
A Appendix

A.1 Proofs

A.1.1 Proof of Theorem 3.3

Proof. For simplicity, we first consider the case of symmetric PSD A. Let k?

= rank A. Consider
X 2 Rn⇥k with ||X

i

||2  1 and k > k? such that LRP
k

(X) = tr(XTAX) attains the optimal
value of the SDP (this is possible in particular when k = n). We want to to transform X to the
thinner X? 2 Rn⇥k

?

that still satisfies the row norm constraints ||X?

i

||2  1. Let Q 2 Rk⇥k be an
orthonormal matrix (QQT

= I
k

). Note that XQ still satisfies the row norm constraints (since each
row of X

i

just gets rotated). Thus, it suffices to find Q so that some columns of XQ fall into the
null-space of A and can be discarded.

Suppose A ⌫ 0. Let A = LLT for L 2 Rn⇥k

?

and let Y = LTX 2 Rk

?⇥k. We can choose
Q so that Y Q 2 Rk

?⇥k has at most k? non-zero columns, i.e. take Q = [Qbasis, Qnull], where
Qnull 2 Rk⇥(k�k

?) comprises the k � k? columns such that Y Qnull = 0 and Qbasis 2 Rk⇥k

?

comprises the first k? columns of Q. Obtaining such a Q is possible by taking an orthonormal basis
of the null space of Y as the columns of Qnull, and taking an orthonormal basis of the k?-dimensional
row space of Y as the columns of Qbasis. Both bases can be obtained by applying the Gram-Schmidt
process.

Now when we transform X by Q to get XQ = [XQbasis, XQnull], we can drop the columns XQnull
since 0 = Y Qnull = LTXQnull, thus removing XQnull does not change the objective. Setting
X?

= XQbasis 2 Rn⇥k

?

gives that LRP
k

(X?

) = LRP
k

(X) and we get the desired rank reduction
without changing the objective and while maintaining satisfiability of the row norm constraints.

More generally if A is real symmetric (but not necessarily A ⌫ 0) then we can consider instead the
factorization A = LRT where the columns of R are identical to the columns of L except possibly
negated. Such a factorization is given by the eigendecomposition of a real symmetric matrix. In this
case, Q still rotates both L and R correctly and the above argument follows in the same way.

We remark that even more generally, if A = LUT for L, U 2 Rn⇥k

?

for n � k � 2k?, then we can
set Qbasis to be the basis of the row space of Y = [LTX; UTX] 2 R2k?⇥k. Then the same argument
still applies but we can only reduce the solution rank from k to 2k?

= 2 rank(A).

A.1.2 Proof of Theorem 3.5

Proof. The proof relies on Grothendieck’s identity: if u, v 2 Rk and g is drawn uniformly from the
unit sphere Sk, then

E
⇥
sign(uTg) sign(vTg)

⇤
=

2

⇡
arcsin(uTv). (7)

Let Y = f(XXT
) 2 Rn⇥n be the elementwise application of the scalar function

f(t) =

2
⇡

⇣
arcsin(t) � t

�(k)

⌘
. (8)

Lemma 1 in [13] shows that f(t) is a function of the positive type on Sk, which by definition means
that Y ⌫ 0 provided X

i

2 Sk for all i. The underlying theory is developed in [14].

For A, Y ⌫ 0 we have that tr(AY ) � 0. Rearranging terms and applying Grothendieck’s identity,

0  tr(AY ) = tr

✓
A

2

⇡

✓
arcsin(XXT

) � XXT

�(k)

◆◆
(9)

() tr

✓
A

2

⇡
arcsin(XXT

)

◆
� 2

⇡�(k)

tr(AXXT
) (10)

() E[IQP(rrd(X))] � 2

⇡�(k)

LRP
k

(X), (11)

as claimed.
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A.2 MRF to IQP reduction

Using the shorthand  
i;u =  

i

(u) and ✓
ij;uv = ✓

i,j

(u, v), the negative energy can be written as a
sum of terms  

i;1xi

+  
i;0(1 � x

i

) and of terms

✓
ij;11xi

x
j

+ ✓
ij;10xi

(1 � x
j

) + ✓
ij;01(1 � x

i

)x
j

+ ✓
ij;00(1 � x

i

)(1 � x
j

) (12)

for every i, j, i.e. negative energy is a quadratic form over {0, 1}n, and finding its maximum is
precisely the MAP problem. This quadratic form over can be written as xTMx + �Tx + �0, where

M
i,j

def
= ✓

ij;11 + ✓
ij;00 � ✓

ij;10 � ✓
ij;01 for i < j (13)

�
i

def
=  

i;1 �  
i;0 +

P
j>i

(✓
ij;10 � ✓

ij;00) +

P
j<i

(✓
ji;01 � ✓

ji;00) for every i (14)

�0
def
=

P
i

 
i;0 +

P
i<j

✓
ij;00 (15)

This in turn can be written more compactly as xT
(M 0

+diag(�))x+�0, where M 0
= (M +MT

)/2

is taken for symmetry. In summary, MAP in the MRF reduces to maximizing the term left of �0 (that
which we can control), which is now in a form that differs from IQP only by the domain of x.

One can then reduce the problem from the x 2 {0, 1}n domain to x 2 {�1, 1}n by a linear change
of variables. Given an IQP as in (1) with objective xTAx over x 2 {0, 1}n, we can equivalently
optimize [

1
2 (x̃ + 1)]

TA[

1
2 (x̃ + 1)] over x̃ 2 {�1, 1}n. This reduction introduces cross-terms. Define

b
def
= 1TA + A1 = 2A1 2 Rn b0

def
= 1TA1 =

1
21

Tb 2 Rn (16)

Now, optimizing over x 2 {�1, 1}n, we can fold b and b0 into A by introducing a single auxiliary
variable x0 (so the new domain is x0

= (x0, x)) and augmenting A to

A0
=

1

4


b0

1
2bT

1
2b A

�
. (17)

The variable x0 must be constrained to 1, but in practice such a constraint can be ignored up until we
output a final solution, because negating all of x has no effect on the IQP objective.

A.3 Additional figures

Figure 4 shows empirical histograms of objectives of random roundings from an LRP
k

solution.
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Figure : From top to bottom, rows vary across k = 2, 4, 8. From left to right,
columns show: (1) random A; (2) a pairwise distance matrix formed by MNIST
digits 4 and 9; (3) an instance from seg; (4) an instance from dbn. The limits of
the x-axis is identical in each column.
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Figure 4: Distribution of the value of random roundings across problem instances and ranks. From
top to bottom, rows vary across k = 2, 4, 8. From left to right, columns show: (1) random A; (2) a
pairwise distance matrix formed by MNIST digits 4 and 9; (3) an instance from seg; (4) an instance
from dbn. The range of the x-axis is identical in each column.
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