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Abstract

We study the early locust olfactory system in an attempt to explain its well-
characterized structure and dynamics. We first propose its computational function
as recovery of high-dimensional sparse olfactory signals from a small number
of measurements. Detailed experimental knowledge about this system rules out
standard algorithmic solutions to this problem. Instead, we show that solving a
dual formulation of the corresponding optimisation problem yields structure and
dynamics in good agreement with biological data. Further biological constraints
lead us to a reduced form of this dual formulation in which the system uses in-
dependent component analysis to continuously adapt to its olfactory environment
to allow accurate sparse recovery. Our work demonstrates the challenges and re-
wards of attempting detailed understanding of experimentally well-characterized
systems.

1 Introduction

Olfaction is perhaps the most widespread sensory modality in the animal kingdom, often crucial for
basic survival behaviours such as foraging, navigation, kin recognition, and mating. Remarkably,
the neural architecture of olfactory systems across phyla is largely conserved [1]. Such convergent
evolution suggests that what we learn studying the problem in small model systems will generalize
to larger ones. Here we study the olfactory system of the locust Schistocerca americana. While
we focus on this system because it is experimentally well-characterized (Section 2), we expect our
results to extend to other olfactory systems with similar architectures. We begin by observing that
although most odors are mixtures of hundreds of molecular species, with typically only a few of
these dominating in concentration – i.e. odors are sparse in the space of molecular concentrations
(Fig. 1A). We introduce a simple generative model of odors and their effects on odorant receptors
that reflects this sparsity (Section 3). Inspired by recent experimental findings [2], we then propose
that the function of the early olfactory system is maximum a posteriori (MAP) inference of these
concentration vectors from receptor inputs (Section 4). This is basically a sparse signal recovery
problem, but the wealth of biological evidence available about the system rules out standard solu-
tions. We are then led by these constraints to propose a novel solution to this problem in term of
its dual formulation (Section 5), and further to a reduced form of this solution (Section 6) in which
the circuitry uses ICA to continuously adapt itself to the local olfactory environment (Section 7).
We close by discussing predictions of our theory that are amenable to testing in future experiments,
and future extensions of the model to deal with readout and learning simultaneously, and to provide
robustness against noise corrupting sensory signals (Section 8).
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Figure 1: Odors and the olfactory circuit. (A) Relative concentrations of ∼ 70 molecules in the
odor of the Festival strawberry cultivar, demonstrating sparseness of odor vectors. (B,C) Diagram
and schematic of the locust olfactory circuit. Inputs from 90,000 ORNs converge onto ∼ 1000
glomeruli, are processed by the ∼ 1000 cells (projection neurons, PN, and local internuerons, LNs)
of the antennal lobe, and read out in a feedforward manner by the 50,000 Kenyon cells (KC) of the
mushroom body, whose activity ultimately is read out to produce behavior. (D,E) Odor response
of a PN (D) and a KC (E) to 7 trials of 44 mixtures of 8 monomolecular components (colors)
demonstrating cell- and odor-specific responses. The odor presentation window is in gray. PN
responses are dense and temporally patterned. KC responses are sparse and are often sensitive to
single molecules in a mixture. Panel A is reproduced from [8], B from [6], and D-E from the dataset
in [2].

2 Biological background

A schematic of the locust olfactory system is shown in Figure 1B-C. Axons from∼ 90, 000 olfactory
receptor neurons (ORNs) each thought to express one type of olfactory receptor (OR) converge onto
approximately 1000 spherical neuropilar structures called ‘glomeruli’, presumably by the ‘1-OR-to-
1-glomerulus’ rule observed in flies and mice. The functional role of this convergence is thought to
be noise reduction through averaging.

The glomeruli are sampled by the approximately 800 excitatory projection neurons (PNs) and 300
inhibitory local interneurons (LNs) of the antennal lobe (AL). LNs are densely connected to other
LNs and to the PNs; PNs are connected to each-other only indirectly via their dense connections
to LNs [3]. In response to odors, the AL exhibits 20 Hz local field potential oscillations and odor-
and cell-specific activity patterns in its PNs and LNs (Fig. 1D). The PNs form the only output of
the AL and project densely [4] to the 50,000 Kenyon cells (KCs) of the mushroom body (MB).
The KCs decode the PNs in a memoryless fashion every oscillation cycle, converting the dense
and promiscuous PN odor code into a very sparse and selective KC code [5], often sensitive to
a single component in a complex odor mixture [2] (Fig. 1E). KCs make axo-axonal connections
with neighbouring KCs [6] but otherwise only communicate with one-another indirectly via global
inhibition mediated by the giant GABA-ergic neuron [7]. Thus, while the AL has rich recurrency,
there is no feedback from the KCs back to the AL: the PN to KC circuit is strictly feedforward. As
we shall see below, this presents a fundamental challenge to theories of AL-MB computation.
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3 Generative model

Natural odors are mixtures of hundreds of different types of molecules at various concentrations (e.g.
[8]), and can be represented as points in RN+ , where each dimension represents the concentration
of one of the N molecular species in ‘odor space’. Often a few of these will be at a much higher
concentration than the others, i.e. natural odors are sparse. Because the AL responds similarly across
concentrations [9] , we will ignore concentration in our odor model and consider odors as binary
vectors x ∈ {0, 1}N . We will also assume that molecules appear in odor vectors independently of
one-another with probability k/N , where k is the average complexity of odors (# of molecules/odor,
equivalently the Hamming weight of x) in odor space.

We assume a linear noise-free observation model y = Ax for the M -dimensional glomerular activ-
ity vector (we discuss observation noise in Section 7). A is an M ×N affinity matrix representing
the response of each of the M glomeruli to each of the N molecular odor components and has el-
ements drawn iid. from a zero-mean Gaussian with variance 1/M . Our generative model for odors
and observations is summarized as

x = {x1, . . . , xN}, xi ∼ Bernoulli(k/N), y = Ax, Aij ∼ N (0,M−1) (1)

4 Basic MAP inference

Inspired by the sensitivity of KCs to monomolecular odors [2], we propose that the locust olfactory
system acts as a spectrum analyzer which uses MAP inference to recover the sparse N -dimensional
odor vector x responsible for the dense M -dimensional glomerular observations y, with M �
N e.g. O(1000) vs. O(10000) in the locust. Thus, the computational problem is akin to one in
compressed sensing [10], which we will exploit in Section 5. We posit that each KC encodes the
presence of a single molecular species in the odor, so that the overall KC activity vector represents
the system’s estimate of the odor that produced the observations y.

To perform MAP inference on binary x from y given A, a standard approach is to relax x to the
positive orthant RN+ [11], smoothen the observation model with isotropic Gaussian noise of variance
σ2 and perform gradient descent on the log posterior

log p(x|y,A, k) = C − β‖x‖1 −
1

2σ2
‖y −Ax‖22 (2)

where β = log((1−q)/q), q = k/N , ‖x‖1 =
∑M
i=1 xi for x � 0, and C is a constant. The gradient

of the posterior determines the x dynamics:

ẋ ∝ ∇x log p = −β sgn(x) +
1

2σ2
AT (y −Ax) (3)

Given our assumed 1-to-1 mapping of KCs to (decoded) elements of x, these dynamics fundamen-
tally violate the known biology for two reasons. First, they stipulate KC dynamics where there are
none. Second, they require all-to-all connectivity of KCs via ATA where none exist. In reality, the
dynamics in the circuit occur in the lower (∼ M ) dimensional measurement space of the antennal
lobe, and hence we need a way of solving the inference problem there rather than directly in the high
(N ) dimensional space of KC activites.

5 Low dimensional dynamics from duality

To compute the MAP solution using lower-dimensional dynamics, we consider the following com-
pressed sensing (CS) problem:

minimize ‖x‖1, subject to ‖y −Ax‖22 = 0 (4)

whose Lagrangian has the form

L(x, λ) = ‖x‖1 + λ‖y −Ax‖22 (5)

where λ is a scalar Lagrange multiplier. This is exactly the equation for our (negative) log posterior
(Eq. 2) with the constants absorbed by λ. We will assume that because x is binary, the two systems
will have the same solution, and will henceforth work with the CS problem.
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To derive low dimensional dynamics, we first reformulate the constraint and solve

minimize ‖x‖1, subject toy = Ax (6)

with Lagrangian
L(x,λ) = ‖x‖1 + λT (y −Ax) (7)

where now λ is a vector of Lagrange multipliers. Note that we are still solving an N -dimensional
minimization problem with M � N constraints, while we need M -dimensional dynamics. There-
fore, we consider the dual optimization problem of maximizing g(λ) where g(λ) = infx L(x,λ)
is the dual Lagrangian of the problem. If strong duality holds, the primal and dual objectives have
the same value at the solution, and the primal solution can be found by minimizing the Lagrangian
at the optimal value of λ [11]. Were x ∈ RN , strong duality would hold for our problem by Slater’s
sufficiency condition [11]. The binary nature of x robs our problem of the convexity required for
this sufficiency condition to be applicable. Nevertheless we proceed assuming strong duality holds.

The dual Lagrangian has a closed-form expression for our problem. To see this, let b = ATλ.
Then, exploiting the form of the 1-norm and x being binary, we obtain the following:

g(λ)−λTy = inf
x
‖x‖1−bTx = inf

x

M∑
i=1

(|xi|−bixi) =

M∑
i=1

inf
xi

(|xi|−bixi) = −
M∑
i=1

[bi−1]+ (8)

or, in vector form, g(λ) = λTy − 1T [b − 1]+, where [·]+ is the positive rectifying function.
Maximizing g(λ) by gradient descent yields M dimensional dynamics in λ:

λ̇ ∝ ∇λ g = y −A θ(ATλ− 1) (9)

where θ(·) is the Heaviside function. The solution to the CS problem – the odor vector that produced
the measurements y – is then read out at the convergence of these dynamics to λ? as

x? = argminx L(x,λ?) = θ(ATλ? − 1) (10)

A natural mapping of equations 9 and 10 to antennal lobe dynamics is for the output of the M
glomeruli to represent y, the PNs to represent λ, and the KCs to represent (the output of) θ, and
hence eventually x?. Note that this would still require the connectivity between PNs and KCs to
be negative reciprocal (and determined by the affinity matrix A). We term the circuit under this
mapping the full dual circuit (Fig. 2B). These dynamics allow neuronal firing rates to be both
positive and negative, hence they can be implemented in real neurons as e.g. deviations relative to a
baseline rate [12], which is subtracted out at readout.

We measured the performance of a full dual network of M = 100 PNs in recovering binary odor
vectors containing an average of k = 1 to 10 components out of a possible N = 1000. The
results in Figure 2E (blue) show that the dynamics exhibit perfect recovery.1 For comparison, we
have included the performance of the purely feedforward circuit (Fig. 2A), in which the glomerular
vector y is merely scaled by the k-specific amount that yields minimum error before being read
out by the KCs (Fig. 2E, black). In principle, no recurrent circuit should perform worse than
this feedfoward network, otherwise we have added substantial (energetic and time) costs without
computational benefits.

6 The reduced dual circuit

The full dual antennal lobe circuit described by Equations 9 and 10 is in better agreement with the
known biology of the locust olfactory system than 2 for a number of reasons:

1. Dynamics are in the lower dimensional space of the antennal lobe PNs (λ) rather than the
mushroom body KCs (x).

2. Each PN λi receives private glomerular input yi
3. There are no direct connections between PNs; their only interaction with other PNs is

indirect via inhibition provided by θ.
1See the the Supplementary Material for considerations when simulating the piecewise linear dynamics of

9.
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Figure 2: Performance of the feedforward and the dual circuits. (A-C) Circuit schematics. Arrows
(circles) indicate excitatory (inhibitory) connections. (D) Example PN and LN odor-evoked dynam-
ics for the reduced dual circuit. Top: PNs receive cell-specific excitation or inhibition whose strength
is changed as different LNs are activated, yielding cell-specific temporal patterning. Bottom: The
LNs whose corresponding KCs encode the odor (red) are strongly excited and eventually breach
the threshold (dashed line), causing changes to the dynamics (time points marked with dots). The
excitation of the other LNs (pink) remains subthreshold. (E) Hamming distance between recovered
and true odor vector as a function of odor density k. The dual circuits generally outperform the
feedforward system over the entire range tested. Points are means, bars are s.e.m., computed for 200
trials (feedforward) and all trials from 200 attempts in which the steady-state solution was found
(dual circuits, greater than 90%).

4. The KCs serve merely as a readout stage and are not interconnected.2

However, there is also a crucial disagreement of the full dual dynamics with biology: the requirement
for feedback from the KCs to the PNs. The mapping of λ to PNs and θ to the KCs in Equation 9
implies negative reciprocal connectivity of PNs and KCs, i.e. a feedforward connection of Aij from
PN i to KC j, and a feedback connection of −Aij from KC j to PN i. This latter connection from
KCs to PNs violates biological fact – no such direct and specific connectivity from KCs to PNs exists
in the locust system, and even if it did, it would most likely be excitatory rather than inhibitory, as
KCs are excitatory.

Although KCs are not inhibitory, antennal lobe LNs are and connect densely to the PNs. Hence they
could provide the feedback required to guide PN dynamics. Unfortunately, the number of LNs is on
the order of that of the PNs, i.e. much fewer than the number of the KCs, making it a priori unlikely
that they could replace the KCs in providing the detailed pattern of feedback that the PNs require
under the full dual dynamics.

To circumvent this problem, we make two assumptions about the odor environment. The first is
that any given environment contains a small fraction of the set of all possible molecules in odor
space. This implies the potential activation of only a small number of KCs, whose feedback patterns
(columns of A) could then be provided by the LNs. The second assumption is that the environment
changes sufficiently slowly that the animal has time to learn it, i.e. that the LNs can update their
feedback patterns to match the change in required KC activations.

This yields the reduced dual circuit, in which the reciprocal interaction of the PNs with the KCs via
the matrix A is replaced with interaction with the M LNs via the square matrix B. The activity of
the LNs represents the activity of the KCs encoding the molecules in the current odor environment,

2Although axo-axonal connections between neighbouring KC axons in the mushroom body peduncle are
known to exist [6], see also Section 2.
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and the columns of B are the corresponding columns of the full A matrix:

λ̇ ∝ y −B θ(BTλ− 1), x = θ(ATλ− 1) (11)

Note that instantaneous readout of the PNs is still performed by the KCs as in the full dual. The
performance of the reduced dual is shown in red in Figure 2E, demonstrating better performance
than the feedforward circuit, though not the perfect recovery of the full dual. This is because the
solution sets of the two equations are not the same: Suppose that B = A:,1:M , and that y =∑k
i=1 A:,i. The corresponding solution set for reduced dual is Λ1(y) = {λ : (B:,1:k)Tλ > 1 ∧

(B:,k+1:M )Tλ < 1}, equivalently Λ1(y) = {λ : (A:,1:k)Tλ > 1 ∧ (A:,k+1:M )Tλ < 1}. On the
other hand, the solution set for the full dual is Λ0(y) = {λ : (A:,1:k)Tλ > 1 ∧ (A:,k+1:M )Tλ <
1 ∧ (A:,M+1:N )Tλ < 1}. Note the additional requirement that the projection of λ onto columns
M + 1 to N of A must also be less than 1. Hence any solution to the full dual is a solution to the
reduced dual , but not necessarily vise-versa: Λ0(y) ⊆ Λ1(y). Since only the former are solutions to
the full problem, not all solutions to the reduced dual will solve it, leading to the reduced peformance
observed. This analysis also implies that increasing (or decreasing) the number of columns in B, so
that it is no longer square, will improve (worsen) the performance of the reduced dual, by making
its solution-set a smaller (larger) superset of Λ0(y).

7 Learning via ICA

Figure 2 demonstrates that the reduced dual has reasonable performance when the B matrix is
correct, i.e. it contains the columns of A for the KCs that would be active in the current odor
environment. How would this matrix be learned before birth, when presumably little is known about
the local environment, or as the animal moves from one odor environment to another?

Recall that, according to our generative model (Section 2) and the additional assumptions made for
deriving the reduced dual circuit (Section 6), molecules appear independently at random in odors
of a given odor environment and the mapping from odors x to glomerular responses y is linear
in x via the square mixing matrix B. Hence, our problem of learning B is precisely that of ICA
(or more precisely, sparse coding, as the observation noise variance is assumed to be σ2 > 0 for
inference), with binary latent variables x. We solve this problem using MAP inference via EM
with a mean-field variational approximation q(x) to the posterior p(x|y,B) [13], where q(x) ,∏M
i=1 Bernoulli(xi;qi) =

∏M
i=1 q

xi
i (1 − qi)

1−xi . The E-step, after observing that for binary x,
x2 = x, is ∆q ∝ −γ − log q

1−q + 1
σ2B

Ty − 1
σ2Cq, with γ = β1 + 1

2σ2 c, β = log((1− q0)/q0),
q0 = k/M , the vector c = diag(BTB), and C = BTB − diag(c), i.e. C is BTB with the
diagonal elements set to zero. To yield more plausible neural dynamics, we change variables to
v = log(q/(1 − q)). By the chain rule v̇ = diag(∂vi/∂qi)q̇. As vi is monotonically increasing
in qi, and so the corresponding partial derivatives are all positive, and the resulting diagonal matrix
is positive definite, we can ignore it in performing gradient descent and still minimize the same
objective. Hence we have

∆v ∝ −γ − v +
1

σ2
BTy − 1

σ2
Cq(v), q(v) =

1

1 + exp(−v)
, (12)

with the obvious mapping of v to LN membrane potentials, and q as the sigmoidal output function
representing graded voltage-dependent transmitter release observed in locust LNs.

The M-step update is made by changing B to increase log p(B) + Eq log p(x,y|B), yielding

∆B ∝ − 1

M
B +

1

σ2
(rqT + B diag(q(1− q))), r , y −Bq. (13)

Note that this update rule takes the form of a local learning rule.

Empirically, we observed convergence within around 10,000 iterations using a fixed step size of
dt ≈ 10−2, and σ ≈ 0.2 for M in the range of 20–100 and k in the range of 1–5. In cases when
the algorithm did not converge, lowering σ slightly typically solved the problem. The performance
of the algorithm is shown in figure 3. Although the B matrix is learned to high accuracy, it is
not learned exactly. The resulting algorithmic noise renders the performance of the dual shown in
Fig. 2E an upper bound, since there the exact B matrix was used.
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Figure 3: ICA performance for M = 40, k = 1, dt = 10−2. (A) Time course of mean squared
error between the elements of the estimate B and their true values for 10 different random seeds.
σ = 0.162 for six of the seeds, 0.15 for three, and 0.14 for one. (B,C) Projection of the columns of
Btrue into the basis of the columns of B before (B) and after learning (C), for one of the random
seeds. Plotted values before learning are clipped to the -1–1 range.

8 Discussion

8.1 Biological evidence and predictions

Our work is consistent with much of the known anatomy of the locust olfactory system, e.g. the
lack of connectivity between PNs and dense connectivity between LNs, and between LNs and PNs
[3]; direct ORN inputs to LNs (observed in flies [14]; unknown in locust); dense connectivity from
PNs to KCs [4]; odor-evoked dynamics in the antennal lobe [2], vs. memoryless readout in the KCs
[5]. In addition, we require gradient descent PN dynamics (untested directly, but consistent with PN
dynamics reaching fixed-points upon prolonged odor presentation [15]), and short-term plasticity in
the antennal lobe for ICA (a direct search for ICA has not been performed, but short-term plasticity
is present in trial-to-trial dynamics [16]).

Our model also makes detailed predictions about circuit connectivity. First, it predicts a specific
structure for the PN-to-KC connectivity matrix, namely AT , the transpose of the affinity matrix.
This is superficially at odds with recent work in flies suggesting random connectivity between PNs
and KCs (detailed connectivity information is not present in the locust). Murthy and colleagues
[17] examined a small population of genetically identifiable KCs and found no evidence of response
stereotypy across flies, unlike that present at earlier stages in the system. Our model is agnostic
to permutations of the output vector as these reassign the mapping between KCs and molecules
and affect neither information content nor its format, so our results would be consistent with [17]
under animal-specific permutations. Caron and co-workers [18] analysed the structural connectiv-
ity of single KCs to glomeruli and found it consistent with random connectivity conditioned on a
glomerulus-specific connection probability. This is also consistent with our model, with the ob-
served randomness reflecting that of the affinity matrix itself. Our model would predict (a) the
observation of repeated connectivity motifs if enough KCs (across animals) were observed, and that
(b) each connectivity motif corresponds to the (binarized) glomerular response vector evoked by a
particular molecule. In addition we predict symmetric inhibitory connectivity between LNs (BTB),
and negative reciprocal connectivity between PNs and LNs (Bij from PN i to LN j and −Bij from
LN to PN).

8.2 Combining learning and readout

We have presented two mechanisms above – the reduced dual for readout and and ICA for learning
– both of which need to be at play to guarantee high performance. In fact, these two mechanisms
must be active simultaneously in the animal. Here we sketch a possible mechanism for combining
them. The key is equation 12, which we repeat below, augmented with an additional term from the
PNs:

∆v ∝ −v +

[
−γ +

1

σ2
BT y − 1

σ2
Cq(v)

]
+
[
BT λ− 1

]
= −v + Ilearning + Ireadout.
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Figure 4: Effects of noise. (A) As in Figure 2E but with a small amount of additive noise in the
observations. The full dual still outperforms the feedforward circuit which in turn outperforms the
reduced dual over nearly half the tested range. (B) The feedback surface hinting at noise sensitivity.
PN phase space is colored according to activation of each of the KCs and a 2D projection around
the origin is shown. The average size of a zone with a uniform color is quite small, suggesting that
small perturbations would change the configuration of KCs activated by a PN, and hence the readout
performance.

Suppose (a) the two input channels were segregated e.g. on separate dendritic compartments, and
such that (b) the readout component was fast but weak, while (c) the learning component was slow
but strong, and (d) the v time constant was faster than both. Early after odor presentation, the main
input to the LN would be from the readout circuit, driving the PNs to their fixed point. The input
from the learning circuit would eventually catch up and dominate that of the readout circuit, driving
the LN dynamics for learning. Importantly, if B has already been learned, then the output of the
LNs, q(v), would remain essentially unchanged throughout, as both the learning and readout circuits
would produce the same (steady-state) activation vector in the LNs. If the matrix is incorrect, then
the readout is likely to be incorrect already, and so the important aspect is the learning update which
would eventually dominate. This is just one possibility for combining learning and readout. Indeed,
even the ICA updates themselves are non-trivial to implement. We leave the details of both to future
work.

8.3 Noise sensitivity

Although our derivations for serving inference and learning rules assumed observation noise, the
data that we provided to the models contained none. Adding a small amount of noise reduces
the performance of the dual circuits, particularly that of the reduced dual, as shown in Figure 4A.
Though this may partially be attributed to numerical integration issues (Supplementary Material),
there is likely a fundamental theoretical cause underlying it. This is hinted at by the plot in figure
4B of a 2D projection in PN space of the overlayed halfspaces defined by the activation of each of
the N KCs. In the central void no KC is active and λ can change freely along λ̇. As λ crosses into
a halfspace, the corresponding KC is activated, changing λ̇ and the trajectory of λ. The different
colored zones indicate different patterns of KC activation and correspondingly different changes to
λ̇. The small size of these zones suggests that small changes in the trajectory of λ caused e.g. by
noise could result in very different patterns of KC activation. For the reduced dual, most of these
halfspaces are absent for the dynamics since B has only a small subset of the columns of A, but
are present during readout, exacerbating the problem. How the biological system overcomes this
apparently fundamental sensitivity is an important question for future work.
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