion of the score assigned to a part p. If the
part is atomic, the score is identical to the case discussed in Section 3.1 of the paper. For the
compositional case, we use the property that if a is a vector and b is a tensor, we have vec(a⊗ b) =
vec(a ⊗ vec(b)). Our goal is to compute the gradient of the above expression with respect to each
element of A. For an atomic part, the gradient is simple to calculate. For a compositional part, the
gradient can be computed using the chain rule. To complete the update for the label vectors, after
the proximal step, we project each column of A to the unit ball.

References
[1] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3), 2013.

2


