A Appendix

A.1 Proofs
A.1.1 Proof of Theorem 3.3

Proof.  For simplicity, we first consider the case of symmetric PSD A. Let £* = rank A. Consider
X € R™* with || X;||2 < 1 and k > k* such that LRP,(X) = tr(XTAX) attains the optimal
value of the SDP (this is possible in particular when k£ = n). We want to to transform X to the
thinner X* € R™*¥" that still satisfies the row norm constraints || X || < 1. Let Q € R*** be an

orthonormal matrix (QQT = I). Note that X Q still satisfies the row norm constraints (since each
row of X; just gets rotated). Thus, it suffices to find @) so that some columns of X () fall into the
null-space of A and can be discarded.

Suppose A = 0. Let A = LLT for L € R™*" andlet Y = LTX € R* *¥. We can choose
Q so that YQ € R* % has at most k* non-zero columns, i.e. take Q = [Qbasiss @nun], where

Qnui € RF*E=F) comprises the k — k* columns such that YQuu = 0 and Qpusis € RFXF
comprises the first £* columns of (). Obtaining such a @) is possible by taking an orthonormal basis
of the null space of Y as the columns of Qp;;, and taking an orthonormal basis of the k£*-dimensional
row space of Y as the columns of Qpasis. Both bases can be obtained by applying the Gram-Schmidt
process.

Now when we transform X by @ to get XQ = [X Qbasis; X Qnun], we can drop the columns X Qi
since 0 = YQuui = L' XQpu, thus removing X Q. does not change the objective. Setting
X* = X Qpasis € R™*" gives that LRP;(X*) = LRP;(X) and we get the desired rank reduction
without changing the objective and while maintaining satisfiability of the row norm constraints.

More generally if A is real symmetric (but not necessarily A > 0) then we can consider instead the
factorization A = LR where the columns of R are identical to the columns of L except possibly
negated. Such a factorization is given by the eigendecomposition of a real symmetric matrix. In this
case, (Q still rotates both L and R correctly and the above argument follows in the same way. O

We remark that even more generally, if A = LU T for LU € R™ %" forn > k > 2k*, then we can
set Quasis to be the basis of the row space of Y = [LTX; UT X] € R?*"**, Then the same argument
still applies but we can only reduce the solution rank from & to 2k* = 2rank(A).

A.1.2 Proof of Theorem 3.5

Proof.  The proof relies on Grothendieck’s identity: if u,v € R¥ and g is drawn uniformly from the
unit sphere S*, then

E [sign(u'g) sign(vg)] = %arcsin(uTv). (7)

LetY = f(XXT) € R"*" be the elementwise application of the scalar function
— 2 +3 __t_
flt)==2 (arcsm(t) v(k)> . 8)

Lemma 1 in [13] shows that f() is a function of the positive type on S*, which by definition means
that Y > 0 provided X; € S* for all i. The underlying theory is developed in [14].

For A,Y > 0 we have that tr(AY") > 0. Rearranging terms and applying Grothendieck’s identity,

-
0 <tr(AY) =tr (1472T (arcsin(XXT) - fi) )) )
= tr (Ai arcsin(XXT)) > 71'72(k) tr(AXXT) (10)
2
= EIQP(d(X))] = S LRPL(X), (11)
as claimed. O
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A.2 MREF to IQP reduction

Using the shorthand t;.,, = 9;(u) and 6;;.,, = 0; j(u, v), the negative energy can be written as a
sum of terms ;.1 ; + 1;.0(1 — ;) and of terms

Oiji1wiw; + Oij;107i(1 — 25) + Oiji01 (1 — @3) x5 + Oij00(1 — 24)(1 — x5) (12)

for every 1, j, i.e. negative energy is a quadratic form over {0,1}", and finding its maximum is
precisely the MAP problem. This quadratic form over can be written as 2" Mz + 3z + S, where

def

M; ; = 05511 + 0i5.00 — 0i;00 — 0ij:01 fori < j (13)
def .
Bi = Vit — Yo + 2055, (010 — Bijioo) + 225 ; (Bji01 — Ojizoo)  foreveryi — (14)
def
Bo = > io + i< 0igi00 (15)

This in turn can be written more compactly as = (M’ + diag(3))z + By, where M’ = (M + MT)/2
is taken for symmetry. In summary, MAP in the MRF reduces to maximizing the term left of 3 (that
which we can control), which is now in a form that differs from IQP only by the domain of x.

One can then reduce the problem from the 2 € {0,1}" domain to = € {—1,1}" by a linear change
of variables. Given an IQP as in (1) with objective 27 Az over x € {0, 1}", we can equivalently
optimize [5(Z + 1)]TA[3(Z + 1)] over & € {—1,1}". This reduction introduces cross-terms. Define

def

b 1T A 4 A1 = 241 € R" bp = 1TA1=31Tb €R" (16)

Now, optimizing over z € {—1,1}", we can fold b and b, into A by introducing a single auxiliary
variable xg (so the new domain is 2’ = (¢, x)) and augmenting A to

;1 [by LT
A=7 AL (17)

The variable x¢ must be constrained to 1, but in practice such a constraint can be ignored up until we
output a final solution, because negating all of = has no effect on the IQP objective.

A.3 Additional figures
Figure 4 shows empirical histograms of objectives of random roundings from an LRP}, solution.
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Figure 4: Distribution of the value of random roundings across problem instances and ranks. From
top to bottom, rows vary across k = 2,4, 8. From left to right, columns show: (1) random A; (2) a
pairwise distance matrix formed by MNIST digits 4 and 9; (3) an instance from seg; (4) an instance
from dbn. The range of the x-axis is identical in each column.
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