
A Supplement

Statistical Properties.

Here we discuss statistical properties of the estimates of negentropy and nonparametric partial corre-
lation. For any pair of variablesXi andXj , let (X

(1)
i , X

(1)
j ), . . . , (X

(n)
i , X

(n)
j ) be n i.i.d. R2-valued

data vectors sampled from p∗(xi, xj). Suppose X = [0, 1]2 is the domain of (Xi, Xj).

Assumption A.1. For any pair of variables Xi and Xj , assume the density p∗(xi, xj) belongs to a
2nd-order Hölder class and is bounded away from zero and infinity.

Assumption A.2. For any sequence converging to a boundary point, suppose the density p∗(xi, xj)
of any pair of variables Xi and Xj has vanishing first order partial derivatives.

Assumption A.3. Assume the kernel function K(·) is nonnegative and has a bounded support
[−1, 1] with

∫ 1

−1K(x)dx = 1 and
∫ 1

−1 xK(x)dx = 0.

Under these assumptions, the authors in [6] prove an exponential concentration inequality based on
a clipped “mirror image” kernel density estimator p̃n,h(xi, xj), where h is the bandwidth parameter.
Combined with bounds on the log determinant of sample covariance matrices presented in [2], we
obtain the following.

Theorem A.1. Under Assumptions A1-A3, for any ε > 0, if we choose the bandwidth according to
h � n−1/4, then there exists a constant N such that if n > N ,

P (|J̃n(Xi;Xj)− J(Xi;Xj)| > ε) ≤ 3 exp

(
− nε2

144κ2

)
,

for any i, j ∈ {1, . . . , d} with i 6= j, where

J̃n(Xi;Xj) = 1 + log(2π) +
1

2
logdet(Σ̂ijn )− 3

2(n− 1)
−H(p̃n,h(xi, xj)),

and κ = max{| log(min
X

p∗(xi, xj))|, | log(max
X

p∗(xi, xj))|}+ 1.

The advantage of having this exponential inequality is that we can guarantee accurate estimation of
the negentropy for many pairs of variables simultaneously. It is easy to see that the above theorem
implies a

√
n-rate of convergence in mean squared error E(|J̃n(Xi;Xj)−J(Xi;Xj)|) = O(n−1/2).

To justify the estimation of nonparametric partial correlation, it is shown in [1] that, for some
p1, p2 > 0,

√
n(ρ̂is·t − ρis·t) =

√
n(ris·t − ρis·t) +OP (n−min{p1,p2}),

where ris·t is the empirical correlation coefficient based on the errors ε(l)i\t = X
(l)
i − g(X

(l)
t ),

ε
(l)
s\t = X

(l)
s −h(X

(l)
t ) for any l ∈ D1, and np1(ĝ(x)−g(x)) = OP (1), np2(ĥ(x)−h(x)) = OP (1).

Proof of Proposition 2.1.

If node i is not in a blossom attached to node s, then either node i is not attached to any forest node
(its pedicel is ∅), or there exists some forest node t such that node i belongs to the blossom attached
to t. In either case, we haveXi ⊥⊥ Xs |Xt. For the other direction, assume on the contrary that node
i is in a blossom attached to node s. Then nodes i and s are not independent conditional on node t. �

Proof of Proposition 2.2.

Suppose node i is not in a blossom attached to the forest node s. Then according to Proposition 2.1,
there exists some node t such that (s, t) ∈ E(F ), satisfying Xi ⊥⊥ Xs |Xt. This implies ρis·t = 0,
contradicting the assumption. �

Proof of Theorem A.1.
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The authors in [6] show that under Assumptions A1-A3, for any ε > 0, if we choose the bandwidth
according to h � n−1/4, then if n is large enough,

P (|H(p̃n(xi, xj))−H(p∗(xi, xj))| > ε) ≤ 2 exp

(
− nε2

36κ2

)
.

A limiting law of the log determinant of the sample covariance matrix is presented in [2], where as
n→∞

logdet(Σ̂ijn )− 3/(n− 1)− logdet(Σijn )

2/
√
n− 1

L−→ N (0, 1).

Then if n is large enough, we obtain

P (|logdet(Σ̂ijn )− 3/(n− 1)− logdet(Σijn )| > ε) ≤
√

8

(n− 1)πε2
exp

(
− (n− 1)ε2

8

)
.

Following from the union bound, there exists a constant N such that for all n > N ,

P (|J̃n(Xi;Xj)− J(Xi;Xj)| > ε) ≤
√

8

(n− 1)πε2
exp

(
− (n− 1)ε2

8

)
+ 2 exp

(
− nε2

144κ2

)
,

≤ 3 exp

(
− nε2

144κ2

)
.

�

Supplementary Simulations 1.

We also evaluate the performance of these methods when the number of nodes within each blossom
|V (Bi)| varies. We generate non-Gaussian data for 5 variables with a Toeplitz dependence structure
using a Student t-copula, and then simulate multivariate Gaussian data for the blossoms connected
to each of these 5 nodes. The number of nodes within each blossom is set to be equal across different
blossoms and varies from 0 to 6.

Table 1 compares the held-out log-likelihood for each method. We can see that when |V (Bi)| is
small, the forest density estimator has the best generalization performance. As |V (Bi)| increases,
the blossom tree density estimator dominates the other two methods. When |V (Bi)| becomes large,
the graphical lasso estimator performs better than the forest density estimator, although the blossom
tree density estimator is still the best.

Table 1: Results on simulations. Held-out log-likelihood of graphical lasso, forest density estima-
tor, and blossom tree density estimator as a function of the number of nodes within each blossom
|V (Bi)|, which is set to be equal across different blossoms and varies from 0 to 6

|V (Bi)| = 0 1 2 3 4 5 6
glasso -6.61 -13.50 -20.66 -27.84 -34.69 -41.25 -48.19
forest -6.11 -13.04 -20.19 -27.35 -34.55 -41.23 -48.42
blossom tree -6.32 -13.08 -20.05 -27.21 -34.20 -40.79 -47.84

Supplementary Simulations 2.
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Suppose variables Xs, Xt and Xi satisfy the following distributions

(Xs, Xt) ∼





N
((

0

0

)
,

(
1 0.8

0.8 1

))
with probability 0.5

N
((

0

0

)
,

(
1 −0.8

−0.8 1

))
with probability 0.5

,

(Xi, Xs) ∼ N
((

0
0

)
,

(
1 r
r 1

))
.

Assume a forest structure F that only contains one edge (s, t) between node s and node t. We
would like to evaluate the success probability that another node i is assigned to the blossom attached
to node s rather than node t using the procedure described in Section 2.

Figure 5 reports the proportions of times among 200 replications that node i was classified to the
blossom attached to forest node s or t, as a function of the correlation coefficient r or sample size.
It is as expected that the probability that node i is successfully assigned to the blossom connected
to node s becomes larger as the correlation or sample size increases.
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Figure 5: Proportions of times among 200 replications that node i was classified to the blossom
attached to forest node s or t, as a function of the correlation coefficient r with sample size n = 200
(left), or as a function of sample size with correlation r = 0.1 (right)

Supplementary Real Data Analysis.

For the analysis of cell signalling data, Figure 6 shows the held-out log-likelihood of the graphical
lasso, forest density estimator, and blossom tree density estimator.
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Figure 6: Results on cell signalling data. Held-out log-likelihood of the graphical lasso (horizontal
dotted line), forest density estimator (horizontal dashed line), and blossom tree density estimator
(circles)
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